Nondestructive Detection of Litchi Stem Borers Using Multi-Sensor Data Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Litchi Samples
2.2. Data Acquisition
2.2.1. Visible/Near-Infrared Spectroscopy
2.2.2. Hyperspectral Imaging
2.2.3. X-Ray Imaging
2.3. Data Analysis and Modeling
2.3.1. Spectral Preprocessing Methods
2.3.2. Feature Selection Methods
2.3.3. Model Construction
2.3.4. Multi-Sensor Data Fusion Method
3. Results
3.1. Visible/Near-Infrared Spectroscopy Detection
3.1.1. Visible/Near-Infrared Spectral Analysis of Internal Litchi Infestation
3.1.2. Visible/Near-Infrared Spectroscopy Detection Model of Internal Litchi Infestation
3.2. Hyperspectral Detection
3.2.1. Hyperspectral Analysis of Internal Litchi Infestation
3.2.2. Hyperspectral Detection Model for Internal Litchi Infestation
3.3. X-Ray Imaging Detection
3.4. Multi-Sensor Data Fusion Detection Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Jia, X.; Fan, K. Recent advance in nondestructive imaging technology for detecting quality of fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2024, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Ren, J.; Lu, H.; Wang, X.; Sun, X.; Liang, X. Nondestructive detection and grading of flesh translucency in pineapples with visible and near-infrared spectroscopy. Postharvest Biol. Technol. 2022, 192, 112029. [Google Scholar] [CrossRef]
- Xu, S.; Lu, H.; Fan, C.; Qiu, G.; Ference, C.; Liang, X.; Peng, J. Visible and near-infrared hyperspectral imaging as an intelligent tool for parasite detection in sashimi. LWT-Food Sci. Technol. 2023, 181, 114747. [Google Scholar] [CrossRef]
- Tempelaere, A.; He, J.; Van Doorselaer, L.; Verboven, P.; Nicolai, B.; Giuffrida, M.V. Unsupervised anomaly detection for pome fruit quality inspection using X-ray radiography. Comput. Electron. Agric. 2024, 226, 109364. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, M.; Liu, P.; Zhu, T.; Qu, X.; Chen, X.; Xiao, X. Flexible Vis/NIR sensing system for banana chilling injury. Postharvest Biol. Technol. 2024, 207, 112623. [Google Scholar] [CrossRef]
- Han, H.; Sha, R.; Dai, J.; Wang, Z.; Mao, J.; Cai, M. Garlic Origin Traceability and Identification Based on Fusion of Multi-Source Heterogeneous Spectral Information. Foods 2024, 13, 1016. [Google Scholar] [CrossRef]
- Gu, S.; Jing, M.; Li, D.; Ma, Z.; Duan, Y.; Wang, L.; Dai, X.; Chen, Z.; Zhang, X.; Chen, J. The effects of different temperature and humidity conditions on the ripening and cracking of Annona atemoya fruit during storage by regulating the conversion of starch into soluble sugars. LWT 2024, 208, 116703. [Google Scholar] [CrossRef]
- Richter Reis, F.; de Oliveira, A.C.; Gadelha, G.G.P.; de Abreu, M.B.; Soares, H.I. Vacuum Drying for Extending Litchi Shelf-Life: Vitamin C, Total Phenolics, Texture and Shelf-Life Assessment. Plant Foods Hum. Nutr. 2017, 72, 120–125. [Google Scholar] [CrossRef]
- Xiao, Q.; Ye, S.; Wang, H.; Xing, S.; Zhu, W.; Zhang, H.; Zhu, J.; Pu, C.; Zhao, D.; Zhou, Q.; et al. Soluble sugar, organic acid and phenolic composition and flavor evaluation of plum fruits. Food Chem. X 2024, 24, 101790. [Google Scholar] [CrossRef]
- Mujanović, I.; Balijagić, J.; Bajagić, M.; Poštić, D.; Đurović, S. Variations in polyphenol content and anthocyanin composition in bilberry populations (Vaccinium myrtillus L.) due to environmental factors. J. Food Compos. Anal. 2024, 136, 106732. [Google Scholar] [CrossRef]
- Su, D.; Ti, H.; Zhang, R.; Zhang, M.; Wei, Z.; Deng, Y.; Guo, J. Structural elucidation and cellular antioxidant activity evaluation of major antioxidant phenolics in lychee pulp. Food Chem. 2014, 158, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Jie, Z.; Hou, X.; Wang, J.; Zhang, W.; Zhang, A. Non-destructive detection of adulteration of weight-loss drugs in the field of spectral feature fusion. Infrared Phys. Technol. 2023, 131, 104591. [Google Scholar] [CrossRef]
- Zhang, Z.; Chang, Z.; Huang, J.; Leng, G.; Xu, W.; Wang, Y.; Xie, Z.; Yang, J. Enhancing soil texture classification with multivariate scattering correction and residual neural networks using visible near-infrared spectra. J. Environ. Manag. 2024, 352, 120094. [Google Scholar] [CrossRef] [PubMed]
- Xia, K.; Cheng, Q.; Xia, S.; Zhang, S.; Shen, Q.; Li, C.; Zhou, J. Optimization of a Soil Particle Content Prediction Model Based on a Combined Spectral Index and Successive Projections Algorithm Using Vis-NIR Spectroscopy. Spectroscopy 2020, 35, 24–34. [Google Scholar]
- Wahyudi, I.; Munawar, A.A.; Yu, P.; Samadi, S. Optical characterization of NIR spectra for chemomectric model of cocoa pod husk fermented for animal feed. IOP Conf. Ser. Earth Environ. Sci. 2023, 1183, 012003. [Google Scholar] [CrossRef]
- Ding, D.; Yu, H.; Yin, Y.; Yuan, Y.; Li, Z.; Li, F. Determination of Chlorophyll and Hardness in Cucumbers by Raman Spectroscopy with Successive Projections Algorithm (SPA)—Extreme Learning Machine (ELM). Anal. Lett. 2023, 56, 1216–1228. [Google Scholar] [CrossRef]
- Yang, D.; Hu, J. A detection method of oil content for maize kernels based on CARS feature selection and deep sparse autoencoder feature extraction. Ind. Crops Prod. 2024, 222, 119464. [Google Scholar] [CrossRef]
- Lu, Y.; Du, C.; Yu, C. Determination of the contents of magnesium and potassium in rapeseeds using FTIR-PAS combined with least squares support vector machines and uninformative variable elimination. Anal. Methods 2014, 6, 2586–2591. [Google Scholar] [CrossRef]
- Rong, L.; Wang, Y.; Wang, Y.; Jiang, D.; Bai, J.; Wu, Z.; Li, L.; Wang, T.; Tan, H. A fresh-cut papaya freshness prediction model based on partial least squares regression and support vector machine regression. Heliyon 2024, 10, e30255. [Google Scholar] [CrossRef]
- Tan, F.; Mo, X.; Ruan, S.; Yan, T.; Xing, P.; Gao, P.; Xu, W.; Ye, W.; Li, Y.; Gao, X.; et al. Combining Vis-NIR and NIR Spectral Imaging Techniques with Data Fusion for Rapid and Nondestructive Multi-Quality Detection of Cherry Tomatoes. Foods 2023, 12, 3621. [Google Scholar] [CrossRef]
- Chawla, P.K.; Nair, M.S.; Malkhede, D.G.; Patil, H.Y.; Jindal, S.K.; Chandra, A.; Gawas, M.A. Parkinson’s disease classification using nature inspired feature selection and recursive feature elimination. Multimed. Tools Appl. 2023, 83, 35197–35220. [Google Scholar] [CrossRef]
- Sun, J. Application and optimization of RFECV feature selection and random forest prediction model. Digit. Commun. World 2024, 9, 114–116. [Google Scholar]
- Gong, B.; An, A.; Shi, Y.; Jia, W. Fault diagnosis of photovoltaic array with multi-module fusion under hyperparameter optimization. Energy Convers. Manag. 2024, 319, 118974. [Google Scholar] [CrossRef]
- Zhu, S.J. Research on Data Ownership Methods for Multi-Source Information Fusion Systems Based on Machine Learning. Ph.D Thesis, Xi’an University of Technology, Xi’an, China, 2024. [Google Scholar]
- Tchakoucht, T.A.; Elkari, B.; Chaibi, Y.; Kousksou, T. Random forest with feature selection and K-fold cross validation for predicting the electrical and thermal efficiencies of air based photovoltaic-thermal systems. Energy Rep. 2024, 12, 988–999. [Google Scholar] [CrossRef]
- Harif, A.; Kassimi, A.M. Predictive Modeling of Student Performance Using RFECV-RF for Feature Selection and Machine Learning Techniques. Int. J. Adv. Comput. Sci. Appl. 2024, 15, 231–240. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, Q.; Chen, J.; Cao, Y.; Guan, R.; Huang, H. Determination of Anthocyanin Content in Blueberry Pomace Using Three Near-Infrared Spectroscopy Methods. Spectrosc. Spectr. Anal. 2020, 40, 2246–2252. [Google Scholar]
- Ding, G.; Jin, K.; Chen, X.; Li, A.; Guo, Z. Non-destructive prediction of ready-to-eat kiwifruit firmness based on Fourier transform near-infrared spectroscopy. Postharvest Biol. Technol. 2024, 212, 112908. [Google Scholar] [CrossRef]
- Hafsah, S.; Ahmad, F.; Arianti, N.D.; Saputra, E.; Hartuti, S. Rapid and non-destructive determination of vitamin C and antioxidant activity of intact red chilies using visible near-infrared spectroscopy and machine learning tools. Case Stud. Chem. Environ. Eng. 2023, 8, 100435. [Google Scholar]
- Yang, Q.; Yang, X.; Zhang, Q.; Wang, Y.; Song, H.; Huang, F. Quantifying soluble sugar in super sweet corn using near-infrared spectroscopy combined with chemometrics. Optik 2020, 220, 165128. [Google Scholar] [CrossRef]
- Amoghin, M.L.; Gilandeh, Y.A.; Tahmasebi, M.; Arribas, J.I. Automatic non-destructive estimation of polyphenol oxidase and peroxidase enzyme activity levels in three bell pepper varieties by Vis/NIR spectroscopy imaging data based on machine learning methods. Chemom. Intell. Lab. Syst. 2024, 250, 105137. [Google Scholar] [CrossRef]
- Nan, X.; Zhou, Q.; Li, Y.; Li, J.; Wang, H.; Xu, W.; Liu, Y.; Ni, Y.; Guo, T.; Ji, W.; et al. Maturity Discrimination and Polyphenol Content Detection Model of Black-fruited Mountain Ash Based on Hyperspectral Technology. Food Ind. Technol. 2023, 44, 292–301. [Google Scholar]
- Wu, D. Detection of Anthocyanin Content in the Skin of Wine Grapes Based on Hyperspectral Imaging Technology; Northwest A&F University: Xianyang, China, 2014. [Google Scholar]
- Qi, J.; Sun, S.; Zhang, L.; Zhu, Y.; Zhou, H.; Gan, X.; Li, B.; Chen, Y.; Li, W.; Li, T.; et al. Seasonal variation of antioxidant bioactive compounds in southern highbush blueberry leaves and non-destructive quality prediction in situ by a portable near-infrared spectrometer. Food Chem. 2024, 457, 139925. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, S.; Zuo, C.; Jiang, M.; Song, J.; Ding, F.; Tu, K.; Lan, W.; Pan, L. Exploring the variability and heterogeneity of apple firmness using visible and near-infrared hyperspectral imaging. LWT 2024, 192, 115704. [Google Scholar] [CrossRef]
- He, H.J.; Zhang, C.; Bian, X.; An, J.; Wang, Y.; Ou, X.; Kamruzzaman, M. Improved prediction of vitamin C and reducing sugar content in sweetpotatoes using hyperspectral imaging and LARS-enhanced LASSO variable selection. J. Food Compos. Anal. 2024, 132, 106350. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, F.; Kong, W.; Cui, P.; He, Y.; Zhou, W. Estimation and Visualization of Soluble Sugar Content in Oilseed Rape Leaves Using Hyperspectral Imaging. Trans. ASABE 2016, 59, 1499–1505. [Google Scholar]
- Garcia, A.; Martinez, G.; Gomez, J. X-ray imaging for the detection of insect damage in fruits: A novel approach. Postharvest Biol. Technol. 2021, 175, 111456. [Google Scholar]
- Xu, J.T.; Zhang, Z.; Guo, Y.H.; Liu, Y.F.; Ning, X.F. Detection of Cucumber Powdery Mildew Based on Spectral and Image Information. J. Biosyst. Eng. 2023, 48, 115–122. [Google Scholar] [CrossRef]
- Li, J.J.; Qu, Z.P.; Wang, Y.W.; Guo, J. Research on multi-parameter fusion non-invasive blood glucose detection method based on machine learning. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 6040–6049. [Google Scholar]
- Al-Abdaly, N.M.; Al-Taai, S.R.; Imran, H.; Ibrahim, M. Development of prediction model of steel fiber-reinforced concrete compressive strength using random forest algorithm combined with hyperparameter tuning and k-fold cross-validation. East. Eur. J. Enterp. Technol. 2021, 5, 59–65. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, D.H.; Mendoza, J.A.; Lee, M.Y. Applying machine learning random forest (RF) method in predicting the cement products with a co-processing of input materials: Optimizing the hyperparameters. Environ. Res. 2024, 248, 118300. [Google Scholar] [CrossRef]
Methods | PLSR | SVM | ||||
---|---|---|---|---|---|---|
Test Set R2 | Test Set RMSE | Test Set Accuracy/% | Test Set R2 | Test Set RMSE | Test Set Accuracy/% | |
NO | 0.67 | 0.24 | 70.24 | 0.34 | 0.24 | 75.04 |
SNV | 0.79 | 0.19 | 77.43 | 0.45 | 0.19 | 75.88 |
MSC | 0.78 | 0.19 | 76.33 | 0.42 | 0.19 | 74.65 |
SG | 0.37 | 0.22 | 70.54 | 0.36 | 0.2 | 74.43 |
SG+SNV | 0.79 | 0.18 | 78.62 | 0.49 | 0.18 | 76.53 |
SG+MSC | 0.78 | 0.18 | 76.53 | 0.45 | 0.18 | 76.53 |
SG+SNV+CARS | 0.82 | 0.17 | 89.22 | 0.52 | 0.18 | 85.52 |
SG+SNV+UVE | 0.81 | 0.18 | 84.63 | 0.51 | 0.18 | 85.32 |
SG+SNV+SPA | 0.81 | 0.18 | 85.79 | 0.47 | 0.19 | 83.83 |
Methods | PLSR | SVM | ||||
---|---|---|---|---|---|---|
Test Set R2 | Test Set RMSE | Test Set Accuracy/% | Test Set R2 | Test Set RMSE | Test Set Accuracy/% | |
NO | 0.66 | 0.24 | 79.04 | 0.16 | 0.25 | 79.76 |
SNV | 0.66 | 0.24 | 81.14 | 0.13 | 0.25 | 80.95 |
MSC | 0.67 | 0.24 | 80.84 | 0.11 | 0.25 | 80.95 |
SG | 0.68 | 0.23 | 80.24 | 0.11 | 0.26 | 79.76 |
SG+SNV | 0.67 | 0.24 | 80.24 | 0.11 | 0.25 | 79.76 |
SG+MSC | 0.67 | 0.24 | 81.21 | 0.14 | 0.25 | 80.95 |
SG+MSC+CARS | 0.67 | 0.24 | 77.25 | 0.11 | 0.26 | 80.95 |
SG+MSC+UVE | 0.64 | 0.25 | 79.94 | 0.15 | 0.26 | 79.76 |
SG+MSC+SPA | 0.69 | 0.23 | 81.74 | 0.11 | 0.25 | 79.76 |
Methods | R2 | RMSE | Accuracy/% |
---|---|---|---|
Gray value extraction combined with PLSR | 0.67 | 0.24 | 74.84% |
Gray value extraction combined with SVM | 0.69 | 0.22 | 76.25% |
AlexNet architecture | / | / | 69.65% |
K | Average Accuracy/% | Optimal Parameters | ||
---|---|---|---|---|
Maximum Depth of the Decision Tree | Number of Internal Nodes | Number of Trees | ||
3 | 90.67 | 20 | 5 | 200 |
4 | 91.39 | Unlimited | 5 | 200 |
5 | 91.15 | Unlimited | 5 | 200 |
6 | 91.62 | 20 | 5 | 200 |
7 | 91.85 | 10 | 5 | 200 |
8 | 92.39 | 20 | 5 | 200 |
9 | 91.63 | 20 | 5 | 100 |
10 | 91.14 | Unlimited | 2 | 100 |
Detection Methods | Preprocessing Methods | Feature Selection | Modeling Methods | Accuracy/% |
---|---|---|---|---|
Vis-NIR Spectroscopy | SG+SNV | CARS | PLSR | 89.22% |
Hyperspectral Imaging | SG+MSC | SPA | PLSR | 81.74% |
X-ray Imaging | Noise Reduction, Brightness Enhancement | Grayscale Value Extraction | SVM | 76.25% |
Multi-Sensor Detection | Feature Fusion, Normalization | RFECV | RF | 92.39% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Xu, S.; Lu, H.; Liang, X.; Feng, H.; Li, W. Nondestructive Detection of Litchi Stem Borers Using Multi-Sensor Data Fusion. Agronomy 2024, 14, 2691. https://doi.org/10.3390/agronomy14112691
Zhao Z, Xu S, Lu H, Liang X, Feng H, Li W. Nondestructive Detection of Litchi Stem Borers Using Multi-Sensor Data Fusion. Agronomy. 2024; 14(11):2691. https://doi.org/10.3390/agronomy14112691
Chicago/Turabian StyleZhao, Zikun, Sai Xu, Huazhong Lu, Xin Liang, Hongli Feng, and Wenjing Li. 2024. "Nondestructive Detection of Litchi Stem Borers Using Multi-Sensor Data Fusion" Agronomy 14, no. 11: 2691. https://doi.org/10.3390/agronomy14112691
APA StyleZhao, Z., Xu, S., Lu, H., Liang, X., Feng, H., & Li, W. (2024). Nondestructive Detection of Litchi Stem Borers Using Multi-Sensor Data Fusion. Agronomy, 14(11), 2691. https://doi.org/10.3390/agronomy14112691