Biochar Is Superior to Organic Substitution for Vegetable Production—A Revised Approach for Net Ecosystem Economic Benefit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Treatments
2.2. System Boundaries
2.3. Soil Organic Carbon Fixation Rate and NECB
2.4. EDC and NEEB
2.5. Statistical Analyses
3. Results
3.1. Carbon Footprints of Biochar Amendment and Organic Substitutions
3.2. EDC of Biochar Amendment and Organic Substitutions
3.3. NEEB of Biochar Amendment and Organic Substitutions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Lou, Y.L.; Feng, L.S.; Xing, W.; Hu, N.; Noellemeyer, E.; Cadre, E.L.; Minamikawa, K.; Muchaonyerwa, P.; AbdelRahman, M.A.E.; Pinheiro, É.F.M.; et al. Climate-smart agriculture: Insights and challenges. Clim. Smart Agric. 2024, 1, 100003. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, B.J.; Zhang, Y.H.; Hu, T.L.; Lin, Z.B.; Liu, G.; Wang, X.J.; Ma, J.; Wang, H.; Jin, H.Y.; et al. Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: Options and mitigation strength in a global perspective. Glob. Chang. Biol. 2019, 25, 2077–2093. [Google Scholar] [CrossRef] [PubMed]
- Bi, R.; Zhang, Q.; Zhan, L.; Xu, X.; Zhang, X.; Dong, Y.; Yan, X.; Xiong, Z. Biochar and organic substitution improved net ecosystem economic benefit in intensive vegetable production. Biochar 2022, 4, 46. [Google Scholar] [CrossRef]
- Zhou, J.; Li, B.; Xia, L.; Fan, C.; Xiong, Z. Organic-substitute strategies reduced carbon and reactive nitrogen footprints and gained net ecosystem economic benefit for intensive vegetable production. J. Clean. Prod. 2019, 225, 984–994. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, A.; Zhu, S.; Xiong, Z. Assessing nitrous oxide emissions and mitigation potentials from intensive vegetable ecosystems in China—Meta-analysis. J. Agro-Environ. Sci. 2020, 39, 707–714. [Google Scholar]
- Wu, P.; Fu, Y.; Vancov, T.; Wang, H.L.; Wang, Y.J.; Chen, W.F. Analyzing the trends and hotspots of biochar’s applications in agriculture, environment, and energy: A bibliometrics study for 2022 and 2023. Biochar 2024, 6, 78. [Google Scholar] [CrossRef]
- Schmidt, H.P.; Kammann, C.; Hagemann, N.; Leifeld, J.; Bucheli, T.D.; Sánchez Monedero, M.A.; Cayuela, M.L. Biochar in agriculture–A systematic review of 26 global meta-analyses. GCB Bioenergy 2021, 13, 1708–1730. [Google Scholar] [CrossRef]
- Ghorbani, M.; Amirahmadi, E. Biochar and soil contributions to crop lodging and yield performance—A meta-analysis. Plant Physiol. Bioch. 2024, 215, 109053. [Google Scholar] [CrossRef]
- Tan, Z.X.; Lin, C.S.K.; Ji, X.Y.; Rainey, T.J. Returning biochar to fields: A review. Appl. Soil Ecol. 2017, 116, 1–11. [Google Scholar] [CrossRef]
- Zhang, A.F.; Cui, L.Q.; Pan, G.X.; Li, L.Q.; Hussain, Q.; Zhang, X.H.; Zheng, J.W.; Crowley, D. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric. Ecosyst. Environ. 2010, 139, 469–475. [Google Scholar] [CrossRef]
- Ying, H.; Ye, Y.; Cui, Z.; Chen, X. Managing nitrogen for sustainable wheat production. J. Clean. Prod. 2017, 162, 1308–1316. [Google Scholar] [CrossRef]
- Lehmann, J.; Cowie, A.; Masiello, C.A.; Kammann, C.; Woolf, D.; Amonette, J.E.; Cayuela, M.L.; Camps-Arbestain, M.; Whitman, T. Biochar in climate change mitigation. Nat. Geosci. 2021, 14, 883–892. [Google Scholar] [CrossRef]
- Zhang, W.; Dou, Z.; He, P.; Ju, X.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y.; Zhang, Y.; Wu, L.; et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.Q.; Li, S.H.; Guo, L.G.; Cao, C.G.; Li, C.F.; Zhai, Z.B.; Zhou, J.Y.; Mei, Y.M.; Ke, H.J. Advantages of nitrogen fertilizer deep placement in greenhouse gas emissions and net ecosystem economic benefits from no-tillage paddy fields. J. Clean. Prod. 2020, 263, 121322. [Google Scholar] [CrossRef]
- Xu, H.; Cai, A.D.; Wu, D.; Liang, G.P.; Xiao, J.; Xu, M.G.; Colinet, G.; Zhang, W.J. Effects of biochar application on crop productivity, soil carbon sequestration, and global warming potential controlled by biochar C:N ratio and soil pH: A global meta-analysis. Soil Till. Res. 2021, 213, 105125. [Google Scholar] [CrossRef]
- Nepal, J.; Ahmad, W.; Munsif, F.; Khan, A.; Zou, Z.Y. Advances and prospects of biochar in improving soil fertility, biochemical quality, and environmental applications. Front. Environ. Sci. 2023, 11, 1114752. [Google Scholar] [CrossRef]
- Sun, T.; Li, D.P.; Yan, C.X.; Dong, S.K.; Jia, H.T.; Tang, G.M.; Xu, W.L. Effect of different pyrolysis temperature and time on characteristics of straw-biochar. J. Arid Land Res. Environ. 2019, 33, 110–116. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Brown, G.G.; Silva, E.; Thomazini, M.J.; Niva, C.C.; Decaëns, T.; Cunha, L.F.N.; Nadolny, H.; Demetrio, W.C.; Santos, A.; Ferreira, T.; et al. The Role of Soil Fauna in Soil Health and Delivery of Ecosystem Services. In Managing Soil Health for Sustainable Agriculture; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2018; Volume 1, pp. 197–241. [Google Scholar]
- Ciais, P.; Wattenbach, M.; Vuichard, N.; Smith, P.; Piao, S.L.; Don, A. The European carbon balance Part 2: Croplands. Glob. Chang. Biol. 2010, 16, 1409–1428. [Google Scholar] [CrossRef]
- Ma, Y.C.; Kong, X.W.; Yang, B.; Zhang, X.L.; Yan, X.Y.; Yang, J.C.; Xiong, Z.Q. Net global warming potential and greenhouse gas intensity of annual rice–wheat rotations with integrated soil–crop system management. Agric. Ecosyst. Environ. 2013, 164, 209–219. [Google Scholar] [CrossRef]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Li, B.; Fan, C.H.; Zhang, H.; Chen, Z.Z.; Sun, L.Y.; Xiong, Z.Q. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China. Atmos. Environ. 2015, 100, 10–19. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, D.; Shi, X.; Weindorf, D.C.; Zhao, L.; Ding, W.; Wang, H.; Pan, J.; Li, C. Simulation of global warming potential (GWP) from rice fields in the Tai-Lake region, China by coupling 1: 50,000 soil data bases with DNDC model. Atmos. Environ. 2009, 43, 2737–2746. [Google Scholar] [CrossRef]
- Gregory, P.J. Roots, rhizosphere and soil: The route to a better understanding of soil science. Eur. J. Soil Sci. 2006, 57, 2–12. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.; Chen, D.; Wang, J.; Tang, Q.; Yan, X. Can knowledge-based n management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? a meta-analysis. Glob. Chang. Biol. 2016, 23, 1917–1925. [Google Scholar] [CrossRef]
- Xia, Y.; Yan, X. Ecologically optimal nitrogen application rates for rice cropping in the Taihu Lake Region of China. Sustain. Sci. 2012, 7, 33–44. [Google Scholar] [CrossRef]
- Xiang, Y.Z.; Deng, Q.; Duan, H.L.; Guo, Y. Effects of biochar application on root traits: A meta-analysis. GCB Bioenergy 2017, 9, 1563–1572. [Google Scholar] [CrossRef]
- Ghorbani, M.; Neugschwandtner, R.W.; Soja, G.; Konvalina, P.; Kopecký, M. Carbon fixation and soil aggregation affected by biochar oxidized with hydrogen peroxide: Considering the efficiency of pyrolysis temperature. Sustainability 2023, 15, 7158. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation; Routledge: London, UK, 2015. [Google Scholar]
- Huang, Y.W.; Tao, B.; Lal, R.; Lorenz, K.; Jacinthe, P.A.; Shrestha, R.K.; Bai, X.X.; Singh, M.P.; Lindsey, L.E.; Ren, W. A global synthesis of biochar’s sustainability in climate - smart agriculture - Evidence from field and laboratory experiments. Renew. Sust. Energ. Rev. 2023, 172, 113042. [Google Scholar] [CrossRef]
- Pokharel, P.; Ma, Z.; Chang, S.X. Biochar increases soil microbial biomass with changes in extra- and intracellular enzyme activities: A global meta-analysis. Biochar 2020, 2, 65–79. [Google Scholar] [CrossRef]
- Zhang, L.; Jing, Y.; Xiang, Y.; Zhang, R.; Lu, H. Responses of soil microbial community structure changes and activities to biochar addition: A meta-analysis. Sci. Total Environ. 2018, 643, 926–935. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental impact of different agricultural management practices: Conventional vs. organic agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, X.; Wang, S.; Pu, X. Benefts of organic manure combined with biochar amendments to cotton root growth and yield under continuous cropping systems in Xinjiang, China. Sci. Rep. 2020, 10, 4718. [Google Scholar]
- Osman, A.I.; Hefny, M.; Maksoud, M.A.; Elgarahy, A.M.; Rooney, D.W. Recent advances in carbon capture storage and utilisation technologies: A review. Environ. Chem. Lett. 2020, 19, 797–849. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.; Street-Perrott, F.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef]
Treatment | NECB | δSOC | Re | Harvest | CH4 | Carbon | GPP | NPP | Yield |
---|---|---|---|---|---|---|---|---|---|
CK | 0.15 | 0.032 | 0.19 | 0.33 | −0.00044 | 0 | 0.67 | 0.35 | 16.35 |
SN | 0.28 | 0.058 | 0.28 | 0.53 | −0.00030 | 0 | 1.09 | 0.57 | 24.17 |
NB | 9.73 | 9.73 | 0.33 | 0.67 | −0.00038 | 9.34 | 1.39 | 0.73 | 29.78 |
NM | 1.35 | 0.28 | 0.25 | 0.58 | 0.00016 | 0.98 | 1.20 | 0.62 | 27.89 |
NMB | 10.59 | 10.59 | 0.27 | 0.51 | 0.0015 | 10.32 | 1.05 | 0.54 | 27.50 |
Components | Items | Unit | Coefficients | CK | SN | NB | NM | NMB |
---|---|---|---|---|---|---|---|---|
Chemical input | Urea | kg N | 8.30 | 0 | 1992 | 1992 | 996 | 996 |
Organic fertilizer | kg N | 11.30 | 0 | 0 | 0 | 1356 | 1356 | |
Biochar | Kg C | 0 | 0 | 0 | 0 | 0 | 0 | |
Phosphorus | kg P2O5 | 1.50 | 360 | 360 | 360 | 331 | 331 | |
Potassium | kg K2O | 0.98 | 235 | 235 | 235 | 169 | 169 | |
Plastic Film | kg | 19.00 | 699 | 699 | 699 | 699 | 699 | |
Pesticide | kg | 18.00 | 119 | 119 | 119 | 119 | 119 | |
Farm operation | Fuel | kg | 3.94 | 376 | 376 | 376 | 376 | 376 |
Electricity | kW·h | 0.95 | 269 | 269 | 269 | 269 | 269 | |
Soil GHG emission | N2O | kg N | 273.00 a | 101 | 1279 | 1132 | 929 | 1037 |
δSOC | kg C | - | 118 | 213 | 35,680 | 1038 | 38,829 |
Components | Items | Unit | (¥ Unit−1) | CK | SN | NB | NM | NMB |
---|---|---|---|---|---|---|---|---|
Cost a | Urea | kg N | 3.6 | 0.00 | 0.86 | 0.86 | 0.43 | 0.43 |
Manure | kg N | 1.9 | 0.00 | 0.00 | 0.00 | 0.23 | 0.23 | |
Phosphorus | kg P2O5 | 2.9 | 0.70 | 0.70 | 0.70 | 0.64 | 0.64 | |
Potassium | kg K2O | 3.8 | 0.91 | 0.91 | 0.91 | 0.66 | 0.66 | |
Biochar | t | 2600 | 0.00 | 0.00 | 5.20 | 0.00 | 5.20 | |
Plastic Film | kg | 13 | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 | |
Pesticide | kg | 25 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | |
Income a | spinach gains | kg | 2.9 | 18.01 | 19.31 | 21.38 | 24.41 | 21.91 |
baby bok choy gains | kg | 2.0 | 7.28 | 10.30 | 12.90 | 13.21 | 14.39 | |
baby bok choy gains | kg | 2.0 | 7.14 | 11.37 | 17.61 | 15.98 | 13.87 | |
baby bok choy gains | kg | 2.0 | 5.96 | 13.01 | 16.43 | 12.08 | 13.04 | |
spinach gains | kg | 2.9 | 3.44 | 7.01 | 7.05 | 6.26 | 4.79 | |
EDC b | N2O emission | kg N | 2.1 | 0.0004 | 0.0062 | 0.0056 | 0.0046 | 0.0050 |
NO emission | kg N | 29.6 | 0.0014 | 0.013 | 0.0098 | 0.0080 | 0.0084 | |
NH3 volatilization | kg N | 37.5 | 0.00 | 0.29 | 0.26 | 0.23 | 0.24 | |
N leaching | kg N | 9.3 | 0.00 | 0.18 | 0.12 | 0.13 | 0.12 | |
N runoff | kg N | 9.3 | 0.00 | 0.090 | 0.056 | 0.064 | 0.060 | |
Foreground Nr loss | kg N | 36.7 | 0.10 | 0.24 | 0.39 | 1.92 | 2.07 | |
GHG emission | kg CO2-eq | 103.7 | 0.22 | 0.55 | 0.54 | 0.54 | 0.56 | |
Carbon benefit | SOC | kg CO2-eq | 103.7 | 0.012 | 0.022 | 3.70 | 0.11 | 4.03 |
Treatment | Synthetic Fertilizers | Manure | Biochar | Energy | Others | Field Nr Losses |
---|---|---|---|---|---|---|
CK | 0 | 0 | 0 | 0.8 | 2.04 | 0.28 |
SN | 3.8 | 0 | 0 | 0.8 | 2.04 | 40.4 |
NB | 3.8 | 0 | 4 | 0.8 | 2.04 | 28.4 |
NM | 1.9 | 47.8 | 0 | 0.8 | 1.81 | 29.4 |
NMB | 1.9 | 47.8 | 4 | 0.8 | 1.81 | 29.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, R.; Wang, B.; Xu, X.; Dong, Y.; Jiao, Y.; Xiong, Z. Biochar Is Superior to Organic Substitution for Vegetable Production—A Revised Approach for Net Ecosystem Economic Benefit. Agronomy 2024, 14, 2693. https://doi.org/10.3390/agronomy14112693
Bi R, Wang B, Xu X, Dong Y, Jiao Y, Xiong Z. Biochar Is Superior to Organic Substitution for Vegetable Production—A Revised Approach for Net Ecosystem Economic Benefit. Agronomy. 2024; 14(11):2693. https://doi.org/10.3390/agronomy14112693
Chicago/Turabian StyleBi, Ruiyu, Bingxue Wang, Xintong Xu, Yubing Dong, Ying Jiao, and Zhengqin Xiong. 2024. "Biochar Is Superior to Organic Substitution for Vegetable Production—A Revised Approach for Net Ecosystem Economic Benefit" Agronomy 14, no. 11: 2693. https://doi.org/10.3390/agronomy14112693
APA StyleBi, R., Wang, B., Xu, X., Dong, Y., Jiao, Y., & Xiong, Z. (2024). Biochar Is Superior to Organic Substitution for Vegetable Production—A Revised Approach for Net Ecosystem Economic Benefit. Agronomy, 14(11), 2693. https://doi.org/10.3390/agronomy14112693