Dynamics of Arbuscular Mycorrhizal Fungi in the Rhizosphere of Medicinal Plants and Their Promotion on the Performance of Astragalus mongholicus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling
2.2. AMF Spore Density and Morphological Characteristics
2.3. Dominant AMF Spore Propagation
2.4. Pot Experiments and Plant Growth Parameters
2.5. Determination of Plant Growth Parameter and Active Ingredient Content
2.6. Soil Analysis
2.7. AMF Colonization Rate
2.8. Statistical Analysis
3. Results
3.1. Soil Factors and Glomalin-Related Soil Protein
3.2. AMF Colonization
3.3. AMF Composition and Diversity
3.4. Influence of Soil Factors on AMF Distribution and GRSP
3.5. Structural Features of Medicinal Plant–AMF Symbiotic Networks
3.6. Plant Growth Parameters and Active Ingredient Content
4. Discussion
4.1. Association Between AMF and Medicinal Plants
4.2. AMF and Soil Factors
4.3. Glomalin-Related Soil Protein and Soil Factors
4.4. Structure of Medicinal Plant–AMF Symbiotic Networks
4.5. AMF Growth Promotion of A. mongholicus and Its Potential Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Y.H.; Qin, Y.; Cai, Q.Q.; Liu, M.; He, D.M.; Chen, X.; Wang, H.; Yan, Z.Y. Effect the accumulation of bioactive constituents of a medicinal plant (Salvia miltiorrhiza Bge.) by arbuscular mycorrhizal fungi community. BMC Plant Biol. 2023, 23, 597. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xie, Y.; Zhang, W.; Yao, L.; He, C.; He, X. Study on the biological characteristics of dark septate endophytes under drought and cadmium stress and their effects on regulating the stress resistance of Astragalus membranaceus. J. Fungi 2024, 10, 491. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.J.; Ni, D.P.; Wang, Y.J.; Liu, C.; Wang, X.C.; Yang, D.; Wang, J.S.; Chen, H.M.; Liu, C. Intraspecific and heteroplasmic variations, gene losses and inversions in the chloroplast genome of Astragalus membranaceus. Sci. Rep. 2016, 6, 21669. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xu, J.; Fang, H.; Li, Z.; Li, M. Advances and challenges in medicinal plant breeding. Plant Sci. 2020, 298, 110573. [Google Scholar] [CrossRef] [PubMed]
- Soudzilovskaia, N.A.; Vaessen, S.; Barcelo, M.; He, J.; Rahimlou, S.; Abarenkov, K.; Brundrett, M.C.; Gomes, S.I.F.; Merckx, V.; Tederesoo, L. FungalRoot: Global online database of plant mycorrhizal associations. New Phytol. 2020, 227, 955–966. [Google Scholar] [CrossRef]
- Cavagnaro, T.R.; Bender, S.F.; Asghari, H.R.; van der Heijden, M.G.A. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci. 2015, 20, 283–290. [Google Scholar] [CrossRef]
- Mechri, B.; Tekaya, M.; Cheheb, H.; Hammami, M. Determination of mannitol sorbitol and myo-inositol in olive tree roots and rhizospheric soil by gas chromatography and effect of severe drought conditions on their profiles. J. Chromatogr. Sci. 2015, 53, 1631–1638. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, X.; Bi, Y.; Chen, D.; Long, X.; Wu, Y.; Cao, G.; He, S. Improvement of Panax notoginseng saponin accumulation triggered by methyl jasmonate under arbuscular mycorrhizal fungi. Front. Plant Sci. 2024, 15, 1360919. [Google Scholar] [CrossRef]
- He, X.L.; Li, Y.P.; Zhao, L.L. Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Artemisia ordosica Krasch in Mu Us sandland, China. Soil Biol. Biochem. 2010, 42, 1313–1319. [Google Scholar] [CrossRef]
- Frosi, G.; Barros, V.A.; Oliveira, M.T.; Santos, M.; Ramos, D.G.; Maia, L.C.; Santos, M.G. Symbiosis with AMF and leaf Pi supply increases water deficit tolerance of woody species from seasonal dry tropical forest. J. Plant Physiol. 2016, 207, 84–93. [Google Scholar] [CrossRef]
- Tomáš, V.; Zuzana, K.; Clémentine, L.; Sandra, H.; John, D.; Anna, F.; Anastasiia, G.; Barbora, J.; Miroslav, K.; Manuela, K.; et al. Global AM Fungi: A global database of arbuscular mycorrhizal fungal occurrences from high-throughput sequencing metabarcoding studies. New Phytol. 2023, 5, 2151–2163. [Google Scholar]
- Piszczek, P.; Kuszewska, K.; Blaszkowski, J.; Sochacka-Obrusnik, A.; Stojakowska, A.; Zubek, S. Associations between root-inhabiting fungi and 40 species of medicinal plants with potential applications in the pharmaceutical and biotechnological industries. Appl. Soil Ecol. 2019, 137, 69–77. [Google Scholar] [CrossRef]
- Zubek, S.; Blaszkowski, J. Medicinal plants as hosts of arbuscular mycorrhizal fungi and dark septate endophytes. Phytochem. Rev. 2009, 8, 571–580. [Google Scholar] [CrossRef]
- Gao, C.; Montoya, L.; Xu, L.; Madera, M.; Hollingsworth, J. Strong succession in arbuscular mycorrhizal fungal communities. ISME J. 2019, 13, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zheng, Y.; Gao, C.; Mi, X.C.; Ma, K.P.; Wubet, T.; Guo, L.D. Phylogenetic relatedness explains highly interconnected and nested symbiotic networks of woody plants and arbuscular mycorrhizal fungi in a Chinese subtropical forest. Mol. Ecol. 2017, 26, 2563–2575. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Chen, Y.; Xu, G.; Zhang, Y.X.; Zhang, S.; Ma, K.M. Impacts of urbanization undermine nestedness of the plant-arbuscular mycorrhizal fungal network. Front. Microbiol. 2021, 12, 626671. [Google Scholar] [CrossRef]
- Dong, Q.; Guo, X.; Chen, K.; Ren, S.; Muneer, M.A.; Zhang, J.; Li, Y.; Ji, B. Phylogenetic correlation and symbiotic network explain the interdependence between plants and arbuscular mycorrhizal fungi in a Tibetan Alpine Meadow. Front. Plant Sci. 2021, 17, 804861. [Google Scholar] [CrossRef]
- Olanipon, D.; Boeraeve, M.; Jacquemyn, H. Arbuscular mycorrhizal fungal diversity and potential association networks among African tropical forest trees. Mycorrhiza 2024, 34, 271–282. [Google Scholar] [CrossRef]
- Toju, H.; Guimaraes, P.R.; Olesen, J.M.; Thompson, J.N. Assembly of complex plant-fungus networks. Nat. Commun. 2014, 5, 5273. [Google Scholar] [CrossRef]
- Han, L.; Zuo, Y.; He, X.; Hou, Y.; Li, M.; Li, B. Plant identity and soil variables shift the colonisation and species composition of dark septate endophytes associated with medicinal plants in a northern farmland in China. Appl. Soil Ecol. 2021, 167, 104042. [Google Scholar] [CrossRef]
- Gerdemann, J.W.; Nicolson, T.H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Ianson, D.; Allen, M. The effects of soil texture on extraction of vesicular-arbuscular mycorrhizal fungal spores from arid sites. Mycologia 1986, 78, 164–168. [Google Scholar] [CrossRef]
- Meghan, L.A.; Elisabeth, J.F.; Cynthia, C.C.; Kimberly, J.L.; Karin, T.B.; Melinda, D.S. Demystifying dominant species. New Phytol. 2019, 223, 1106–1126. [Google Scholar]
- Rowell, D.L. Soil Science: Methods and Applications; Longman Group U.K. Ltd.: London, UK, 1994. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. Circular; U.S. Department of Agriculture: Washington, DC, USA, 1954; p. 939.
- Tian, H.; Qiao, J.; Zhu, Y.; Jia, X.; Shao, M. Vertical distribution of soil available phosphorus and soil available potassium in the critical zone on the Loess Plateau, China. Sci. Rep. 2021, 11, 3159. [Google Scholar] [CrossRef]
- Tarafdar, J.; Marschner, H. Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol. Biochem. 1994, 26, 387–395. [Google Scholar] [CrossRef]
- Rillig, M.C. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 2004, 84, 355–363. [Google Scholar] [CrossRef]
- Mcgonigle, T.P.; Miller, M.H.; Evans, D.G.; Fairchild, G.L.; Swan, J.A. A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol. 1990, 115, 495–501. [Google Scholar] [CrossRef]
- Grzybowska, B. Arbuscular mycorrhiza of herbs colonizing a salt affected area near Krakow (Poland). Acta Soc. Bot. Pol. 2004, 73, 247–253. [Google Scholar] [CrossRef]
- Davison, J.; Moora, M.; Oepik, M.; Adholeya, A.; Ainsaar, L.; Ba, A.; Burla, S.; Diedhiou, A.G.; Hiiesalu, I.; Jairus, T.; et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 2015, 349, 970–973. [Google Scholar] [CrossRef]
- Huo, L.; Gao, R.; Hou, X.; Yu, X.; Yang, X. Arbuscular mycorrhizal and dark septate endophyte colonization in Artemisia roots responds differently to environmental gradients in eastern and central China. Sci. Total Environ. 2021, 795, 148808. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X.; Tang, Z.H. Arbuscular mycorrhizal symbioses improved biomass allocation and reproductive investment of cherry tomato after root-knot nematodes infection. Plant Soil 2022, 482, 513–527. [Google Scholar] [CrossRef]
- Zhou, J.; Su, Y.; Li, X.; Kuzyakov, Y.; Wang, P.; Gong, J.; Li, X.; Liu, L.; Zhang, X.; Ma, C.; et al. Arbuscular mycorrhizae mitigate negative impacts of soil biodiversity loss on grassland productivity. J. Environ. Manag. 2024, 349, 119509. [Google Scholar] [CrossRef] [PubMed]
- Sabaiporn, N.; Sanun, J.; Nuntavun, R.; Wiyada, M.; Jindarat, E.; Julia, C.; Sophon, B. Combination of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria on growth and production of Helianthus tuberosus under field condition. Sic. Rep. 2021, 11, 6501. [Google Scholar]
- He, X.L.; Zhao, L.L.; Li, Y.P. Effects of AM fungi on the growth and protective enzymes of cotton under NaCl stress. Acta Ecol. Sin. 2005, 25, 188–193. [Google Scholar]
- Zhang, W.; Xia, K.L.; Feng, Z.W.; Qin, Y.Q.; Zhou, Y.; Feng, G.D.; Zhu, H.H.; Yao, Q. Tomato plant growth promotion and drought tolerance conferred by three arbuscular mycorrhizal fungi is mediated by lipid metabolism. Plant Physiol. Biochem. 2024, 208, 108478. [Google Scholar] [CrossRef] [PubMed]
- Salazar, M.J.; Caceres-Mago, K.; Becerra, A.G. Role of arbuscular mycorrhizal fungi in lead translocation from Bidens pilosa L. plants to soil. J. Environ. Manag. 2024, 365, 121626. [Google Scholar] [CrossRef]
- Birhane, E.; Gebretsadik, K.F.; Tay, G.; Aynekulu, E.; Rannestad, M.M.; Norgrove, L. Effects of forest composition and disturbance on arbuscular mycorrhizae spore density, arbuscular mycorrhizae root colonization and soil carbon stocks in a dry afromontane forest in northern Ethiopia. Diversity 2020, 12, 133. [Google Scholar] [CrossRef]
- Urcelay, C.; Acho, J.; Joffre, R. Fungal root symbionts and their relationship with fine root proportion in native plants from the Bolivian Andean highlands above 3700m elevation. Mycorrhiza 2011, 21, 323–330. [Google Scholar] [CrossRef]
- Sudova, R.; Kohout, P.; Rydlova, J.; Ctvrtlikova, M.; Suda, J.; Voriskova, J.; Kolarikova, Z. Diverse fungal communities associated with the roots of isoetid plants are structured by host plant identity. Fungal Ecol. 2020, 45, 100914. [Google Scholar] [CrossRef]
- Asghar, M.N.; Khan, S.; Mushtaq, S. Management of treated pulp and paper mill effluent to achieve zero discharge. J. Environ. 2008, 88, 1285–1299. [Google Scholar] [CrossRef]
- Kebede, T.G.; Birhane, E.; Ayimut, K.M. Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) miller under different water levels. J. Arid Land 2023, 15, 975–988. [Google Scholar] [CrossRef]
- Torrecillas, E.; Alguacil, M.M.; Roldan, A. Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid mediterranean prairies. Appl. Environ. Microbiol. 2012, 78, 6180–6186. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, J.; He, J.; Shen, Y.; Yang, X. Glomalin-related soil proteins respond negatively to fertilization and fungicide application in China’s arid grassland. Eur. J. Soil Biol. 2023, 119, 103557. [Google Scholar] [CrossRef]
- Yang, A.; Hu, J.; Lin, X.; Zhu, A.; Wang, J.; Dai, J.; Wong, M. Arbuscular mycorrhizal fungal community structure and diversity in response to 3-year conservation tillage management in a sandy loam soil in North China. J. Soils Sediments 2012, 12, 835–843. [Google Scholar] [CrossRef]
- Klichowska, E.; Nobis, M.; Piszczek, P.; Błaszkowski, J.; Zubek, S. Soil properties rather than topography, climatic conditions, and vegetation type shape AMF-feathergrass relationship in semi-natural European grasslands. Appl. Soil Ecol. 2019, 144, 22–30. [Google Scholar] [CrossRef]
- Li, M.; He, C.; Gong, F.; Zhou, X.; Wang, K.; Yang, X.; He, X. Seasonal and soil compartmental responses of soil microbes of Gymnocarpos przewalskii in a hyperarid desert. Appl. Soil Ecol. 2024, 200, 105447. [Google Scholar] [CrossRef]
- Chen, Z.; He, X.; Guo, H.; Yao, X.; Chen, C. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of three host plants in the farming-pastoral zone, north China. Symbiosis 2012, 57, 149–160. [Google Scholar] [CrossRef]
- Yang, T.; Dai, C. Interactions of two endophytic fungi colonizing Atractylodes lancea and effects on the host’s essential oils. Acta Ecol. Sin. 2013, 33, 87–93. [Google Scholar] [CrossRef]
- Casabella-González, M.J.; Astello-García, M.G.; Borselli, L.; Viridiana, J. Glomalin-related soil protein analysis and its role in erodibility in a semiarid zone in San Luis Potosi, Mexico. Catena 2021, 203, 105351. [Google Scholar] [CrossRef]
- He, J.D.; Chi, G.G.; Zou, Y.N.; Shu, B.; Wu, Q.S.; Srivastava, A.K.; Kuča, K. Contribution of glomalin-related soil proteins to soil organic carbon in trifoliate orange. Appl. Soil Ecol. 2020, 154, 103592. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, A.K.; Ghosh, P. Distribution of soil organic carbon and glomalin related soil protein in reclaimed coal mine-land chronosequence under tropical condition. Sci. Total Environ. 2018, 625, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Banegas, N.; Dos Santos, D.A.; Guerrero, F.; Albanesi, A.; Pedraza, R. Glomalin contribution to soil organic carbon under different pasture managements in a saline soil environment. Arch. Agron. Soil Sci. 2020, 68, 340–354. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Ma, L.L.; He, X.H.; Liu, Z.F.; Wang, F.M.; Chu, G.W.; Tang, X.L. Accumulation of glomalin-related soil protein benefits soil carbon sequestration: Tropical coastal forest restoration experiences. Land Degrad. Dev. 2022, 33, 1541–1551. [Google Scholar] [CrossRef]
- Liu, H.F.; Liang, C.T.; Ai, Z.M.; Zhang, J.Y.; Wu, Y.; Xu, H.W.; Xue, S.; Liu, G.B. Plant-mycorrhizae association affects plant diversity, biomass, and soil nutrients along temporal gradients of natural restoration after farmland abandonment in the Loess Plateau, China. Land Degrad Dev. 2019, 30, 1677–1690. [Google Scholar] [CrossRef]
- Šarapatka, B.; Alvarado-Solano, D.P.; Čižmár, D. Can glomalin content be used as an indicator for erosion damage to soil and related changes in organic matter characteristics and nutrients? Catena 2019, 181, 104078. [Google Scholar] [CrossRef]
- Staunton, S.; Saby, N.P.A.; Arrouays, D.; Quiquampoix, H. Can soil properties and land use explain glomalin-related soil protein (GRSP) accumulation? A nationwide survey in France. Catena 2020, 193, 104620. [Google Scholar] [CrossRef]
- Hintze, A.; Adami, C. Modularity and anti-modularity in networks with arbitrary degree distribution. Biol. Direct 2010, 5, 32. [Google Scholar] [CrossRef]
- Guo, H.; Mazer, S.J.; Du, G.Z. Geographic variation in primary sex allocation perflower within and among 12 species of Pedicularis (Orobanchaceae): Proportional male investment increases with elevation. Am. J. Bot. 2010, 97, 1334–1341. [Google Scholar] [CrossRef]
- Wang, L.; Yang, D.; Chen, R.; Ma, F.; Wang, G. How a functional soil animal-earthworm affect arbuscular mycorrhizae-assisted phytoremediation in metals contaminated soil? J. Hazard. Mater. 2022, 435, 128991. [Google Scholar] [CrossRef]
- Thilagar, G.; Bagyaraj, D.J. Influence of different arbuscular mycorrhizal fungi on growth and yield of chilly. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2015, 85, 71–75. [Google Scholar] [CrossRef]
- Schnepf, A.; Leitner, D.; Klepsch, S.; Pellerin, S.; Mollier, A. Modelling phosphorus dynamics in the soil–plant system. In Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling; Bünemann, E., Oberson, A., Frossard, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 113–133. [Google Scholar]
- Yilmaz, A.; Karik, Ü. AMF and PGPR enhance yield and secondary metabolite profile of basil (Ocimum basilicum L.). Ind. Crops Prod. 2022, 176, 114327. [Google Scholar] [CrossRef]
- Qi, X.; Wang, E.; Xing, M.; Zhao, W.; Chen, X. Rhizosphere and non-rhizosphere bacterial community composition of the wild medicinal plant Rumex patientia. World J. Microbiol. Biotechnol. 2012, 28, 2257–2265. [Google Scholar] [CrossRef] [PubMed]
- Muniz, B.C.; Falcao, E.L.; Monteiro, R.D.; dos Santos, E.L.; Bastos, C.J.A.; da Silva, F.S.B. Acaulospora longula Spain & NC Schenck: A low-cost bioinsumption to optimize phenolics and saponins production in Passifora alata Curtis. Ind. Crops Prod. 2021, 167, 113498. [Google Scholar]
- Zuo, T.; Jin, H.; Zhang, L.; Liu, Y.; Nie, J.; Chen, B.; Fang, C.; Xue, J.; Bi, X.; Zhou, L.; et al. Innovative health risk assessment of heavy metals in Chinese herbal medicines based on extensive data. Pharmacol. Res. 2020, 159, 104987. [Google Scholar] [CrossRef]
- Zeng, Y.; Guo, L.P.; Chen, B.D.; Hao, Z.P.; Wang, J.Y.; Huang, L.Q.; Yang, G.; Cui, X.M.; Yang, L.; Wu, Z.X.; et al. Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: Current research status and prospectives. Mycorrhiza 2013, 23, 253–265. [Google Scholar] [CrossRef]
Plant Families | Plant Species | EEG (mg/g) | TG (mg/g) | EEG/SOC (%) | TG/SOC (%) |
---|---|---|---|---|---|
Aristolochiaceae | Aristolochia contorta | 1.57 b | 4.67 a | 14.65 ghijklmn | 43.57 defgh |
Compositae | Artemisia argyi | 1.34 def | 3.86 fghijk | 16.59 bcdef | 47.76 bcd |
Atractylodes macrocephala | 1.34 def | 3.93 defghi | 15.10 defghijkl | 44.37 cdefg | |
Coreopsis tinctoria | 1.28 fgh | 3.40 mno | 15.54 defghij | 41.24 ghij | |
Pericallis hybrida | 1.28 fgh | 3.59 jklmno | 16.42 cdefg | 46.02 cdef | |
Tussilago farfara | 1.20 ghi | 3.54 klmno | 13.37 lmno | 39.36 ijk | |
Crassulaceae | Hylotelephium erythrostictum | 1.14 i | 3.47 lmno | 15.23 defghijk | 46.21 cdef |
Sedum aizoon | 1.32 defg | 4.20 bcde | 13.01 no | 41.29 ghij | |
Sedum sarmentosum | 1.36 cdef | 3.70 ijklm | 15.09 defghijkl | 41.03 ghijk | |
Labiatae | Glechoma longituba | 1.37 cdef | 4.08 defg | 12.46 o | 37.08 k |
Nepeta cataria | 1.37 cdef | 4.05 defgh | 16.19 cdefgh | 47.69 bcd | |
Scutellaria baicalensis | 1.71 a | 4.48 ab | 16.33 cdefg | 42.79 fghij | |
Scutellaria barbata | 1.20 hi | 3.73 hijklm | 13.70 klmno | 42.56 fghij | |
Leguminosae | Glycine soja | 1.20 ghi | 3.32 no | 14.81 fghijklm | 40.94 ghijk |
Lespedeza bicolor | 1.26 fgh | 3.89 efghij | 14.47 hijklmn | 44.54 cdefg | |
Mimosa pudica | 1.20 ghi | 3.64 ijklm | 15.74 defghi | 47.67 bcd | |
Liliaceae | Hemerocallis fulva | 1.35 cdef | 4.05 defgh | 13.88 jklmno | 41.63 ghij |
Hosta plantaginea | 1.31 defg | 4.21 bcde | 14.29 ijklmn | 46.05 cdef | |
Lilium davidii | 1.42 cd | 3.76 ghijkl | 17.80 bc | 47.17 bcde | |
Polygonatum odoratum | 1.28 fgh | 3.84 fghijk | 16.84 bcd | 50.55 ab | |
Linaceae | Linum perenne | 1.30 defg | 3.91 defghij | 15.53 defghij | 46.83 bcde |
Ranunculaceae | Aconitum carmichaeli | 1.41 cde | 4.22 bcd | 14.25 ijklmn | 42.79 fghij |
Clematis florida | 1.41 cde | 3.66 ijklm | 14.96 efghijklm | 38.77 jk | |
Paeonia lactiflora | 1.19 hi | 3.69 ijklm | 16.71 bcde | 51.93 a | |
Paeonia suffruticosa | 1.27 fgh | 3.81 fghijk | 14.84 fghijklm | 44.64 cdefg | |
Stemonaceae | Stemona japonica | 1.47 c | 4.40 abc | 13.19 mno | 39.59 hijk |
Scrophulariaceae | Rehmannia glutinosa | 1.29 efgh | 3.60 ijklmn | 18.29 b | 51.11 ab |
Scrophularia ningpoensis | 1.38 cdef | 3.73 hijklm | 17.68 bc | 47.82 bc | |
Umbelliferae | Angelica dahurica | 1.30 defg | 3.60 ijklmn | 15.62 defghij | 43.31 efghi |
Angelica sinensis | 1.30 defg | 4.11 cdef | 13.98 ijklmno | 44.03 cdefg | |
Notopterygium incisum | 1.41 cd | 3.28 o | 20.41 a | 47.3 bcde |
Plant Species | pH | Available K (μg/g) | Available P (μg/g) | Available N (μg/g) | SOC (mg/g) | Alkaline Phosphatase (μg/g/h) |
---|---|---|---|---|---|---|
Aristolochia contorta | 7.38 a | 86.11 ab | 5.25 a | 82.13 b | 10.72 ab | 100.33 bc |
Artemisia argyi | 7.35 a | 70.27 fgh | 4.21 cdefg | 56.93 ijk | 8.08 lmn | 64.29 lmn |
Atractylodes macrocephala | 7.32 a | 88.70 a | 4.31 cdefg | 56.00 jk | 8.86 ghij | 69.40 kl |
Coreopsis tinctoria | 7.39 a | 74.17 cdefg | 3.20 lmn | 50.40 lm | 8.25 klm | 64.38 lmn |
Pericallis hybrida | 7.29 a | 49.20 i | 5.22 a | 45.97 mn | 7.80 mno | 70.38 jkl |
Tussilago farfara | 6.02 b | 72.63 defg | 4.65 cd | 52.97 kl | 9.00 fghi | 72.73 ijk |
Hylotelephium erythrostictum | 7.58 a | 40.98 m | 2.35 p | 43.17 n | 7.50 opq | 68.69 kl |
Sedum aizoon | 7.33 a | 77.35 cdef | 4.62 bcd | 93.80 a | 10.18 cd | 104.96 b |
Sedum sarmentosum | 7.36 a | 50.90 i | 5.24 a | 70.23 de | 9.02 fghi | 96.69 cde |
Glechoma longituba | 7.36 a | 73.00 defg | 4.09 efghi | 82.60 b | 10.99 ab | 82.96 gh |
Nepeta cataria | 7.33 a | 76.27 cdef | 4.16 defgh | 66.27 efg | 8.48 ijkl | 70.78 jkl |
Scutellaria baicalensis | 7.33 a | 80.91 bc | 3.94 ghij | 79.57 bc | 10.48 bc | 116.82 a |
Scutellaria barbata | 7.39 a | 67.77 ghi | 3.31 klm | 62.30 ghi | 8.75 hijk | 95.53 cde |
Glycine soja | 7.41 a | 52.24 ki | 3.65 ijkl | 57.87 ijk | 8.11 lmn | 77.13 hij |
Lespedeza bicolor | 7.37 a | 77.84 cde | 2.87 mno | 64.63 fgh | 8.72 hijk | 90.38 def |
Mimosa pudica | 7.39 a | 76.47 cdef | 4.45 cdef | 62.07 ghi | 7.64 nop | 80.07 h |
Hemerocallis fulva | 7.40 a | 71.55 efg | 5.23 a | 65.10 efg | 9.73 de | 84.29 fgh |
Hosta plantaginea | 7.29 a | 48.32 i | 2.83 no | 74.67 cd | 9.13 fgh | 82.11 h |
Lilium davidii | 7.36 a | 58.47 jk | 3.01 mno | 53.43 kl | 7.97 lmno | 69.89 jkl |
Polygonatum odoratum | 7.31 a | 67.71 ghi | 2.76 nop | 63.93 fgh | 7.60 nop | 61.09 mn |
Linum perenne | 7.29 a | 74.45 cdefg | 3.70 hijk | 56.70 ijk | 8.36 jklm | 67.80 klm |
Aconitum carmichaeli | 7.32 a | 90.35 a | 4.57 bcde | 75.37 cd | 9.87 de | 97.84 bcd |
Clematis florida | 7.41 a | 51.25 i | 2.64 op | 59.27 hij | 9.44 ef | 60.07 n |
Paeonia lactiflora | 7.31 a | 63.50 hij | 4.96 ab | 45.27 mn | 7.11 pqr | 78.47 hi |
Paeonia suffruticosa | 7.40 a | 75.34 cdef | 3.92 ghij | 57.17 ijk | 8.54 ijkl | 58.11 no |
Stemona japonica | 7.40 a | 62.03 ij | 3.23 lmn | 94.50 a | 11.12 a | 100.78 bc |
Rehmannia glutinosa | 7.29 a | 59.72 jk | 3.59 jkl | 46.43 mn | 7.05 qr | 52.02 o |
Scrophularia ningpoensis | 7.36 a | 70.33 fgh | 4.02 fghij | 64.40 fgh | 7.79 mno | 89.58 efg |
Angelica dahurica | 7.31 a | 67.37 ghi | 2.82 no | 42.70 n | 8.31 jklm | 69.62 jkl |
Angelica sinensis | 7.38 a | 79.63 bcd | 3.10 mno | 68.60 ef | 9.33 def | 91.98 de |
Notopterygium incisum | 7.49 a | 48.91 i | 4.30 cdefg | 47.37 mn | 6.93 r | 60.47 mn |
Plant Families | Plant Species | Total Colonization (%) | Spore Density (nu./10 g Soil) | Species Richness (No. of Species) | Simpson |
---|---|---|---|---|---|
Aristolochiaceae | Aristolochia contorta | 83.30 ± 3.30 bc | 344 | 34 | 0.76 ghijk |
Compositae | Artemisia argyi | 57.77 ± 1.93 ij | 180 | 29 | 0.74 kl |
Atractylodes macrocephala | 82.22 ± 1.92 bc | 214 | 28 | 0.75 ijk | |
Coreopsis tinctoria | 65.56 ± 1.93 fghi | 112 | 37 | 0.82 bcd | |
Pericallis hybrida | 42.22 ± 1.92 l | 214 | 36 | 0.78 efghi | |
Tussilago farfara | 81.11 ± 1.93 bc | 202 | 40 | 0.78 fghij | |
Crassulaceae | Hylotelephium erythrostictum | 49.10 ± 3.33 k | 204 | 36 | 0.87 a |
Sedum aizoon | 76.67 ± 3.33 cd | 258 | 35 | 0.76 hijk | |
Sedum sarmentosum | 57.78 ± 1.92 ij | 278 | 34 | 0.82 bcd | |
Labiatae | Glechoma longituba | 75.56 ± 1.92 cde | 228 | 26 | 0.69 m |
Nepeta cataria | 68.89 ± 8.38 efgh | 245 | 33 | 0.78 efghi | |
Scutellaria baicalensis | 94.44 ± 1.92 a | 360 | 37 | 0.82 bcd | |
Scutellaria barbata | 63.33 ± 3.33 ghij | 294 | 36 | 0.84 bc | |
Leguminosae | Glycine soja | 67.78 ± 1.92 fgh | 160 | 33 | 0.78 efghij |
Lespedeza bicolor | 79.10 ± 6.67 bc | 204 | 28 | 0.72 lm | |
Mimosa pudica | 66.67 ± 6.67 fgh | 173 | 34 | 0.81 cde | |
Liliaceae | Hemerocallis fulva | 75.56 ± 1.92 cde | 225 | 30 | 0.80 def |
Hosta plantaginea | 64.44 ± 1.92 fghi | 383 | 38 | 0.80 cdef | |
Lilium davidii | 61.11 ± 9.62 hij | 177 | 33 | 0.75 ijk | |
Polygonatum odoratum | 55.56 ± 3.85 jk | 233 | 29 | 0.75 ijk | |
Linaceae | Linum perenne | 66.67 ± 3.33 fgh | 302 | 38 | 0.79 defg |
Ranunculaceae | Aconitum carmichaeli | 85.56 ± 6.94 b | 294 | 37 | 0.79 defg |
Clematis florida | 62.22 ± 3.85 ghij | 219 | 41 | 0.81 cdef | |
Paeonia lactiflora | 83.33 ± 3.33 bc | 320 | 34 | 0.81 cde | |
Paeonia suffruticosa | 81.11 ± 1.92 bc | 285 | 33 | 0.73 kl | |
Stemonaceae | Stemona japonica | 70.00 ± 3.33 defg | 329 | 32 | 0.75 ijk |
Scrophulariaceae | Rehmannia glutinosa | 62.22 ± 3.85 ghij | 299 | 39 | 0.84 ab |
Scrophularia ningpoensis | 83.33 ± 3.33 bc | 287 | 31 | 0.75 jk | |
Umbelliferae | Angelica dahurica | 72.21 ± 7.69 def | 251 | 31 | 0.75 ijk |
Angelica sinensis | 64.44 ± 1.92 fghi | 279 | 49 | 0.79 defgh | |
Notopterygium incisum | 55.56 ± 1.92 jk | 195 | 32 | 0.71 lm |
Item | pH | Organic Carbon (mg/g) | Alkaline Phosphatase (μg/g/h) | Available N (μg/g) | Available K (μg/g) | Available P (μg/g) | EEG (mg/g) | TG (mg/g) |
---|---|---|---|---|---|---|---|---|
Total colonization (%) | −0.228 | 0.479 ** | 0.494 ** | 0.398 * | 0.714 ** | 0.262 | 0.370 * | 0.503 ** |
Spore density (nu./10g soil) | 0.072 | 0.386 * | 0.500 ** | 0.449 * | 0.175 | 0.024 | 0.355 * | 0.647 ** |
EEG (mg/g) | 0.165 | 0.576 ** | 0.455 * | 0.535 ** | 0.285 | 0.177 | —— | 0.655 ** |
TG (mg/g) | 0.091 | 0.789 ** | 0.665 ** | 0.814 ** | 0.547 ** | 0.176 | 0.655 ** | —— |
Network Features | Observed Value | The Predicted Value of the Null Model | p |
---|---|---|---|
WNODF | 34.84 | 31.37 | * |
Specialization | 0.08 | 0.01 | *** |
Connectance | 0.50 | 0.64 | *** |
Modularity | 0.12 | 0.03 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; He, C.; Lin, Y.; Qin, S.; Wang, D.; Li, C.; Li, M.; Sun, X.; He, X. Dynamics of Arbuscular Mycorrhizal Fungi in the Rhizosphere of Medicinal Plants and Their Promotion on the Performance of Astragalus mongholicus. Agronomy 2024, 14, 2695. https://doi.org/10.3390/agronomy14112695
Zhang W, He C, Lin Y, Qin S, Wang D, Li C, Li M, Sun X, He X. Dynamics of Arbuscular Mycorrhizal Fungi in the Rhizosphere of Medicinal Plants and Their Promotion on the Performance of Astragalus mongholicus. Agronomy. 2024; 14(11):2695. https://doi.org/10.3390/agronomy14112695
Chicago/Turabian StyleZhang, Wanyi, Chao He, Yuli Lin, Shenghui Qin, Duo Wang, Chunmiao Li, Min Li, Xiang Sun, and Xueli He. 2024. "Dynamics of Arbuscular Mycorrhizal Fungi in the Rhizosphere of Medicinal Plants and Their Promotion on the Performance of Astragalus mongholicus" Agronomy 14, no. 11: 2695. https://doi.org/10.3390/agronomy14112695
APA StyleZhang, W., He, C., Lin, Y., Qin, S., Wang, D., Li, C., Li, M., Sun, X., & He, X. (2024). Dynamics of Arbuscular Mycorrhizal Fungi in the Rhizosphere of Medicinal Plants and Their Promotion on the Performance of Astragalus mongholicus. Agronomy, 14(11), 2695. https://doi.org/10.3390/agronomy14112695