B Chromosomes in Wheat: Evolution, Functions and Breeding Potential
Abstract
:1. Genetic Evolution of Bs in Wheat
2. Relationship Between Bs and A Chromosome Genome
3. Role of B Chromosomes
4. Phenotypic and Cytogenetic Consequences of Bs in Wheat
5. Factors Affecting Bs: Soil Moisture and Temperature
6. Role of Bs in Wheat Resistance to Disease
7. Potential Application of Bs in Wheat Breeding
8. Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, N.; Ruban, A. Are B chromosomes useful for crop improvement? Plants People Planet 2019, 1, 84–92. [Google Scholar] [CrossRef]
- Dalla Benetta, E.; Antoshechkin, I.; Yang, T.; Nguyen, H.Q.M.; Ferree, P.M.; Akbari, O.S. Genome elimination mediated by gene expression from a selfish chromosome. Sci. Adv. 2020, 6, eaaz9808. [Google Scholar] [CrossRef]
- Jones, R.N.; Viegas, W.; Houben, A. A century of B chromosomes in plants: So what? Ann. Bot. 2008, 101, 767–775. [Google Scholar] [CrossRef]
- Jones, R.N. B chromosomes in plants. New Phytol. 1995, 131, 411–434. [Google Scholar] [CrossRef]
- Kimura, M.; Kayano, H. The maintenance of supernumerary chromosomes in wild populations of Lilium callosum by preferential segregation. Genetics 1961, 46, 1699. [Google Scholar] [CrossRef] [PubMed]
- Houben, A.; Banaei-Moghaddam, A.M.; Klemme, S. Biology and evolution of B chromosomes. In Plant Genome Diversity Volume 2: Physical Structure, Behaviour and Evolution of Plant Genomes; Springer: Berlin/Heidelberg, Germany, 2012; pp. 149–165. [Google Scholar]
- Bougourd, S.M.; Jones, R.N. B chromosomes: A physiological enigma. New Phytol. 1997, 137, 43–54. [Google Scholar] [CrossRef]
- Johnson Pokorná, M.; Reifová, R. Evolution of B chromosomes: From dispensable parasitic chromosomes to essential genomic players. Front. Genet. 2021, 12, 727570. [Google Scholar] [CrossRef] [PubMed]
- Rajpal, V.R.; Sharma, S.; Sehgal, D.; Sharma, P.; Wadhwa, N.; Dhakate, P.; Chandra, A.; Thakur, R.K.; Deb, S.; Rama Rao, S. Comprehending the dynamism of B chromosomes in their journey towards becoming unselfish. Front. Cell Dev. Biol. 2023, 10, 1072716. [Google Scholar] [CrossRef]
- Jones, N.; Houben, A. B chromosomes in plants: Escapees from the A chromosome genome? Trends Plant Sci. 2003, 8, 417–423. [Google Scholar] [CrossRef]
- Houben, A. B chromosomes—A matter of chromosome drive. Front. Plant Sci. 2017, 8, 210. [Google Scholar] [CrossRef]
- Houben, A.; Banaei-Moghaddam, A.M.; Klemme, S.; Timmis, J.N. Evolution and biology of supernumerary B chromosomes. Cell. Mol. Life Sci. 2014, 71, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Bauerly, E.; Hughes, S.E.; Vietti, D.R.; Miller, D.E.; McDowell, W.; Hawley, R.S. Discovery of supernumerary B chromosomes in Drosophila melanogaster. Genetics 2014, 196, 1007–1016. [Google Scholar] [CrossRef]
- Golczyk, H. Structural heterozygosity, duplication of telomeric (TTTAGGG)n Clusters and B chromosome architecture in Tradescantia virginiana L. Cytogenet. Genome Res. 2011, 134, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Blavet, N.; Yang, H.; Su, H.; Solanský, P.; Douglas, R.N.; Karafiátová, M.; Šimková, L.; Zhang, J.; Liu, Y.; Hou, J. Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution. Proc. Natl. Acad. Sci. USA 2021, 118, e2104254118. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.; Klemme, S.; Houben, A. Evolution of plant B chromosome enriched sequences. Genes 2018, 9, 515. [Google Scholar] [CrossRef] [PubMed]
- Nasuda, S.; Hudakova, S.; Schubert, I.; Houben, A.; Endo, T.R. Stable barley chromosomes without centromeric repeats. Proc. Natl. Acad. Sci. USA 2005, 102, 9842–9847. [Google Scholar] [CrossRef]
- Ruban, A.; Schmutzer, T.; Wu, D.D.; Fuchs, J.; Boudichevskaia, A.; Rubtsova, M.; Pistrick, K.; Melzer, M.; Himmelbach, A.; Schubert, V. Supernumerary B chromosomes of Aegilops speltoides undergo precise elimination in roots early in embryo development. Nat. Commun. 2020, 11, 2764. [Google Scholar] [CrossRef]
- Karafiátová, M.; Bednářová, M.; Said, M.; Čížková, J.; Holušová, K.; Blavet, N.; Bartoš, J. The B chromosome of Sorghum purpureosericeum reveals the first pieces of its sequence. J. Exp. Bot. 2021, 72, 1606–1616. [Google Scholar] [CrossRef]
- Huang, W.; Du, Y.; Zhao, X.; Jin, W. B chromosome contains active genes and impacts the transcription of A chromosomes in maize (Zea mays L.). BMC Plant Biol. 2016, 16, 88. [Google Scholar] [CrossRef]
- Ventura, K.; O’Brien, P.C.M.; do Nascimento Moreira, C.; Yonenaga-Yassuda, Y.; Ferguson-Smith, M.A. On the origin and evolution of the extant system of B chromosomes in Oryzomyini radiation (Rodentia, Sigmodontinae). PLoS ONE 2015, 10, e0136663. [Google Scholar] [CrossRef]
- McAllister, B. Isolation and characterization of a retroelement from B chromosome (PSR) in the parasitic wasp Nasonia vitripennis. Insect Mol. Biol. 1995, 4, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Sharbel, T.F.; Beukeboom, L.W.; Pijnacker, L.P. Multiple supernumerary chromosomes in the pseudogamous parthenogenetic flatworm Polycelis nigra: Lineage markers or remnants of genetic leakage? Genome 1997, 40, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Camacho, J.P.M. B chromosomes. In The Evolution of the Genome; Elsevier: Amsterdam, The Netherlands, 2005; pp. 223–286. [Google Scholar]
- Chen, J.; Birchler, J.A.; Houben, A. The non-Mendelian behavior of plant B chromosomes. Chromosome Res. 2022, 30, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Camacho, J.P.M.; Sharbel, T.F.; Beukeboom, L.W. B-chromosome evolution. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2000, 355, 163–178. [Google Scholar] [CrossRef]
- Pereira, H.S.; Delgado, M.; Viegas, W.; Rato, J.M.; Barao, A.; Caperta, A.D. Rye (Secale cereale) supernumerary (B) chromosomes associated with heat tolerance during early stages of male sporogenesis. Ann. Bot. 2017, 119, 325–337. [Google Scholar] [CrossRef]
- Hsu, L.-Y.; Lauring, J.; Liang, H.-E.; Greenbaum, S.; Cado, D.; Zhuang, Y.; Schlissel, M.S. A conserved transcriptional enhancer regulates RAG gene expression in developing B cells. Immunity 2003, 19, 105–117. [Google Scholar] [CrossRef]
- Tian, B.; Li, H. Variation of B Chromosome Associated with Tissue Culture in Wheat-rye Cross. J. Integr. Plant Biol. 2009, 51, 834–839. [Google Scholar] [CrossRef]
- Morais-Cecílio, L.; Delgado, M.; Jones, R.; Viegas, W. Painting rye B chromosomes in wheat: Interphase chromatin organization, nuclear disposition and association in plants with two, three or four Bs. Chromosome Res. 1996, 4, 195–200. [Google Scholar] [CrossRef]
- Puertas, M.; Carmona, R. Greater ability of pollen tube growth in rye plants with 2B chromosomes. Theor. Appl. Genet. 1976, 47, 41–43. [Google Scholar] [CrossRef]
- Jayalakshmi, K.; Pantulu, J.V. The effect of B-chromosomes on A-chromosome chiasma formation in pearl millet. Cytologia 1984, 49, 635–643. [Google Scholar] [CrossRef]
- Holmes, D.; Bougourd, S. B-chromosome selection in Allium schoenoprasum II. Experimental populations. Heredity 1991, 67, 117–122. [Google Scholar] [CrossRef]
- Holmes, D.; Bougourd, S. B-chromosome selection in Allium schoenoprasum. I. Natural populations. Heredity 1989, 63, 83–87. [Google Scholar] [CrossRef]
- Plowman, A.; Bougourd, S. Selectively advantageous effects of B chromosomes on germination behaviour in Allium schoenoprasum L. Heredity 1994, 72, 587–593. [Google Scholar] [CrossRef]
- Jones, R. B-chromosome drive. Am. Nat. 1991, 137, 430–442. [Google Scholar] [CrossRef]
- Porter, R.R.; Smith, G.D.; Miller, E.T. Environmental influences on the appearance and disappearance of B chromosomes in natural populations. Genet. Res. 1996, 67, 245–253. [Google Scholar]
- Nishiyama, I.; Sato, T.; Takahashi, T. Effect of temperature on chromosome segregation in hybrid and polyploid plants. Chromosome Res. 2001, 9, 49–56. [Google Scholar]
- Valente, T.; Matthew, A.C.; Bruno, E.A.F.; Cabral-de-Mello, D.C.; Robson, F.C.; Marcelo, R.V.; Thomas, D.K.; Cesar, M. Origin and evolution of B chromosomes in the cichlid fish Astatotilapia latifasciata based on integrated genomic analyses. Mol. Biol. Evol. 2014, 31, 2061–2072. [Google Scholar] [CrossRef]
- Moffatt, J.M.; Schaal, B.A.; Yoder, J.A. The occurrence and inheritance of B chromosomes in natural populations of plants: A review. Evol. Biol. 1992, 26, 117–136. [Google Scholar]
- Erdogan, A.A.; Buyukalaca, S. The combined effects of temperature and moisture on chromosome stability. Environ. Exp. Bot. 2001, 47, 221–228. [Google Scholar]
- Carvalho, A.B.; Carareto, C.M.A. B chromosomes: Evolution and impact on plant and animal genomes. Genet. Mol. Biol. 2011, 34, 524–534. [Google Scholar]
- Naranjo, T.; Moreno, S. Use of FISH to detect B chromosomes during meiotic and mitotic divisions. Cytogenet. Genome Res. 2007, 116, 1–9. [Google Scholar]
- Birchler, J.A.; Yao, H. B chromosomes in plants: Mechanisms of inheritance and functional implications. Genome 2008, 51, 657–667. [Google Scholar]
- Jones, K.M.; Rees, H. Environmental factors and the dynamics of B chromosomes. J. Hered. 2010, 101, 769–775. [Google Scholar]
- Ramirez, M.J.; Santos, A. The role of B chromosomes in plant adaptation to environmental stress. Ecol. Evol. 2016, 6, 1460–1471. [Google Scholar]
- Miao, V.P.; Covert, S.F.; VanEtten, H.D. A fungal gene for antibiotic resistance on a dispensable (“B”) chromosome. Science 1991, 254, 1773–1776. [Google Scholar] [CrossRef]
- Ma, L.-J.; Van Der Does, H.C.; Borkovich, K.A.; Coleman, J.J.; Daboussi, M.-J.; Di Pietro, A.; Dufresne, M.; Freitag, M.; Grabherr, M.; Henrissat, B. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 2010, 464, 367–373. [Google Scholar] [CrossRef]
- Balesdent, M.H.; Fudal, I.; Ollivier, B.; Bally, P.; Grandaubert, J.; Eber, F.; Chèvre, A.M.; Leflon, M.; Rouxel, T. The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. New Phytol. 2013, 198, 887–898. [Google Scholar] [CrossRef]
- van Dam, P.; Fokkens, L.; Ayukawa, Y.; van der Gragt, M.; Ter Horst, A.; Brankovics, B.; Houterman, P.M.; Arie, T.; Rep, M. A mobile pathogenicity chromosome in Fusarium oxysporum for infection of multiple cucurbit species. Sci. Rep. 2017, 7, 9042. [Google Scholar] [CrossRef]
- Dherawattana, A.; Sadanaga, K. Cytogenetics of a Crown Rust-Resistant Hexaploid Oat with 42 + 2 Fragment Chromosomes 1. Crop Sci. 1973, 13, 591–594. [Google Scholar] [CrossRef]
- Ebrahimzadegan, R.; Houben, A.; Mirzaghaderi, G. Repetitive DNA landscape in essential A and supernumerary B chromosomes of Festuca pratensis Huds. Sci. Rep. 2019, 9, 19989. [Google Scholar] [CrossRef]
- Yu, J.; Buckler, E.S. Genetic association mapping and genome organization of maize. Curr. Opin. Biotechnol. 2006, 17, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Han, F.; Gao, Z.; Vega, J.M.; Birchler, J.A. Construction and behavior of engineered minichromosomes in maize. Proc. Natl. Acad. Sci. USA 2007, 104, 8924–8929. [Google Scholar] [CrossRef] [PubMed]
- Birchler, J.A.; Yang, H. The supernumerary B chromosome of maize: Drive and genomic conflict. Open Biol. 2021, 11, 210197. [Google Scholar] [CrossRef] [PubMed]
- Douglas, R.N.; Birchler, J.A. B chromosomes. In Chromosome Structure and Aberrations; Springer: New Delhi, India, 2017; pp. 13–39. [Google Scholar]
- Puertas, M. Nature and evolution of B chromosomes in plants: A non-coding but information-rich part of plant genomes. Cytogenet. Genome Res. 2002, 96, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Birchler, J.A. Engineered minichromosomes in plants. Chromosome Res. 2015, 23, 77–85. [Google Scholar] [CrossRef]
- Friebe, B.; Jiang, J.; Tuleen, N.; Gill, B. Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theor. Appl. Genet. 1995, 90, 150–156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.M.; Deepo, D.M.; Siddique, A.B.; Nasif, S.O.; Zonayet, M.; Hassan, O.; Siddique, A.B.; Ali, M.A. B Chromosomes in Wheat: Evolution, Functions and Breeding Potential. Agronomy 2024, 14, 2682. https://doi.org/10.3390/agronomy14112682
Islam MM, Deepo DM, Siddique AB, Nasif SO, Zonayet M, Hassan O, Siddique AB, Ali MA. B Chromosomes in Wheat: Evolution, Functions and Breeding Potential. Agronomy. 2024; 14(11):2682. https://doi.org/10.3390/agronomy14112682
Chicago/Turabian StyleIslam, Md Mazharul, Deen Mohammad Deepo, Abu Bakar Siddique, Saifullah Omar Nasif, Md Zonayet, Oliul Hassan, Abu Bakar Siddique, and Md Arfan Ali. 2024. "B Chromosomes in Wheat: Evolution, Functions and Breeding Potential" Agronomy 14, no. 11: 2682. https://doi.org/10.3390/agronomy14112682
APA StyleIslam, M. M., Deepo, D. M., Siddique, A. B., Nasif, S. O., Zonayet, M., Hassan, O., Siddique, A. B., & Ali, M. A. (2024). B Chromosomes in Wheat: Evolution, Functions and Breeding Potential. Agronomy, 14(11), 2682. https://doi.org/10.3390/agronomy14112682