Development of a Drone-Based Phenotyping System for European Pear Rust (Gymnosporangium sabinae) in Orchards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection, Data Preparation and Symptom Annotation
2.2. Data Augmentation, Model Selection and Model Training
2.3. Photogrammetric Construction of the Experimental Orchard
2.4. YOLO-Based Detection of Pear Rust Symptoms and Assignment to the Individual Tree
2.5. GIS-Assisted Counting of Diseased Leaves per Individual Tree
3. Results
3.1. GYMNSA Dataset
3.2. Model Selection and YOLO Model Training
3.3. Digital Orthomosaic and Digital Elevation Model of the Experimental Orchard
3.4. GIS-Assisted Localisation of Disease Symptoms
- 0 symptoms/m2 of canopy;
- 0.1 to 9.0 symptoms/m2 of canopy;
- 9.0 to 18.0 symptoms/m2 of canopy;
- 18.0 to 27.0 symptoms/m2 of canopy;
- 27.0 to 36.0 symptoms/m2 of canopy.
4. Discussion
4.1. GYMNSA Dataset and Model Training
4.2. Photogrammetric Reconstruction of the Experimental Orchard
4.3. Automated Counting of Infected Leaves
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Params | Term | 5-Fold Cross- Validation | Hyperparameter Tuning Hyp0 | YOLOv5lu Training from Scratch |
---|---|---|---|---|
model | Selected model file for training | yolov5lu.yaml/yolov8l.yaml | yolov5lu.yaml | yolov5lu.yaml |
epochs | Number of training epochs | 200 | 10 | 500 |
iterations | Number of generations for which the tuning is carried out | - | 100 | - |
patience | Epochs without improvement, which are waited for before training is completed | 100 | - | 100 |
batch | Defines the number of samples | 8 | 8 | 9 |
imgsz | Image size for training | 768 | 768 | 768 |
optimizer | Definition of the optimiser for training | AdamW | AdamW | AdamW |
verbose | Detailed output during training | true | true | true |
seed | Number that ensures the reproducibility of the results | 7 | 7 | 7 |
deterministic | Use of deterministic algorithms | true | true | true |
iou | Intersection over union | 0.7 | 0.7 | 0.7 |
lr0 | Initial learning rate | 0.01 | 0.001 | 0.0085 |
lrf | Final learning rate | 0.01 | 0.01 | 0.01213 |
momentum | Momentum factor for SGD | 0.937 | 0.937 | 0.81081 |
weight_decay | L2 regularisation term | 0.0005 | 0.0005 | 0.00034 |
warmup_epochs | Number of epochs to warm up the learning rate | 3.0 | 3.0 | 2.72199 |
warmup_momentum | Initial momentum for warmup phase | 0.8 | 0.8 | 0.72251 |
warmup_bias_lr | Learning rate for bias parameters during the warmup phase | 0.0 | 0.1 | 0.1 |
box | Weight of the box loss component | 7.5 | 7.5 | 4.69446 |
cls | Weight of the classification loss | 0.5 | 0.5 | 0.63944 |
dfl | Weight of the focal distribution loss | 1.5 | 1.5 | 1.69455 |
hsv_h | Image, HSV–Hue augmentation | 0.015 | 0.015 | 0.01697 |
hsv_s | Image, HSV–Saturation augmentation | 0.7 | 0.7 | 0.37337 |
hsv_v | Image, HSV–Value augmentation | 0.4 | 0.4 | 0.46164 |
translate | Image, translation | 0.1 | 0.1 | 0.05561 |
scale | Image, scale | 0.5 | 0.5 | 0.39554 |
flipud | Image, flip up-down | 0.5 | 0.5 | 0.41081 |
fliplr | Image, flip left-right | 0.0 | 0.0 | 0.0 |
mosaic | Image, mosaic | 1.0 | 1.0 | 0.74789 |
References
- Gano, B.; Bhadra, S.; Vilbig, J.M.; Ahmed, N.; Sagan, V.; Shakoor, N. Drone-based imaging sensors, techniques, and applications in plant phenotyping for crop breeding: A comprehensive review. Plant Phenome J. 2024, 7, e20100. [Google Scholar] [CrossRef]
- Abebe, A.M.; Kim, Y.; Kim, J.; Kim, S.L.; Baek, J. Image-Based High-Throughput Phenotyping in Horticultural Crops. Plants 2023, 12, 2061. [Google Scholar] [CrossRef] [PubMed]
- Fiorani, F.; Schurr, U. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol. 2013, 64, 267–291. [Google Scholar] [CrossRef]
- Ma, Z.; Rayhana, R.; Feng, K.; Liu, Z.; Xiao, G.; Ruan, Y.; Sangha, J.S. A Review on Sensing Technologies for High-Throughput Plant Phenotyping. IEEE Open J. Instrum. Meas. 2022, 1, 1–21. [Google Scholar] [CrossRef]
- Singh, D.; Jain, N.; Jain, P.; Kayal, P.; Kumawat, S.; Batra, N. PlantDoc: A Dataset for Visual Plant Disease Detection. In Proceedings of the CoDS COMAD 2020: 7th ACM IKDD CoDS and 25th COMAD, Hyderabad, India, 5–7 January 2020; pp. 249–253, ISBN 978-1-4503-7738-6. [Google Scholar] [CrossRef]
- Kassim, Y.B.; Oteng-Frimpong, R.; Puozaa, D.K.; Sie, E.K.; Abdul Rasheed, M.; Abdul Rashid, I.; Danquah, A.; Akogo, D.A.; Rhoads, J.; Hoisington, D.; et al. High-Throughput Plant Phenotyping (HTPP) in Resource-Constrained Research Programs: A Working Example in Ghana. Agronomy 2022, 12, 2733. [Google Scholar] [CrossRef]
- Reim, S.; Richter, S.; Leonhardt, O.; Maß, V.; Wöhner, T.W. YOLO-Based Phenotyping of Apple Blotch Disease (Diplocarpon coronariae) in Genetic Resources after Artificial Inoculation. Agronomy 2024, 14, 1042. [Google Scholar] [CrossRef]
- Schirrmann, M.; Giebel, A.; Gleiniger, F.; Pflanz, M.; Lentschke, J.; Dammer, K.-H. Monitoring Agronomic Parameters of Winter Wheat Crops with Low-Cost UAV Imagery. Remote Sens. 2016, 8, 706. [Google Scholar] [CrossRef]
- Patrick, A.; Li, C. High Throughput Phenotyping of Blueberry Bush Morphological Traits Using Unmanned Aerial Systems. Remote Sens. 2017, 9, 1250. [Google Scholar] [CrossRef]
- Ampatzidis, Y.; Partel, V. UAV-Based High Throughput Phenotyping in Citrus Utilizing Multispectral Imaging and Artificial Intelligence. Remote Sens. 2019, 11, 410. [Google Scholar] [CrossRef]
- Caruso, G.; Palai, G.; Marra, F.P.; Caruso, T. High-Resolution UAV Imagery for Field Olive (Olea europaea L.) Phenotyping. Horticulturae 2021, 7, 258. [Google Scholar] [CrossRef]
- Mamalis, M.; Kalampokis, E.; Kalfas, I.; Tarabanis, K. Deep Learning for Detecting Verticillium Fungus in Olive Trees: Using YOLO in UAV Imagery. Algorithms 2023, 16, 343. [Google Scholar] [CrossRef]
- Chen, A.; Nagar, Y.; Shoshani, G.; Sharon, R. Deep learning for almond fruit detection at different growth stages for orchards pest management using unmanned aerial vehicles. In Precision Agriculture’23, Proceedings of the 14th European Conference on Precision Agriculture, Bologna, Italy, 2–6 July 2023; Wageningen Academic: Wageningen, The Netherlands, 2023; pp. 847–854. [Google Scholar] [CrossRef]
- Su, D.; Qiao, Y.; Jiang, Y.; Valente, J.; Zhang, Z.; He, D. Editorial: AI, sensors and robotics in plant phenotyping and precision agriculture, volume II. Front. Plant Sci. 2023, 14, 1215899. [Google Scholar] [CrossRef]
- Castro, A.I.d.; Rallo, P.; Suárez, M.P.; Torres-Sánchez, J.; Casanova, L.; Jiménez-Brenes, F.M.; Morales-Sillero, A.; Jiménez, M.R.; López-Granados, F. High-Throughput System for the Early Quantification of Major Architectural Traits in Olive Breeding Trials Using UAV Images and OBIA Techniques. Front. Plant Sci. 2019, 10, 1472. [Google Scholar] [CrossRef]
- Hobart, M.; Pflanz, M.; Weltzien, C.; Schirrmann, M. Growth Height Determination of Tree Walls for Precise Monitoring in Apple Fruit Production Using UAV Photogrammetry. Remote Sens. 2020, 12, 1656. [Google Scholar] [CrossRef]
- Vacca, G.; Vecchi, E. UAV Photogrammetric Surveys for Tree Height Estimation. Drones 2024, 8, 106. [Google Scholar] [CrossRef]
- López-Granados, F.; Torres-Sánchez, J.; Jiménez-Brenes, F.M.; Arquero, O.; Lovera, M.; de Castro, A.I. An efficient RGB-UAV-based platform for field almond tree phenotyping: 3-D architecture and flowering traits. Plant Methods 2019, 15, 160. [Google Scholar] [CrossRef] [PubMed]
- Heim, R.H.; Wright, I.J.; Scarth, P.; Carnegie, A.J.; Taylor, D.; Oldeland, J. Multispectral, Aerial Disease Detection for Myrtle Rust (Austropuccinia psidii) on a Lemon Myrtle Plantation. Drones 2019, 3, 25. [Google Scholar] [CrossRef]
- Bao, W.; Zhu, Z.; Hu, G.; Zhou, X.; Zhang, D.; Yang, X. UAV remote sensing detection of tea leaf blight based on DDMA-YOLO. Comput. Electron. Agric. 2023, 205, 107637. [Google Scholar] [CrossRef]
- Shoaib, M.; Shah, B.; Ei-Sappagh, S.; Ali, A.; Ullah, A.; Alenezi, F.; Gechev, T.; Hussain, T.; Ali, F. An advanced deep learning models-based plant disease detection: A review of recent research. Front. Plant Sci. 2023, 14, 1158933. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y. Leaf disease image retrieval with object detection and deep metric learning. Front. Plant Sci. 2022, 13, 963302. [Google Scholar] [CrossRef]
- Mavridou, E.; Vrochidou, E.; Papakostas, G.A.; Pachidis, T.; Kaburlasos, V.G. Machine Vision Systems in Precision Agriculture for Crop Farming. J. Imaging 2019, 5, 89. [Google Scholar] [CrossRef] [PubMed]
- Mahlein, A.-K. Plant Disease Detection by Imaging Sensors—Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Plant Dis. 2016, 100, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Sweet, D.D.; Tirado, S.B.; Springer, N.M.; Hirsch, C.N.; Hirsch, C.D. Opportunities and challenges in phenotyping row crops using drone-based RGB imaging. Plant Phenome J. 2022, 5, e20044. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), CVF, Vancouver, BC, Canada, 18–22 June 2023; IEEE: Piscataway, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLOv8, Version 8.0.0; Ultralytics Inc.: Frederick, MD, USA, 2023; Available online: https://github.com/ultralytics/ultralytics (accessed on 13 April 2024).
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 779–788, ISBN 978-1-4673-8851-1. [Google Scholar] [CrossRef]
- Jocher, G. Ultralytics YOLOv5, Version 7.0; Ultralytics Inc.: Frederick, MD, USA, 2020; Available online: https://github.com/ultralytics/yolov5 (accessed on 17 June 2024).
- Pan, P.; Guo, W.; Zheng, X.; Hu, L.; Zhou, G.; Zhang, J. Xoo-YOLO: A detection method for wild rice bacterial blight in the field from the perspective of unmanned aerial vehicles. Front. Plant Sci. 2023, 14, 1256545. [Google Scholar] [CrossRef]
- Wu, B.; Liang, A.; Zhang, H.; Zhu, T.; Zou, Z.; Yang, D.; Tang, W.; Li, J.; Su, J. Application of conventional UAV-based high-throughput object detection to the early diagnosis of pine wilt disease by deep learning. For. Ecol. Manag. 2021, 486, 118986. [Google Scholar] [CrossRef]
- Reim, S.; Maβ, V.; Alirezazadeh, P.; Seidl-Schulz, J.; Leipnitz, M.; Fritzsche, E.; Geyer, M.; Pflanz, M. 77. Establishment of a UAV-based phenotyping method for European pear rust in fruit orchards. In Precision Agriculture ’23, Proceedings of the 14th European Conference on Precision Agriculture, Bologna, Italy, 2–6 July 2023; Stafford, J.V., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2023; pp. 611–617. ISBN 978-90-8686-393-8. [Google Scholar] [CrossRef]
- Terven, J.; Córdova-Esparza, D.-M.; Romero-González, J.-A. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Gonçalves, L.A.O.; Ghali, R.; Akhloufi, M.A. YOLO-Based Models for Smoke and Wildfire Detection in Ground and Aerial Images. Fire 2024, 7, 140. [Google Scholar] [CrossRef]
- Hussain, M. YOLOv5, YOLOv8 and YOLOv10: The Go-To Detectors for Real-time Vision. arXiv 2024, arXiv:2407.02988. [Google Scholar] [CrossRef]
- Ma, B.; Hua, Z.; Wen, Y.; Deng, H.; Zhao, Y.; Pu, L.; Song, H. Using an improved lightweight YOLOv8 model for real-time detection of multi-stage apple fruit in complex orchard environments. Artif. Intell. Agric. 2024, 11, 70–82. [Google Scholar] [CrossRef]
- Solimani, F.; Cardellicchio, A.; Dimauro, G.; Petrozza, A.; Summerer, S.; Cellini, F.; Renò, V. Optimizing tomato plant phenotyping detection: Boosting YOLOv8 architecture to tackle data complexity. Comput. Electron. Agric. 2024, 218, 108728. [Google Scholar] [CrossRef]
- Agisoft. Agisoft Metashape Professional, Version 2.1.2. Available online: https://www.agisoft.com/ (accessed on 8 October 2024).
- QGIS. org. QGIS Geographic Information System, Version 3.36.1; QGIS: Maidenhead, UK, 2024; Available online: http://qgis.org (accessed on 14 October 2024).
- Maß, V.; Alirezazadeh, P.; Seidl-Schulz, J.; Leipnitz, M.; Fritzsche, E.; Ibraheem, R.A.A.; Geyer, M.; Pflanz, M.; Reim, S. Annotated image dataset with different stages of European pear rust for UAV-based automated symptom detection in orchards. (submitted on 9 February 2024). Data Brief 2024. [Google Scholar]
- Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie. Agrarmeteorologisches Messnetz Sachsen—Wetterdaten: Wetterstation Pillnitz-Versuchsstation (PIL); Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie: Dresden, Germany, 2024; Available online: https://www.landwirtschaft.sachsen.de/Wetter09/asp/inhalt.asp?seite=swerte (accessed on 22 January 2024).
- Deutscher Wetterdienst. Hourly Station Observations of Cloudiness for Germany, Recent, Version v23.3; Deutscher Wetterdienst: Dresden, Germany, 2023. [Google Scholar]
- Clark, J.A. Pillow (PIL Fork). Version 9.5.0. Secret Labs, Inc.: Linköping, Östergötland, Sweden, 2015. Available online: https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf (accessed on 5 August 2024).
- Python Software Foundation. Python Language, Version 3.11.5; Python Software Foundation: Wilmington, DE, USA, 2022; Available online: https://docs.python.org/3.11/ (accessed on 24 September 2024).
- Sekachev, B.; Manovich, N.; Zhiltsov, M.; Zhavoronkov, A.; Kalinin, D.; Hoff, B.; Osmanov, T.; Kruchinin, D.; Zankevich, A.; Sidnev, D.; et al. opencv/cvat, Version 1.1.0; Zenodo: 2020. [CrossRef]
- Vanderplas, J. Data Science mit Python; mitp Verlags GmbH & Co. KG: Frechen, Germany, 2018; ISBN 978-3-95845-695-2. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Müller, A.; Nothman, J.; Louppe, G.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. arXiv 2011, arXiv:1201.0490. [Google Scholar] [CrossRef]
- Bradski, G. The OpenCV Library. Publisher: Intel Corporation; location: California, USA4.9.0. Dr. Dobb’s J. Softw. Tools 2000, 25, 122–125. [Google Scholar]
- Buslaev, A.; Parinov, A.; Iglovikov, V.; Khvedchenya, E.; Druzhinin, M. Albumentations, Version 1.3.1; Albumentations.ai: San Francisco, CA, USA, 2023; Available online: https://pypi.org/project/albumentations/ (accessed on 24 September 2024).
- Taylor, L.; Nitschke, G. Improving Deep Learning using Generic Data Augmentation. In Proceedings of the Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, G.; Wang, Z.; Wang, H.; Li, E.; Liang, Z. Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Comput. Electron. Agric. 2019, 157, 417–426. [Google Scholar] [CrossRef]
- Google. Colaboratory. 2024. Available online: https://research.google.com/colaboratory/intl/en-GB/faq.html (accessed on 22 May 2024).
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the 2019 33rd Conference on Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada, 8–14 December 2019; Publisher of the PyTorch software. The Linux Foundation: San Francisco, CA, USA. [Google Scholar] [CrossRef]
- Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. In Proceedings of the 7th International Conference on Learning Representations, 2019 ICLR, New Orleans, LA, USA, 6–9 May 2019; Available online: http://arxiv.org/pdf/1711.05101v3 (accessed on 17 June 2024).
- Dai, G.; Hu, L.; Fan, J.; Yan, S.; Li, R. A Deep Learning-Based Object Detection Scheme by Improving YOLOv5 for Sprouted Potatoes Datasets. IEEE Access 2022, 10, 85416–85428. [Google Scholar] [CrossRef]
- Maß, V.; Seidl-Schulz, J.; Leipnitz, M.; Fritzsche, E.; Geyer, M.; Pflanz, M.; Reim, S. Detection and Localisation of European Pear Rust (Gymnosporangium sabinae), Version 2; Figshare LLP: London, UK, 2024. [Google Scholar] [CrossRef]
- Harvey, P. ExifTool, Version 12.3.8.0; Kingston, ON, Canada. 2016. Available online: https://exiftool.org (accessed on 7 December 2023).
- Pix4D. 2019. Available online: https://support.pix4d.com/hc/en-us/articles/202560249-TOOLS-GSD-calculator (accessed on 1 February 2024).
- Pacheco do, E.; Silva, C. NormanTUD. Convert-Yolo-to-Pascalvoc, Version 3.8.3; Python: Wilmington, DE, USA, 2020; Available online: https://github.com/carolinepacheco/convert-yolo-to-pascalvoc (accessed on 21 September 2023).
- Maß, V.; Alirezazadeh, P.; Seidl-Schulz, J.; Leipnitz, M.; Fritzsche, E.; Ibraheem, R.A.A.; Geyer, M.; Pflanz, M.; Reim, S. GYMNSA Dataset, Version 1; Mendeley Data: 2024. Amsterdam, Netherlands. [CrossRef]
Date | Drone/ Camera System | Relative Altitude [m] | Wind Speed 1 [m/s] | Cloud Cover 2 [octa] |
---|---|---|---|---|
5 July 2021 | DJI P4P | 4.90 to 6.60 | 1.6 | 6 |
20 May 2022 | DJI P4P | 4.90 to 5.10 | 0.9–1.2 | 7–8 |
29 June 2022 | DJI P4P | 4.80 to 6.00 | 2.3–3.2 | 8 |
12 July 2022 | DJI P4P | 5.20 to 5.50 | 1.9 | 3–4 |
13 July 2022 | DJI P4P | 5.90 to 6.00 | 0.7–1.8 | 6 |
14 July 2022 | DJI P4P | 7.20 to 7.60 | 1.2 | 6 |
17 August 2022 | DJI Matrice 300 RTK 3 | 6.04 to 12.00 | 1.3–1.7 | 4–7 |
24 August 2023 | DJI P4P | 9.90 to 10.00 | 0.9–1.1 | 4–8 |
30 August 2023 | DJI Matrice 300 RTK 3 | 11.98 to 12.02 | 1.2–1.4 | 8 |
5 September 2023 | DJI P4P | 7.70 to 8.00 | 3.0 | 3 |
Data-Sets 1 | Training Datasets 2 | Validation Datasets | ||||||
---|---|---|---|---|---|---|---|---|
A. Images (n) | BG. Images (n) | Sum Instances (n) | Sum Images (n) | A. Images (n) | BG. Images (n) | Sum Instances (n) | Sum Images (n) | |
1 | 926 | 266 | 26,006 | 1192 | 121 | 29 | 3248 | 150 |
2 | 930 | 264 | 25,182 | 1194 | 119 | 30 | 3660 | 149 |
3 | 942 | 252 | 26,688 | 1194 | 113 | 36 | 2907 | 149 |
4 | 950 | 244 | 26,104 | 1194 | 109 | 40 | 3199 | 149 |
5 | 924 | 270 | 26,028 | 1194 | 122 | 27 | 3237 | 149 |
Dataset | Annotated Images (n) | Background Images (n) | Image Total (n) | Instances (n) |
---|---|---|---|---|
Training 1 | 930 | 264 | 1194 | 25,182 |
Validation | 119 | 30 | 149 | 3660 |
Total | 1049 | 294 | 1343 | 28,842 |
Dataset Composition |
YOLO
Version | P (%) | R (%) | F1 (%) | mAP@50 (%) | mAP@50-95 (%) |
---|---|---|---|---|---|---|
Dataset 1 | v5lu | 77.24 | 61.65 | 68.57 | 70.07 | 47.08 |
Dataset 2 | v5lu | 78.11 | 64.14 | 70.44 | 72.08 | 49.89 |
Dataset 3 | v5lu | 76.78 | 66.31 | 71.16 | 74.28 | 50.87 |
Dataset 4 | v5lu | 77.47 | 71.74 | 74.50 | 79.83 | 54.55 |
Dataset 5 | v5lu | 75.67 | 64.58 | 69.69 | 71.52 | 48.80 |
Mean | v5lu | 77.05 | 65.68 | 70.87 | 73.55 | 50.24 |
Dataset 1 | v8l | 73.58 | 60.79 | 66.57 | 67.90 | 44.74 |
Dataset 2 | v8l | 75.54 | 65.49 | 70.16 | 71.34 | 48.18 |
Dataset 3 | v8l | 78.66 | 60.23 | 68.22 | 68.61 | 47.03 |
Dataset 4 | v8l | 75.54 | 65.49 | 70.16 | 71.34 | 48.18 |
Dataset 5 | v8l | 73.25 | 61.66 | 66.96 | 67.70 | 45.47 |
Mean | v8l | 75.31 | 62.73 | 68.41 | 69.38 | 46.72 |
Infestation Intensity | Frequency 1 |
---|---|
0 symptoms/m2 of canopy | 19 |
0.1 to 9.0 symptoms/m2 of canopy | 60 |
9.0 to 18.0 symptoms/m2 of canopy | 23 |
18.0 to 27.0 symptoms/m2 of canopy | 8 |
27.0 to 36.0 symptoms/m2 of canopy | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maß, V.; Seidl-Schulz, J.; Leipnitz, M.; Fritzsche, E.; Geyer, M.; Pflanz, M.; Reim, S. Development of a Drone-Based Phenotyping System for European Pear Rust (Gymnosporangium sabinae) in Orchards. Agronomy 2024, 14, 2643. https://doi.org/10.3390/agronomy14112643
Maß V, Seidl-Schulz J, Leipnitz M, Fritzsche E, Geyer M, Pflanz M, Reim S. Development of a Drone-Based Phenotyping System for European Pear Rust (Gymnosporangium sabinae) in Orchards. Agronomy. 2024; 14(11):2643. https://doi.org/10.3390/agronomy14112643
Chicago/Turabian StyleMaß, Virginia, Johannes Seidl-Schulz, Matthias Leipnitz, Eric Fritzsche, Martin Geyer, Michael Pflanz, and Stefanie Reim. 2024. "Development of a Drone-Based Phenotyping System for European Pear Rust (Gymnosporangium sabinae) in Orchards" Agronomy 14, no. 11: 2643. https://doi.org/10.3390/agronomy14112643
APA StyleMaß, V., Seidl-Schulz, J., Leipnitz, M., Fritzsche, E., Geyer, M., Pflanz, M., & Reim, S. (2024). Development of a Drone-Based Phenotyping System for European Pear Rust (Gymnosporangium sabinae) in Orchards. Agronomy, 14(11), 2643. https://doi.org/10.3390/agronomy14112643