Assessing Weed Canopy Cover in No-Till and Conventional Tillage Plots in Winter Wheat Production Using Drone Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Growing of Winter Wheat
2.2.2. Drone Data Acquisition
2.2.3. Weed Canopy Cover Mapping
2.2.4. Statistical Assessment of Tillage Systems
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dabin, Z.; Pengwei, Y.; Na, Z.; Zheng, W.; Changwei, Y.; Qunhu, C.; Weidong, C.; Yajun, G. Responses of Winter Wheat Production to Green Manure and Nitrogen Fertilizer on the Loess Plateau. Agron. J. 2015, 107, 361–374. [Google Scholar] [CrossRef]
- Flessner, M.L.; Burke, I.C.; Dille, J.A.; Everman, W.J.; VanGessel, M.J.; Tidemann, B.; Manuchehri, M.R.; Soltani, N.; Sikkema, P.H. Potential wheat yield loss due to weeds in the United States and Canada. Weed Technol. 2021, 35, 916–923. [Google Scholar] [CrossRef]
- Santín-Montanyá, M.I.; Martín-Lammerding, D.; Walter, I.; Zambrana, E.; Tenorio, J.L. Effects of tillage, crop systems and fertilization on weed abundance and diversity in 4-year dry land winter wheat. Eur. J. Agron. 2013, 48, 43–49. [Google Scholar] [CrossRef]
- Travlos, I.; Gazoulis, I.; Kanatas, P.; Tsekoura, A.; Zannopoulos, S.; Papastylianou, P. Key Factors Affecting Weed Seeds’ Germination, Weed Emergence, and Their Possible Role for the Efficacy of False Seedbed Technique as Weed Management Practice. Front. Agron. 2020, 2, 1. [Google Scholar] [CrossRef]
- Chauhan, B.S. Grand Challenges in Weed Management. Front. Agron. 2020, 1, 3. [Google Scholar] [CrossRef]
- Singh, R.P.; Verma, S.K.; Kumar, S.; Lakara, K. Impact of Tillage and Herbicides on the Dynamics of Broad Leaf Weeds in Wheat (Triticum aestivum L.). Int. J. Agric. Environ. BiotechnoL. 2017, 10, 643–652. [Google Scholar] [CrossRef]
- Pala, F.; Mennan, H. Weed trouble in winter wheat. In Theoretical and Practical New Approaches in Cereal Science and Technology; İksad Publishing: Ankara, Turkey, 2021; pp. 197–224. [Google Scholar]
- Calado, J.M.G.; Basch, G.; de Carvalho, M. Weed management in no-till winter wheat (Triticum aestivum L.). Crop Prot. 2010, 29, 1–6. [Google Scholar] [CrossRef]
- Jabran, K.; Mahmood, K.; Melander, B.; Bajwa, A.A.; Kudsk, P. Weed Dynamics and Management in Wheat. Adv. Agron. 2017, 145, 97–166. [Google Scholar] [CrossRef]
- Pál, V.; Zsombik, L. Evaluation of the role of common vetch (Vicia sativa L.) green manure in crop rotations. Acta Agrar. Debreceniensis 2022, 1, 161–171. [Google Scholar] [CrossRef]
- Duary, B.; Dash, S.; Teja, K.C. Impact of Tillage on Seed Bank, Population Dynamics and Management of Weeds. SATSA Mukhapatra–Annu. Tech. 2016, 20, 104–112. [Google Scholar]
- Alam, M.K.; Islam, M.M.; Salahin, N.; Hasanuzzaman, M. Effect of Tillage Practices on Soil Properties and Crop Productivity in Wheat-Mungbean-Rice Cropping System under Subtropical Climatic Conditions. Sci. World J. 2014, 2014, 437283. [Google Scholar] [CrossRef] [PubMed]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef]
- Pardo, G.; Cirujeda, A.; Perea, F.; Verdú, A.M.C.; Mas, M.T.; Urbano, J.M. Effects of Reduced and Conventional Tillage on Weed Communities: Results of a Long-Term Experiment in Southwestern Spain. Planta Daninha 2019, 37, e019201336. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and soil physical environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Crittenden, S.J.; Poot, N.; Heinen, M.D.J.M.; van Balen, D.J.M.; Pulleman, M.M. Soil physical quality in contrasting tillage systems in organic and conventional farming. Soil Tillage Res. 2015, 154, 136–144. [Google Scholar] [CrossRef]
- Schlüter, S.; Großmann, C.; Diel, J.; Wu, G.-M.; Tischer, S.; Deubel, A.; Rücknagel, J. Long-term effects of conventional and reduced tillage on soil structure, soil ecological and soil hydraulic properties. Geoderma 2018, 332, 10–19. [Google Scholar] [CrossRef]
- Degrune, F.; Theodorakopoulos, N.; Colinet, G.; Hiel, M.-P.; Bodson, B.; Taminiau, B.; Daube, G.; Vandenbol, M.; Hartmann, M. Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes. Front. Microbiol. 2017, 8, 1127. [Google Scholar] [CrossRef]
- Castellini, M.; Fornaro, F.; Garofalo, P.; Giglio, L.; Rinaldi, M.; Ventrella, D.; Vitti, C.; Vonella, A.V. Effects of No-Tillage and Conventional Tillage on Physical and Hydraulic Properties of Fine Textured Soils under Winter Wheat. Water 2019, 11, 484. [Google Scholar] [CrossRef]
- Santín-Montanyá, M.I.; Fernández-Getino, A.P.; Zambrana, E.; Tenorio, J.L. Effects of tillage on winter wheat production in Mediterranean dryland fields. Arid Land Res. Manag. 2017, 31, 269–282. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, S.; Sun, Z.; Wang, H.; Qu, S.; Lei, N.; He, J.; Dong, Q. Tillage effects on soil properties and crop yield after land reclamation. Sci. Rep. 2021, 11, 4611. [Google Scholar] [CrossRef]
- Weber, J.F.; Kunz, C.; Peteinatos, G.; Zikeli, S.; Gerhards, R. Weed Control Using Conventional Tillage, Reduced Tillage, No-Tillage, and Cover Crops in Organic Soybean. Agriculture 2017, 7, 43. [Google Scholar] [CrossRef]
- Cordeau, S.; Guillemin, J.P.; Reibel, C.; Chauvel, B. Weed species differ in their ability to emerge in no-till systems that include cover crops. Ann. Appl. Biol. 2015, 166, 444–455. [Google Scholar] [CrossRef]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crop. Res. 2015, 183, 56–68. [Google Scholar] [CrossRef]
- Cordeau, S.; Baudron, A.; Adeux, G. Is Tillage a Suitable Option for Weed Management in Conservation Agriculture? Agronomy 2020, 10, 1746. [Google Scholar] [CrossRef]
- Wallace, J.M.; Keene, C.L.; Curran, W.; Mirsky, S.; Ryan, M.R.; VanGessel, M.J. Integrated Weed Management Strategies in Cover Crop-based, Organic Rotational No-Till Corn and Soybean in the Mid-Atlantic Region. Weed Sci. 2018, 66, 94–108. [Google Scholar] [CrossRef]
- Summers, H.; Karsten, H.D.; Curran, W.; Malcolm, G.M. Integrated weed management with reduced herbicides in a no-till dairy rotation. Agron. J. 2021, 113, 3418–3433. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Smagacz, J.; Kwiatkowski, C.A.; Harasim, E.; Woźniak, A. Weed Flora and Soil Seed Bank Composition as Affected by Tillage System in Three-Year Crop Rotation. Agriculture 2020, 10, 186. [Google Scholar] [CrossRef]
- Hossain, M.; Begum, M. Soil weed seed bank: Importance and management for sustainable crop production—A Review. J. Bangladesh Agric. Univ. 2016, 13, 221–228. [Google Scholar] [CrossRef]
- Bakacsy, L.; Tobak, Z.; van Leeuwen, B.; Szilassi, P.; Biró, C.; Szatmári, J. Drone-Based Identification and Monitoring of Two Invasive Alien Plant Species in Open Sand Grasslands by Six RGB Vegetation Indices. Drones 2023, 7, 207. [Google Scholar] [CrossRef]
- Liang, W.-C.; Yang, Y.-J.; Chao, C.-M. Low-cost weed identification system using drones. In Proceedings of the 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW), Nagasaki, Japan, 26–29 November 2019; pp. 260–263. [Google Scholar]
- Al-Rami, B.; Alheeti, K.M.A.; Aldosari, W.M.; Alshahrani, S.M.; Al-Abrez, S.M. A New Classification Method for Drone-Based Crops in Smart Farming. Int. J. Interact. Mob. Technol. 2022, 16, 164–174. [Google Scholar] [CrossRef]
- Kaivosoja, J.; Hautsalo, J.; Heikkinen, J.; Hiltunen, L.; Ruuttunen, P.; Näsi, R.; Niemeläinen, O.; Lemsalu, M.; Honkavaara, E.; Salonen, J. Reference Measurements in Developing UAV Systems for Detecting Pests, Weeds, and Diseases. Remote Sens. 2021, 13, 1238. [Google Scholar] [CrossRef]
- Kar, P.; Chowdhury, S. IoT and Drone-Based Field Monitoring and Surveillance System. In Artificial Intelligence Techniques in Smart Agriculture; Chouhan, S.S., Saxena, A., Singh, U.P., Jain, S., Eds.; Springer Nature: Singapore, 2024; pp. 253–266. [Google Scholar]
- Bah, M.D.; Hafiane, A.; Canals, R. Deep Learning with Unsupervised Data Labeling for Weed Detection in Line Crops in UAV Images. Remote Sens. 2018, 10, 1690. [Google Scholar] [CrossRef]
- Khoshboresh-Masouleh, M.; Shah-Hosseini, R. Drone-Based Smart Weed Localization from Limited Training Data and Radiometric Calibration Parameters. Environ. Sci. Proc. 2023, 29, 39. [Google Scholar] [CrossRef]
- Rehman, M.U.; Eesaar, H.; Abbas, Z.; Seneviratne, L.; Hussain, I.; Chong, K.T. Advanced drone-based weed detection using feature-enriched deep learning approach. Knowl.-Based Syst. 2024, 305, 112655. [Google Scholar] [CrossRef]
- Amare, T.; Sharma, J.; Zewdie, K. Effect of Weed Control Methods on Weeds and Wheat (Triticum aestivum L.) Yield. World J. Agric. Res. 2014, 2, 124–128. [Google Scholar] [CrossRef]
- Monteiro, A.; Santos, S. Sustainable Approach to Weed Management: The Role of Precision Weed Management. Agronomy 2022, 12, 118. [Google Scholar] [CrossRef]
- Taparia, A. U-Net Architecture Explained. 2023. Available online: https://www.geeksforgeeks.org/u-net-architecture-explained/# (accessed on 11 June 2024).
- Lyon, D.J.; Burke, I.C.; Hulting, A.G.; Campbell, J.M. Integrated Management of Mayweed Chamomile in Wheat and Pulse Crop Production Systems, Washington State University Extension. 2017. Available online: https://growiwm.b-cdn.net/wp-content/uploads/2022/08/Mayweed-Chamomille.pdf (accessed on 1 July 2024).
- Neag, T.; Toma, C.-C.; Olah, N.; Ardelean, A. Polyphenols profile and antioxidant activity of some Romanian Ranunculus species. Stud. Univ. Babes-Bolyai Chem. 2017, 62, 75–88. [Google Scholar] [CrossRef]
- Shahzad, M.; Farooq, M.; Hussain, M. Weed spectrum in different wheat-based cropping systems under conservation and conventional tillage practices in Punjab, Pakistan. Soil Tillage Res. 2016, 163, 71–79. [Google Scholar] [CrossRef]
- Travlos, I.S.; Cheimona, N.; Roussis, I.; Bilalis, D.J. Weed-Species Abundance and Diversity Indices in Relation to Tillage Systems and Fertilization. Front. Environ. Sci. 2018, 6, 11. [Google Scholar] [CrossRef]
- Armengot, L.; Blanco-Moreno, J.; Bàrberi, P.; Bocci, G.; Carlesi, S.; Aendekerk, R.; Berner, A.; Celette, F.; Grosse, M.; Huiting, H.; et al. Tillage as a driver of change in weed communities: A functional perspective. Agric. Ecosyst. Environ. 2016, 222, 276–285. [Google Scholar] [CrossRef]
- Little, N.G.; DiTommaso, A.; Westbrook, A.S.; Ketterings, Q.M.; Mohler, C.L. Effects of fertility amendments on weed growth and weed–crop competition: A review. Weed Sci. 2021, 69, 132–146. [Google Scholar] [CrossRef]
- Kumar, S.; Kumari, S.; Rana, S.S.; Rana, R.S.; Anwar, T.; Qureshi, H.; Saleh, M.A.; Alamer, K.H.; Attia, H.; Ercisli, S.; et al. Weed management challenges in modern agriculture: The role of environmental factors and fertilization strategies. Crop Prot. 2024, 185, 106903. [Google Scholar] [CrossRef]
- Clements, D.R.; Jones, V.L. Ten Ways That Weed Evolution Defies Human Management Efforts Amidst a Changing Climate. Agronomy 2021, 11, 284. [Google Scholar] [CrossRef]
- Kumar, V.; Mahajan, G.; Dahiya, S.; Chauhan, B.S. Challenges and Opportunities for Weed Management in No-Till Farming Systems. In No-Till Farming Systems for Sustainable Agriculture; Dang, Y.P., Dalal, R.C., Menzies, N.W., Eds.; Springer: Cham, Switzherland, 2020. [Google Scholar]
- Sharma, G.; Barney, J.N.; Westwood, J.H.; Haak, D.C. Into the weeds: New insights in plant stress. Trends Plant Sci. 2021, 26, 1050–1060. [Google Scholar] [CrossRef]
Year | January | February | March | April | May |
---|---|---|---|---|---|
Temperature (°C) | |||||
2023 | 8.2 | 10.7 | 11.4 | 15.9 | 21.1 |
2024 | 2.6 | 10.2 | 13.9 | 17.6 | 22.3 |
Rainfall (mm) | |||||
2023 | 4.1 | 2.5 | 2.8 | 3.8 | 3.8 |
2024 | 4.3 | 3.3 | 3.3 | 5.8 | 6.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oppong, J.N.; Akumu, C.E.; Dennis, S. Assessing Weed Canopy Cover in No-Till and Conventional Tillage Plots in Winter Wheat Production Using Drone Data. Agronomy 2024, 14, 2706. https://doi.org/10.3390/agronomy14112706
Oppong JN, Akumu CE, Dennis S. Assessing Weed Canopy Cover in No-Till and Conventional Tillage Plots in Winter Wheat Production Using Drone Data. Agronomy. 2024; 14(11):2706. https://doi.org/10.3390/agronomy14112706
Chicago/Turabian StyleOppong, Judith N., Clement E. Akumu, and Sam Dennis. 2024. "Assessing Weed Canopy Cover in No-Till and Conventional Tillage Plots in Winter Wheat Production Using Drone Data" Agronomy 14, no. 11: 2706. https://doi.org/10.3390/agronomy14112706
APA StyleOppong, J. N., Akumu, C. E., & Dennis, S. (2024). Assessing Weed Canopy Cover in No-Till and Conventional Tillage Plots in Winter Wheat Production Using Drone Data. Agronomy, 14(11), 2706. https://doi.org/10.3390/agronomy14112706