Crops Disease Detection, from Leaves to Field: What We Can Expect from Artificial Intelligence
Abstract
:1. Introduction
1.1. Impact of Crop Diseases on Production and Agricultural Sector
1.2. Data Acquisition to Assess Crop Diseases
1.3. Data Analysis to Detect and Identify Crop Diseases
2. Methodology
2.1. Crop Disease Detection Systematic Search Approach (SSA)
2.2. Data Retrieval and Extraction
3. Results
3.1. Bibliometric Analysis
3.2. Analysis of Disease in the Literature
3.2.1. Study Scale
3.2.2. Crop and Disease
3.2.3. Acquisition Method and Data Source
3.2.4. Algorithm Used and Annotation Tools
3.3. Uses of the Data Acquired
4. Perspectives and Challenges
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations SDGS, United Nations. Available online: https://sdgs.un.org/goals (accessed on 24 June 2024).
- Whitcraft, A.K.; Becker-Reshef, I.; Justice, C.O.; Gifford, L.; Kavvada, A.; Jarvis, I. No Pixel Left behind: Toward Integrating Earth Observations for Agriculture into the United Nations Sustainable Development Goals Framework. Remote Sens. Environ. 2019, 235, 111470. [Google Scholar] [CrossRef]
- Gaunt, R.E. The Relationship Between Plant Disease Severity and Yield. Annu. Rev. Phytopathol. 1995, 33, 119–144. [Google Scholar] [CrossRef] [PubMed]
- Courson, E.; Petit, S.; Poggi, S.; Ricci, B. Weather and Landscape Drivers of the Regional Level of Pest Occurrence in Arable Agriculture: A Multi-Pest Analysis at the French National Scale. Agric. Ecosyst. Environ. 2022, 338, 108105. [Google Scholar] [CrossRef]
- Milosavljević, I.; Esser, A.D.; Crowder, D.W. Effects of Environmental and Agronomic Factors on Soil-Dwelling Pest Communities in Cereal Crops. Agric. Ecosyst. Environ. 2016, 225, 192–198. [Google Scholar] [CrossRef]
- Paredes, D.; Rosenheim, J.A.; Karp, D.S. The Causes and Consequences of Pest Population Variability in Agricultural Landscapes. Ecol. Appl. 2022, 32, e2607. [Google Scholar] [CrossRef]
- Poole, N.F.; Arnaudin, M.E. The Role of Fungicides for Effective Disease Management in Cereal Crops. Can. J. Plant Pathol. 2014, 36, 1–11. [Google Scholar] [CrossRef]
- Dewasme, C.; Mary, S.; Darrieutort, G.; Roby, J.-P.; Gambetta, G.A. Long-Term Esca Monitoring Reveals Disease Impacts on Fruit Yield and Wine Quality. Plant Dis. 2022, 106, 3076–3082. [Google Scholar] [CrossRef]
- Keinath, A.P. Effect of Fungicide Applications Scheduled to Control Gummy Stem Blight on Yield and Quality of Watermelon Fruit. Plant Dis. 2001, 85, 53–58. [Google Scholar] [CrossRef]
- Milošević, T.; Milošević, N.; Mladenović, J.; Jevremović, D. Impact of Sharka Disease on Tree Growth, Productivity and Fruit Quality of Apricot (Prunus armeniaca L.). Sci. Hortic. 2019, 244, 270–276. [Google Scholar] [CrossRef]
- Ferrigo, D.; Raiola, A.; Causin, R. Fusarium Toxins in Cereals: Occurrence, Legislation, Factors Promoting the Appearance and Their Management. Molecules 2016, 21, 627. [Google Scholar] [CrossRef]
- Oldenburg, E.; Höppner, F.; Ellner, F.; Weinert, J. Fusarium Diseases of Maize Associated with Mycotoxin Contamination of Agricultural Products Intended to Be Used for Food and Feed. Mycotoxin Res. 2017, 33, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Siou, D.; Gélisse, S.; Laval, V.; Elbelt, S.; Repinçay, C.; Bourdat-Deschamps, M.; Suffert, F.; Lannou, C. Interactions between Head Blight Pathogens: Consequences for Disease Development and Toxin Production in Wheat Spikes. Appl. Environ. Microbiol. 2015, 81, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.F.; Keane, P. Assessment of Disease and Effects on Yield. In Plant Pathogens and Plant Diseases; Brown, J.F., Ogle, H.J., Eds.; Rockvale Publications: Armidale, Australia, 1997; pp. 315–329. [Google Scholar]
- Price, C.L.; Parker, J.E.; Warrilow, A.G.; Kelly, D.E.; Kelly, S.L. Azole Fungicides—Understanding Resistance Mechanisms in Agricultural Fungal Pathogens. Pest Manag. Sci. 2015, 71, 1054–1058. [Google Scholar] [CrossRef] [PubMed]
- Boobis, A.R.; Ossendorp, B.C.; Banasiak, U.; Hamey, P.Y.; Sebestyen, I.; Moretto, A. Cumulative Risk Assessment of Pesticide Residues in Food. Toxicol. Lett. 2008, 180, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Damalas, C.A.; Koutroubas, S.D. Farmers’ Exposure to Pesticides: Toxicity Types and Ways of Prevention. Toxics 2016, 4, 1. [Google Scholar] [CrossRef]
- Dhananjayan, V.; Ravichandran, B. Occupational Health Risk of Farmers Exposed to Pesticides in Agricultural Activities. Curr. Opin. Environ. Sci. Health 2018, 4, 31–37. [Google Scholar] [CrossRef]
- Görlich, F.; Marks, E.; Mahlein, A.-K.; König, K.; Lottes, P.; Stachniss, C. Uav-Based Classification of Cercospora Leaf Spot Using Rgb Images. Drones 2021, 5, 34. [Google Scholar] [CrossRef]
- Bohnenkamp, D.; Behmann, J.; Mahlein, A.-K. In-Field Detection of Yellow Rust in Wheat on the Ground Canopy and UAV Scale. Remote Sens. 2019, 11, 2495. [Google Scholar] [CrossRef]
- Pourazar, H.; Samadzadegan, F.; Dadrass Javan, F. Aerial Multispectral Imagery for Plant Disease Detection: Radiometric Calibration Necessity Assessment. Eur. J. Remote Sens. 2019, 52, 17–31. [Google Scholar] [CrossRef]
- Ouhami, M.; Hafiane, A.; Es-Saady, Y.; El Hajji, M.; Canals, R. Computer Vision, IoT and Data Fusion for Crop Disease Detection Using Machine Learning: A Survey and Ongoing Research. Remote Sens. 2021, 13, 2486. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring Plant Diseases and Pests through Remote Sensing Technology: A Review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Abbas, A.; Jain, S.; Gour, M.; Vankudothu, S. Tomato Plant Disease Detection Using Transfer Learning with C-GAN Synthetic Images. Comput. Electron. Agric. 2021, 187, 106279. [Google Scholar] [CrossRef]
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Plant Disease Detection and Classification by Deep Learning. Plants 2019, 8, 468. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, N.K.; Deka, B.; Bora, L.C. Remote Sensing and Its Use in Detection and Monitoring Plant Diseases: A Review. Agric. Rev. 2018, 39, 307–313. [Google Scholar] [CrossRef]
- Tian, S.; Xu, H. Nondestructive Methods for the Quality Assessment of Fruits and Vegetables Considering Their Physical and Biological Variability. Food Eng. Rev. 2022, 14, 380–407. [Google Scholar] [CrossRef]
- Padmavathi, K.; Thangadurai, K. Implementation of RGB and Grayscale Images in Plant Leaves Disease Detection—Comparative Study. Indian. J. Sci. Technol. 2016, 9, 1–6. [Google Scholar] [CrossRef]
- Cholachgudda, K.E.; Biradar, R.C.; Olivier Akansie, K.Y.; Devanagavi, G.D.; Sannabhadti, A.A. Design of a Multispectral and Thermal Data Acquisition System for High-Throughput Phenotyping of Plant Pathology. In Proceedings of the 2022 IEEE International Conference on Electronics, Computing and Communication Technologies, CONECCT 2022, Bangalore, India, 8–10 July 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022. [Google Scholar]
- Cheshkova, A.F. A Review of Hyperspectral Image Analysis Techniques for Plant Disease Detection and Identification. Vavilovskii Zhurnal Genet. Sel. 2022, 26, 202–213. [Google Scholar] [CrossRef]
- Pérez-Bueno, M.L.; Pineda, M.; Cabeza, F.M.; Barón, M. Multicolor Fluorescence Imaging as a Candidate for Disease Detection in Plant Phenotyping. Front. Plant Sci. 2016, 7, 1790. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, H.; Ciechanowska, I.; Spaner, D. Application of Infrared Thermal Imaging for the Rapid Diagnosis of Crop Disease. IFAC-Pap. 2018, 51, 424–430. [Google Scholar] [CrossRef]
- Raji, S.N.; Subhash, N.; Ravi, V.; Saravanan, R.; Mohanan, C.N.; Nita, S.; Kumar, T.M. Detection of Mosaic Virus Disease in Cassava Plants by Sunlight-Induced Fluorescence Imaging: A Pilot Study for Proximal Sensing. Int. J. Remote Sens. 2015, 36, 2880–2897. [Google Scholar] [CrossRef]
- Yu, K.; Leufen, G.; Hunsche, M.; Noga, G.; Chen, X.; Bareth, G. Investigation of Leaf Diseases and Estimation of Chlorophyll Concentration in Seven Barley Varieties Using Fluorescence and Hyperspectral Indices. Remote Sens. 2013, 6, 64–86. [Google Scholar] [CrossRef]
- Kale, A.P.; Sonavane, S.P. IoT Based Smart Farming: Feature Subset Selection for Optimized High-Dimensional Data Using Improved GA Based Approach for ELM. Comput. Electron. Agric. 2019, 161, 225–232. [Google Scholar] [CrossRef]
- Al-Saddik, H.; Laybros, A.; Billiot, B.; Cointault, F. Using Image Texture and Spectral Reflectance Analysis to Detect Yellowness and Esca in Grapevines at Leaf-Level. Remote Sens. 2018, 10, 618. [Google Scholar] [CrossRef]
- Robi, S.N.A.M.; Ahmad, N.; Izhar, M.A.M.; Kaidi, H.M.; Noor, N.M. Utilizing UAV Data for Neural Network-Based Classification of Melon Leaf Diseases in Smart Agriculture. Intl. J. Adv. Comput. Sci. Appl. 2024, 15, 1212–1219. [Google Scholar] [CrossRef]
- Bao, W.; Huang, C.; Hu, G.; Su, B.; Yang, X. Detection of Fusarium Head Blight in Wheat Using UAV Remote Sensing Based on Parallel Channel Space Attention. Comput. Electron. Agric. 2024, 217, 108630. [Google Scholar] [CrossRef]
- Neupane, K.; Baysal-Gurel, F. Automatic Identification and Monitoring of Plant Diseases Using Unmanned Aerial Vehicles: A Review. Remote Sens. 2021, 13, 3841. [Google Scholar] [CrossRef]
- Abade, A.; Ferreira, P.A.; de Barros Vidal, F. Plant Diseases Recognition on Images Using Convolutional Neural Networks: A Systematic Review. Comput. Electron. Agric. 2021, 185, 106125. [Google Scholar] [CrossRef]
- Jafar, A.; Bibi, N.; Naqvi, R.A.; Sadeghi-Niaraki, A.; Jeong, D. Revolutionizing agriculture with artificial intelligence: Plant disease detection methods, applications, and their limitations. J. Sens. 2024, 15, 1356260. [Google Scholar] [CrossRef]
- Messina, G.; Modica, G. Applications of UAV Thermal Imagery in Precision Agriculture: State of the Art and Future Research Outlook. Remote Sens. 2020, 12, 1491. [Google Scholar] [CrossRef]
- Siddiqua, A.; Kabir, M.A.; Ferdous, T.; Ali, I.B.; Weston, L.A. Evaluating Plant Disease Detection Mobile Applications: Quality and Limitations. Agronomy 2022, 12, 1869. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Selcuk, A.A. A Guide for Systematic Reviews: PRISMA. Department of Otorhinolaryngology, Health Sciences University, Derince Training and Research Hospital, Kocaeli, Turkey. Turk. Arch. Otorhinolaryngol. 2019, 57, 57–58. [Google Scholar] [CrossRef] [PubMed]
- Trippa, D.; Scalenghe, R.; Basso, M.F.; Panno, S.; Davino, S.; Morone, C.; Giovino, A.; Oufensou, S.; Luchi, N.; Yousefi, S.; et al. Next-generation Methods for Early Disease Detection in Crops. Pest Manag. Sci. 2024, 80, 245–261. [Google Scholar] [CrossRef]
- Sanghavi, K.; Sanghavi, M.; Rajurkar, A.M. Early Stage Detection of Downey and Powdery Mildew Grape Disease Using Atmospheric Parameters through Sensor Nodes. Artif. Intell. Agric. 2021, 5, 223–232. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Kundu, N.; Rani, G.; Dhaka, V.S.; Gupta, K.; Nayak, S.C.; Verma, S.; Ijaz, M.F.; Woźniak, M. Iot and Interpretable Machine Learning Based Framework for Disease Prediction in Pearl Millet. Sensors 2021, 21, 5386. [Google Scholar] [CrossRef]
- Nie, X.; Wang, L.; Ding, H.; Xu, M. Strawberry Verticillium Wilt Detection Network Based on Multi-Task Learning and Attention. IEEE Access 2019, 7, 170003–170011. [Google Scholar] [CrossRef]
- Martínez-Heredia, J.M.; Gálvez, A.I.; Colodro, F.; Mora-Jiménez, J.L.; Sassi, O.E. Feasibility Study of Detection of Ochre Spot on Almonds Aimed at Very Low-Cost Cameras Onboard a Drone. Drones 2023, 7, 186. [Google Scholar] [CrossRef]
- Abdulridha, J.; Ehsani, R.; Abd-Elrahman, A.; Ampatzidis, Y. A Remote Sensing Technique for Detecting Laurel Wilt Disease in Avocado in Presence of Other Biotic and Abiotic Stresses. Comput. Electron. Agric. 2019, 156, 549–557. [Google Scholar] [CrossRef]
- Albayati, J.S.H.; Üstündağ, B.B. Evolutionary Feature Optimization for Plant Leaf Disease Detection by Deep Neural Networks. Int. J. Comput. Intell. Syst. 2020, 13, 12–23. [Google Scholar] [CrossRef]
- Amin, H.; Darwish, A.; Hassanien, A.E. Deep Learning-Based Apple Leaves Disease Identification Approach with Imbalanced Data; Lecture Notes on Data Engineering and Communications Technologies; Springer Science and Business Media Deutschland GmbH: Cham, Switzerland, 2022; Volume 113. [Google Scholar]
- Barthel, D.; Cullinan, C.; Mejia-Aguilar, A.; Chuprikova, E.; McLeod, B.A.; Kerschbamer, C.; Trenti, M.; Monsorno, R.; Prechsl, U.E.; Janik, K. Identification of Spectral Ranges That Contribute to Phytoplasma Detection in Apple Trees—A Step towards an on-Site Method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 303, 123246. [Google Scholar] [CrossRef] [PubMed]
- Omrani, E.; Khoshnevisan, B.; Shamshirband, S.; Saboohi, H.; Anuar, N.B.; Nasir, M.H.N.M. Potential of Radial Basis Function-Based Support Vector Regression for Apple Disease Detection. Meas. J. Int. Meas. Confed. 2014, 55, 512–519. [Google Scholar] [CrossRef]
- Uryasheva, A.; Kalashnikova, A.; Shadrin, D.; Evteeva, K.; Moskovtsev, E.; Rodichenko, N. Computer Vision-Based Platform for Apple Leaves Segmentation in Field Conditions to Support Digital Phenotyping. Comput. Electron. Agric. 2022, 201, 107269. [Google Scholar] [CrossRef]
- Navrozidis, I.; Alexandridis, T.K.; Dimitrakos, A.; Lagopodi, A.L.; Moshou, D.; Zalidis, G. Identification of Purple Spot Disease on Asparagus Crops across Spatial and Spectral Scales. Comput. Electron. Agric. 2018, 148, 322–329. [Google Scholar] [CrossRef]
- Blessy Annie Flora, J.; Radha, S.; Hemalatha, R.; Aasha Nandhini, S. Plant Disease Detection for Banana Using Long Range Wide Area Network. Int. J. Secur. Netw. 2021, 16, 129–134. [Google Scholar] [CrossRef]
- Hari, P.; Singh, M.P. A Lightweight Convolutional Neural Network for Disease Detection of Fruit Leaves. Neural Comput. Appl. 2023, 35, 14855–14866. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.; Ba, Y.; Lyu, X.; Zhang, M.; Li, M. Banana Fusarium Wilt Disease Detection by Supervised and Unsupervised Methods from UAV-Based Multispectral Imagery. Remote Sens. 2022, 14, 1231. [Google Scholar] [CrossRef]
- Thomas, S.; Wahabzada, M.; Kuska, M.T.; Rascher, U.; Mahlein, A.-K. Observation of Plant-Pathogen Interaction by Simultaneous Hyperspectral Imaging Reflection and Transmission Measurements. Funct. Plant Biol. 2017, 44, 23–34. [Google Scholar] [CrossRef]
- Elfatimi, E.; Eryiğit, R.; Shehu, H.A. Impact of Datasets on the Effectiveness of MobileNet for Beans Leaf Disease Detection. Neural Comput. Appl. 2024, 36, 1773–1789. [Google Scholar] [CrossRef]
- Kursun, R.; Bastas, K.K.; Koklu, M. Segmentation of Dry Bean (Phaseolus vulgaris L.) Leaf Disease Images with U-Net and Classification Using Deep Learning Algorithms. Eur. Food Res. Technol. 2023, 249, 2543–2558. [Google Scholar] [CrossRef]
- Sunil, C.K.; Jaidhar, C.D.; Patil, N. Cardamom Plant Disease Detection Approach Using EfficientNetV2. IEEE Access 2022, 10, 789–804. [Google Scholar] [CrossRef]
- Kalyani, G.; Sai Sudheer, K.; Janakiramaiah, B.; Narendra Kumar Rao, B. Hyperparameter Optimization for Transfer Learning-Based Disease Detection in Cassava Plants. J. Sci. Ind. Res. 2023, 82, 536–545. [Google Scholar] [CrossRef]
- Ramcharan, A.; Baranowski, K.; McCloskey, P.; Ahmed, B.; Legg, J.; Hughes, D.P. Deep Learning for Image-Based Cassava Disease Detection. Front. Plant Sci. 2017, 8, 1852. [Google Scholar] [CrossRef] [PubMed]
- Bobbinpreet; Aljahdali, S.; Sharma, T.; Goyal, B.; Dogra, A.; Mahajan, S.; Pandit, A.K. MRMR Based Feature Vector Design for Efficient Citrus Disease Detection. Comput. Mater. Contin. 2022, 72, 4771–4787. [Google Scholar] [CrossRef]
- Dananjayan, S.; Tang, Y.; Zhuang, J.; Hou, C.; Luo, S. Assessment of State-of-the-Art Deep Learning Based Citrus Disease Detection Techniques Using Annotated Optical Leaf Images. Comput. Electron. Agric. 2022, 193, 106658. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, H.; Xu, H.; Rao, Y.; Jiang, X.; Sun, X. Visual Discrimination of Citrus HLB Based on Image Features. Vib. Spectrosc. 2019, 102, 103–111. [Google Scholar] [CrossRef]
- Saini, A.K.; Bhatnagar, R.; Srivastava, D.K. Citrus Fruits Diseases Detection and Classification Using Transfer Learning. In Proceedings of the ACM International Conference Proceeding Series, Windhoek, Namibia, 9–12 August 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 277–283. [Google Scholar]
- Sujatha, R.; Chatterjee, J.M.; Jhanjhi, N.Z.; Brohi, S.N. Performance of Deep Learning vs Machine Learning in Plant Leaf Disease Detection. Microprocess. Microsyst. 2021, 80, 103615. [Google Scholar] [CrossRef]
- Syed-Ab-Rahman, S.F.; Hesamian, M.H.; Prasad, M. Citrus Disease Detection and Classification Using End-to-End Anchor-Based Deep Learning Model. Appl. Intell. 2022, 52, 927–938. [Google Scholar] [CrossRef]
- Ramamurthy, K.; Thekkath, R.D.; Batra, S.; Chattopadhyay, S. A Novel Deep Learning Architecture for Disease Classification in Arabica Coffee Plants. Concurr. Comput. Pract. Exper. 2023, 35, e7625. [Google Scholar] [CrossRef]
- Elaraby, A.; Hamdy, W.; Alruwaili, M. Optimization of Deep Learning Model for Plant Disease Detection Using Particle Swarm Optimizer. Comput. Mater. Contin. 2022, 71, 4019–4031. [Google Scholar] [CrossRef]
- Katti, J.; Dharmale, G.; Ubale, S.A.; Deoghare, R.; Sutar, S.H. IoT Innovations in Cotton Plant Disease Detection for Sustainable Agriculture. Internat. J. Intel. Syst. Appl. Eng. 2024, 12, 651–658. [Google Scholar]
- Maurya, J.P.; Soni, D.; Devaraju, S.; Goyal, A. Implementation of Leaf Disease Detection Using One-Shot & Region Inception Image Recognition Technique. In Power Engineering and Intelligent Systems; Shrivastava, V., Bansal, J.C., Panigrahi, B.K., Eds.; Springer Science and Business Media Deutschland GmbH: Singapore, 2024; Volume 1098, pp. 435–448. [Google Scholar]
- Rai, C.K.; Pahuja, R. Classification of Diseased Cotton Leaves and Plants Using Improved Deep Convolutional Neural Network. Multimed. Tools Appl. 2023, 82, 25307–25325. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Wang, R.; Chen, J.; Gao, H. Flooding-Based MobileNet to Identify Cucumber Diseases from Leaf Images in Natural Scenes. Comput. Electron. Agric. 2023, 213, 108166. [Google Scholar] [CrossRef]
- Sabarre, A.B.L.; Navidad, A.N.S.; Torbela, D.S.; Adtoon, J.J. Development of Durian Leaf Disease Detection on Android Device. Int. J. Electr. Comput. Eng. 2021, 11, 4962–4971. [Google Scholar] [CrossRef]
- Chelladurai, V.; Karuppiah, K.; Jayas, D.S.; Fields, P.G.; White, N.D.G. Detection of Callosobruchus maculatus (F.) Infestation in Soybean Using Soft X-Ray and NIR Hyperspectral Imaging Techniques. J. Stored Prod. Res. 2014, 57, 43–48. [Google Scholar] [CrossRef]
- Boulent, J.; St-Charles, P.-L.; Foucher, S.; Théau, J. Automatic Detection of Flavescence Dorée Symptoms Across White Grapevine Varieties Using Deep Learning. Front. Artif. Intell. 2020, 3, 564878. [Google Scholar] [CrossRef]
- Elsherbiny, O.; Elaraby, A.; Alahmadi, M.; Hamdan, M.; Gao, J. Rapid Grapevine Health Diagnosis Based on Digital Imaging and Deep Learning. Plants 2024, 13, 135. [Google Scholar] [CrossRef]
- Hernández, I.; Gutiérrez, S.; Ceballos, S.; Palacios, F.; Toffolatti, S.L.; Maddalena, G.; Diago, M.P.; Tardaguila, J. Assessment of Downy Mildew in Grapevine Using Computer Vision and Fuzzy Logic. Development and Validation of a New Method. Oeno One 2022, 56, 41–53. [Google Scholar] [CrossRef]
- Huang, Z.; Qin, A.; Lu, J.; Menon, A.; Gao, J. Grape Leaf Disease Detection and Classification Using Machine Learning. In Proceedings of the Proceedings—IEEE Congress on Cybermatics: 2020 IEEE International Conferences on Internet of Things, iThings 2020, IEEE Green Computing and Communications, GreenCom 2020, IEEE Cyber, Physical and Social Computing, CPSCom 2020 and IEEE Smart Data, SmartData 2020, Rhodes, Greece, 2–6 November 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 870–877. [Google Scholar]
- Sood, S.; Singh, H. A Comparative Study of Grape Crop Disease Classification Using Various Transfer Learning Techniques. Multimed. Tools Appl. 2024, 83, 4359–4382. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Kumar, S.A.; Meraj, T.; Rauf, H.T.; Alnuaim, A.A.; Alkhayyal, M.A. Guava Disease Detection Using Deep Convolutional Neural Networks: A Case Study of Guava Plants. Appl. Sci. 2022, 12, 239. [Google Scholar] [CrossRef]
- Agustiono, W.; Syarief, M.; Anamisa, D.; Damayanti, F.; Yusuf, M. A Conceptual Model of Mobile Expert System for Integrated Pest and Disease Control: The Case of MyCorn. J. Phys. Conf. Ser. 2020, 1569, 022057. [Google Scholar] [CrossRef]
- Akanksha, E.; Sharma, N.; Gulati, K. OPNN: Optimized Probabilistic Neural Network Based Automatic Detection of Maize Plant Disease Detection. In Proceedings of the 6th International Conference on Inventive Computation Technologies, ICICT 2021, Coimbatore, India, 20–22 January 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021; pp. 1322–1328. [Google Scholar]
- Giraddi, S.; Desai, S.; Deshpande, A. Deep Learning for Agricultural Plant Disease Detection; Springer: Singapore, 2020; Volume 601. [Google Scholar]
- Nandhini, S.; Ashokkumar, K. Identification of Maize Plant Diseases Based on Linear Vector Quantization with Neural Network. J. Uncertain. Syst. 2022, 15, 22410057. [Google Scholar] [CrossRef]
- PAN, S.-Q.; QIAO, J.-F.; WANG, R.; YU, H.-L.; WANG, C.; TAYLOR, K.; PAN, H.-Y. Intelligent Diagnosis of Northern Corn Leaf Blight with Deep Learning Model. J. Integr. Agric. 2022, 21, 1094–1105. [Google Scholar] [CrossRef]
- Panigrahi, K.P.; Das, H.; Sahoo, A.K.; Moharana, S.C. Maize Leaf Disease Detection and Classification Using Machine Learning Algorithms; Springer: Singapore, 2020; Volume 1119. [Google Scholar]
- Hu, R.; Zhang, S.; Wang, P.; Xu, G.; Wang, D.; Qian, Y. The Identification of Corn Leaf Diseases Based on Transfer Learning and Data Augmentation. In Proceedings of the 3rd International Conference on Computer Science and Software Engineering, Beijing, China, 22–24 May 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 58–65. [Google Scholar]
- Ahmed, S.I.; Ibrahim, M.; Nadim, M.; Rahman, M.M.; Shejunti, M.M.; Jabid, T.; Ali, M.S. MangoLeafBD: A Comprehensive Image Dataset to Classify Diseased and Healthy Mango Leaves. Data Brief 2023, 47, 108941. [Google Scholar] [CrossRef]
- Priyadharshini, M.K.; Sivakami, R.; Janani, M. Sooty Mould Mango Disease Identification Using Deep Learning. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 402–405. [Google Scholar]
- Rajpoot, V.; Dubey, R.; Mannepalli, P.K.; Kalyani, P.; Maheshwari, S.; Dixit, A.; Saxena, A. Mango Plant Disease Detection System Using Hybrid BBHE and CNN Approach. Trait. Du. Signal 2022, 39, 1071–1078. [Google Scholar] [CrossRef]
- El Abidine, M.Z.; Merdinoglu-Wiedemann, S.; Rasti, P.; Dutagaci, H.; Rousseau, D. Machine Learning-Based Classification of Powdery Mildew Severity on Melon Leaves; Springer: Cham, Switzerland, 2020; Volume 12119. [Google Scholar]
- Salam, A.; Naznine, M.; Jahan, N.; Nahid, E.; Nahiduzzaman, M.; Chowdhury, M.E.H. Mulberry Leaf Disease Detection Using CNN-Based Smart Android Application. IEEE Access 2024, 12, 83575–83588. [Google Scholar] [CrossRef]
- Khairi, N.A.S.; Yusof, N.A.; Abdullah, J.; Seman, I.A.; Ithnin, N.; Abdrahman, S.F.A. β-Cyclodextrin Functionalized Reduced Graphene Oxide-Gold Nanoparticles for Electrochemical Detection of Stigmasterol in Ganoderma Boninense-Infected Oil Palm Leaves. IEEE Sens. J. 2024, 24, 9341–9352. [Google Scholar] [CrossRef]
- Alshammari, H.H.; Taloba, A.I.; Shahin, O.R. Identification of Olive Leaf Disease through Optimized Deep Learning Approach. Alex. Eng. J. 2023, 72, 213–224. [Google Scholar] [CrossRef]
- Alshammari, H.H.; Alkhiri, H. Optimized Recurrent Neural Network Mechanism for Olive Leaf Disease Diagnosis Based on Wavelet Transform. Alex. Eng. J. 2023, 78, 149–161. [Google Scholar] [CrossRef]
- Alberto, R.; Isip, M.; Biagtan, A. Evaluation of Vegetation Indices (VIs) to Detect Twister Disease of Onion Using Sentinel-2 Imagery. In Proceedings of the 40th Asian Conference on Remote Sensing, ACRS 2019: Progress of Remote Sensing Technology for Smart Future, Daejeon, Republic of Korea, 14–18 October 2019; Korean Society of Remote Sensing (KSRS): Seoul, Republic of Korea; Asian Association on Remote Sensing: Colombo, Sri Lanka, 2020. [Google Scholar]
- Isip, M.F.; Alberto, R.T.; Biagtan, A.R. Exploring Vegetation Indices Adequate in Detecting Twister Disease of Onion Using Sentinel-2 Imagery. Spat. Inf. Res. 2020, 28, 369–375. [Google Scholar] [CrossRef]
- Haq, Q.M.I.; Mabood, F.; Naureen, Z.; Al-Harrasi, A.; Gilani, S.A.; Hussain, J.; Jabeen, F.; Khan, A.; Al-Sabari, R.S.M.; Al-khanbashi, F.H.S.; et al. Application of Reflectance Spectroscopies (FTIR-ATR & FT-NIR) Coupled with Multivariate Methods for Robust in Vivo Detection of Begomovirus Infection in Papaya Leaves. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2018, 198, 27–32. [Google Scholar] [CrossRef]
- Singh, K.; Kumar, S.; Kaur, P. Support Vector Machine Classifier Based Detection of Fungal Rust Disease in Pea Plant (Pisam sativam). Int. J. Inf. Technol. 2019, 11, 485–492. [Google Scholar] [CrossRef]
- Wei, X.; Johnson, M.A.; Langston, D.B., Jr.; Mehl, H.L.; Li, S. Identifying Optimal Wavelengths as Disease Signatures Using Hyperspectral Sensor and Machine Learning. Remote Sens. 2021, 13, 2833. [Google Scholar] [CrossRef]
- Ahmad, M.; Abdullah, M.; Moon, H.; Han, D. Plant Disease Detection in Imbalanced Datasets Using Efficient Convolutional Neural Networks with Stepwise Transfer Learning. IEEE Access 2021, 9, 140565–140580. [Google Scholar] [CrossRef]
- Agustika, D.K.; Mercuriani, I.; Purnomo, C.W.; Hartono, S.; Triyana, K.; Iliescu, D.D.; Leeson, M.S. Fourier Transform Infrared Spectrum Pre-Processing Technique Selection for Detecting PYLCV-Infected Chilli Plants. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2022, 278, 121339. [Google Scholar] [CrossRef]
- Hasbollah, A.F.K.; Zin, Z.M.; Ibrahim, N.; Suleiman, R.F.R. Green Chilli Leaf Disease Detection Using Convolution Neural Networks. J. Green Eng. 2020, 10, 13005–13019. [Google Scholar]
- Tej, B.; Bouaafia, S.; Hajjaji, M.A.; Mtibaa, A. AI-Based Smart Agriculture 4.0 System for Plant Diseases Detection in Tunisia. Signal Image Video Process. 2024, 18, 97–111. [Google Scholar] [CrossRef]
- Vasavi, P.; Punitha, A.; Rao, T.V. Chili Leaf Disease Detection Using Deep Feature Extraction. J. Intell. Syst. Internet. Thing. 2023, 9, 222–230. [Google Scholar] [CrossRef]
- Bhagat, S.; Kokare, M.; Haswani, V.; Hambarde, P.; Taori, T.; Ghante, P.H.; Patil, D.K. Advancing Real-Time Plant Disease Detection: A Lightweight Deep Learning Approach and Novel Dataset for Pigeon Pea Crop. Smart Agric. Technol. 2024, 7, 100408. [Google Scholar] [CrossRef]
- Ahmad, J.; Jan, B.; Farman, H.; Ahmad, W.; Ullah, A. Disease Detection in Plum Using Convolutional Neural Network under True Field Conditions. Sensors 2020, 20, 5569. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, I.; Prakash, N.; Jain, A. Plant Disease Detection Using a Depth-Wise Separable-Based Adaptive Deep Neural Network. Multimed. Tools Appl. 2024. [Google Scholar] [CrossRef]
- Lanjewar, M.G.; Morajkar, P.; Payaswini, P. Modified Transfer Learning Frameworks to Identify Potato Leaf Diseases. Multimed. Tools Appl. 2024, 83, 50401–50423. [Google Scholar] [CrossRef]
- Sarah, M.; Abdlemadjid, M.; Sarah, B.; Yacine, H.; Miloud, C.E.M. Evaluating the Effect of Super-Resolution for Automatic Plant Disease Detection: Application to Potato Late Blight Detection. Multimed. Tools Appl. 2024, 83, 78469–78487. [Google Scholar] [CrossRef]
- Sofuoglu, C.I.; Birant, D. Potato Plant Leaf Disease Detection Using Deep Learning Method. Tarim. Bilim. Derg. 2024, 30, 153–165. [Google Scholar] [CrossRef]
- Kong, W.; Zhang, C.; Cao, F.; Liu, F.; Luo, S.; Tang, Y.; He, Y. Detection of Sclerotinia Stem Rot on Oilseed Rape (Brassica napus L.) Leaves Using Hyperspectral Imaging. Sensors 2018, 18, 1764. [Google Scholar] [CrossRef]
- Ahmad Effendi, A.F.A.; Md Isa, M.N.; Ahmad, M.I.; Che Husin, M.F.; Md Naziri, S.Z. Image Processing for Paddy Disease Detection Using K-Means Clustering and GLCM Algorithm. Int. J. Nanoelectron. Mater. 2021, 14, 253–263. [Google Scholar]
- Almasoud, A.S.; Abdelmaboud, A.; Eisa, T.A.E.; Al Duhayyim, M.; Elnour, A.A.H.; Hamza, M.A.; Motwakel, A.; Zamani, A.S. Artificial Intelligence-Based Fusion Model for Paddy Leaf Disease Detection and Classification. Comput. Mater. Contin. 2022, 72, 1391–1407. [Google Scholar] [CrossRef]
- Azim, M.A.; Islam, M.K.; Rahman, M.M.; Jahan, F. An Effective Feature Extraction Method for Rice Leaf Disease Classification. Telkomnika (Telecommun. Comput. Electron. Control) 2021, 19, 463–470. [Google Scholar] [CrossRef]
- Chen, W.-L.; Lin, Y.-B.; Ng, F.-L.; Liu, C.-Y.; Lin, Y.-W. RiceTalk: Rice Blast Detection Using Internet of Things and Artificial Intelligence Technologies. IEEE Internet Things J. 2020, 7, 1001–1010. [Google Scholar] [CrossRef]
- Kumar, R.; Baloch, G.; Pankaj, P.; Buriro, A.B.; Bhatti, J. Fungal Blast Disease Detection in Rice Seed Using Machine Learning. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 248–258. [Google Scholar] [CrossRef]
- Narmadha, R.P.; Sengottaiyan, N.; Kavitha, R.J. Deep Transfer Learning Based Rice Plant Disease Detection Model. Intell. Autom. Soft Comput. 2022, 31, 1257–1271. [Google Scholar] [CrossRef]
- Patidar, S.; Pandey, A.; Shirish, B.A.; Sriram, A. Rice Plant Disease Detection and Classification Using Deep Residual Learning; Springer: Singapore, 2020; Volume 1240. [Google Scholar]
- Sharma, R.; Singh, A. Big Bang–Big Crunch-CNN: An Optimized Approach towards Rice Crop Protection and Disease Detection. Arch. Phytopathol. Plant Prot. 2022, 55, 143–161. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Kumar, A. A Novel Approach for Rice Plant Diseases Classification with Deep Convolutional Neural Network. Int. J. Inf. Technol. 2022, 14, 185–199. [Google Scholar] [CrossRef]
- Agrawal, M.; Agrawal, S. Rice Plant Diseases Detection Using Convolutional Neural Networks. Int. J. Eng. Syst. Model. Simul. 2023, 14, 30–42. [Google Scholar] [CrossRef]
- Minaei, S.; Jafari, M.; Safaie, N. Design and Development of a Rose Plant Disease-Detection and Site-Specific Spraying System Based on a Combination of Infrared and Visible Images. J. Agric. Sci. Technol. 2018, 20, 23–36. [Google Scholar]
- Abdu, A.M.; Mokji, M.M.; Sheikh, U.U. Machine Learning for Plant Disease Detection: An Investigative Comparison between Support Vector Machine and Deep Learning. IAES Int. J. Artif. Intell. 2020, 9, 670–683. [Google Scholar] [CrossRef]
- Rao, A.R.; Anji Reddy, V.; Raju, G.V.N. Plant Disease Detection Using Machin Learning Algorithms. YMER 2022, 21, 425–430. [Google Scholar] [CrossRef]
- Dubey, A. Agricultural Plant Disease Detection and Identification. Int. J. Electr. Eng. Technol. 2020, 11, 354–363. [Google Scholar]
- Arjoune, Y.; Sugunaraj, N.; Peri, S.; Nair, S.V.; Skurdal, A.; Ranganathan, P.; Johnson, B. Soybean Cyst Nematode Detection and Management: A Review. Plant Methods 2022, 18, 110. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Chen, S.; Feng, B.; Liu, F.; He, Y.; Lou, B. Early Detection of Soybean Pod Anthracnose Based on Spectrum Technology. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2012, 28, 139–144. [Google Scholar] [CrossRef]
- Lay, L.; Lee, H.S.; Tayade, R.; Ghimire, A.; Chung, Y.S.; Yoon, Y.; Kim, Y. Evaluation of Soybean Wildfire Prediction via Hyperspectral Imaging. Plants 2023, 12, 901. [Google Scholar] [CrossRef]
- Ganesh Babu, R.; Chellaswamy, C. Different Stages of Disease Detection in Squash Plant Based on Machine Learning. J. Biosci. 2022, 47, 9. [Google Scholar] [CrossRef]
- Belattar, S.; Abdoun, O.; Haimoudi, E.K. Performance Analysis of the Application of Convolutional Neural Networks Architectures in the Agricultural Diagnosis. Indones. J. Electr. Eng. Comput. Sci. 2022, 27, 156–162. [Google Scholar] [CrossRef]
- Jiang, Q.; Wu, G.; Tian, C.; Li, N.; Yang, H.; Bai, Y.; Zhang, B. Hyperspectral Imaging for Early Identification of Strawberry Leaves Diseases with Machine Learning and Spectral Fingerprint Features. Infrared Phys. Technol. 2021, 118, 103898. [Google Scholar] [CrossRef]
- You, J.; Jiang, K.; Lee, J. Deep Metric Learning-Based Strawberry Disease Detection with Unknowns. Front. Plant Sci. 2022, 13, 891785. [Google Scholar] [CrossRef]
- Mahlein, A.K.; Hillnhütter, C.; Mewes, T.; Dehne, H.W.; Steiner, U.; Oerke, E.C. Hyperspectral Imaging of Foliar Sugar Beet Diseases and Automatic Classification by the Spectral Angle Mapper Algorithm. In Proceedings of the Precision Agriculture 2011—Papers Presented at the 8th European Conference on Precision Agriculture 2011, ECPA 2011, Prague, Czech Republic, 11–14 July 2011; Czech Centre for Science and Society: Prague, Czech Republic, 2011; pp. 264–272. [Google Scholar]
- Zhou, R.; Kaneko, S.; Tanaka, F.; Kayamori, M.; Shimizu, M. Disease Detection of Cercospora Leaf Spot in Sugar Beet by Robust Template Matching. Comput. Electron. Agric. 2014, 108, 58–70. [Google Scholar] [CrossRef]
- Daphal, S.D.; Koli, S.M. Transfer Learning Approach to Sugarcane Foliar Disease Classification with State-of-the-Art Sugarcane Database. In Proceedings of the 2021 International Conference on Computational Intelligence and Computing Applications, ICCICA 2021, Nagpur, India, 18–19 June 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021. [Google Scholar]
- Hemalatha, N.K.; Brunda, R.N.; Prakruthi, G.S.; Prabhu, B.V.B.; Shukla, A.; Narasipura, O.S.J. Sugarcane Leaf Disease Detection through Deep Learning. In Deep Learning for Sustainable Agriculture; Elsevier: Amsterdam, The Netherlands, 2022; pp. 297–323. [Google Scholar]
- Roy, A.M.; Bose, R.; Bhaduri, J. A Fast Accurate Fine-Grain Object Detection Model Based on YOLOv4 Deep Neural Network. Neural Comput. Appl. 2022, 34, 3895–3921. [Google Scholar] [CrossRef]
- Verma, M.; Anand, A.S.; Srivastava, A. Plant Disease Detection Using CNN Through Segmentation and Balancing Techniques; Springer Science and Business Media Deutschland GmbH: Singapore, 2022; Volume 427. [Google Scholar]
- Bakr, M.; Abdel-Gaber, S.; Nasr, M.; Hazman, M. Tomato Disease Detection Model Based on Densenet and Transfer. Appl. Comput. Sci. 2022, 18, 56–70. [Google Scholar] [CrossRef]
- Chowdhury, M.E.H.; Rahman, T.; Khandakar, A.; Ayari, M.A.; Khan, A.U.; Khan, M.S.; Al-Emadi, N.; Reaz, M.B.I.; Islam, M.T.; Ali, S.H.M. Automatic and Reliable Leaf Disease Detection Using Deep Learning Techniques. AgriEngineering 2021, 3, 294–312. [Google Scholar] [CrossRef]
- Hammou, D.R.; Boubaker, M. Tomato Plant Disease Detection and Classification Using Convolutional Neural Network Architectures Technologies; Springer Science and Business Media Deutschland GmbH: Singapore, 2022; Volume 237. [Google Scholar]
- Islam, M.S.; Sultana, S.; Farid, F.A.; Islam, M.N.; Rashid, M.; Bari, B.S.; Hashim, N.; Husen, M.N. Multimodal Hybrid Deep Learning Approach to Detect Tomato Leaf Disease Using Attention Based Dilated Convolution Feature Extractor with Logistic Regression Classification. Sensors 2022, 22, 6079. [Google Scholar] [CrossRef] [PubMed]
- Ouhami, M.; Es-Saady, Y.; Hajji, M.E.; Hafiane, A.; Canals, R.; Yassa, M.E. Deep Transfer Learning Models for Tomato Disease Detection; Springer: Cham, Switzerland, 2020; Volume 12119. [Google Scholar]
- Ruszczak, B.; Smykała, K.; Dziubański, K. The Detection of Alternaria Solani Infection on Tomatoes Using Ensemble Learning. J. Ambient. Intell. Smart Environ. 2020, 12, 407–418. [Google Scholar] [CrossRef]
- Wadadare, S.S.; Fadewar, H.S. Deep Learning Convolution Neural Network for Tomato Leaves Disease Detection by Inception; Springer Science and Business Media Deutschland GmbH: Singapore, 2022; Volume 303. [Google Scholar]
- Wang, D.; Vinson, R.; Holmes, M.; Seibel, G.; Bechar, A.; Nof, S.; Tao, Y. Early Detection of Tomato Spotted Wilt Virus by Hyperspectral Imaging and Outlier Removal Auxiliary Classifier Generative Adversarial Nets (OR-AC-GAN). Sci. Rep. 2019, 9, 4377. [Google Scholar] [CrossRef]
- Pardede, H.F.; Suryawati, E.; Zilvan, V.; Ramdan, A.; Kusumo, R.B.S.; Heryana, A.; Yuwana, R.S.; Krisnandi, D.; Subekti, A.; Fauziah, F.; et al. Plant Diseases Detection with Low Resolution Data Using Nested Skip Connections. J. Big Data 2020, 7, 57. [Google Scholar] [CrossRef]
- Khan, M.A.; Ali, M.; Shah, M.; Mahmood, T.; Ahmad, M.; Jhanjhi, N.Z.; Bhuiyan, M.A.S.; Jaha, E.S. Machine Learning-Based Detection and Classification of Walnut Fungi Diseases. Intell. Autom. Soft Comput. 2021, 30, 771–785. [Google Scholar] [CrossRef]
- Su, W.-H.; Zhang, J.; Yang, C.; Page, R.; Szinyei, T.; Hirsch, C.D.; Steffenson, B.J. Automatic Evaluation of Wheat Resistance to Fusarium Head Blight Using Dual Mask-RCNN Deep Learning Frameworks in Computer Vision. Remote Sens. 2021, 13, 26. [Google Scholar] [CrossRef]
- Cuenca-Romero, C.; Apolo-Apolo, O.E.; Rodríguez Vázquez, J.N.; Egea, G.; Pérez-Ruiz, M. Tackling Unbalanced Datasets for Yellow and Brown Rust Detection in Wheat. Front. Plant Sci. 2024, 15, 1392409. [Google Scholar] [CrossRef]
- Deng, J.; Zhou, H.; Lv, X.; Yang, L.; Shang, J.; Sun, Q.; Zheng, X.; Zhou, C.; Zhao, B.; Wu, J.; et al. Applying Convolutional Neural Networks for Detecting Wheat Stripe Rust Transmission Centers under Complex Field Conditions Using RGB-Based High Spatial Resolution Images from UAVs. Comput. Electron. Agric. 2022, 200, 107211. [Google Scholar] [CrossRef]
- Ennadifi, E.; Laraba, S.; Vincke, D.; Mercatoris, B.; Gosselin, B. Wheat Diseases Classification and Localization Using Convolutional Neural Networks and GradCAM Visualization; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020. [Google Scholar]
- Feng, Z.; Song, L.; Duan, J.; He, L.; Zhang, Y.; Wei, Y.; Feng, W. Monitoring Wheat Powdery Mildew Based on Hyperspectral, Thermal Infrared, and RGB Image Data Fusion. Sensors 2022, 22, 31. [Google Scholar] [CrossRef]
- Gao, C.; Guo, W.; Yang, C.; Gong, Z.; Yue, J.; Fu, Y.; Feng, H. A Fast and Lightweight Detection Model for Wheat Fusarium Head Blight Spikes in Natural Environments. Comput. Electron. Agric. 2024, 216, 108484. [Google Scholar] [CrossRef]
- Moshou, D.; Bravo, C.; Oberti, R.; West, J.; Bodria, L.; McCartney, A.; Ramon, H. Plant Disease Detection Based on Data Fusion of Hyper-Spectral and Multi-Spectral Fluorescence Imaging Using Kohonen Maps. Real-Time Imaging 2005, 11, 75–83. [Google Scholar] [CrossRef]
- Terentev, A.; Badenko, V.; Shaydayuk, E.; Emelyanov, D.; Eremenko, D.; Klabukov, D.; Fedotov, A.; Dolzhenko, V. Hyperspectral Remote Sensing for Early Detection of Wheat Leaf Rust Caused by Puccinia triticina. Agriculture 2023, 13, 1186. [Google Scholar] [CrossRef]
- Wójtowicz, A.; Piekarczyk, J.; Czernecki, B.; Ratajkiewicz, H. A Random Forest Model for the Classification of Wheat and Rye Leaf Rust Symptoms Based on Pure Spectra at Leaf Scale. J. Photochem. Photobiol. B Biol. 2021, 223, 112278. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Anderegg, J.; Mikaberidze, A.; Karisto, P.; Mascher, F.; McDonald, B.A.; Walter, A.; Hund, A. Hyperspectral Canopy Sensing of Wheat Septoria Tritici Blotch Disease. Front. Plant Sci. 2018, 9, 1195. [Google Scholar] [CrossRef]
- Demilie, W.B. Plant Disease Detection and Classification Techniques: A Comparative Study of the Performances. J. Big Data 2024, 11, 5. [Google Scholar] [CrossRef]
- Ferentinos, K.P. Deep Learning Models for Plant Disease Detection and Diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Fu, R.; Sha, Y.; Xu, X.; Liu, S.-B. Advancements in the Loop-Mediated Isothermal Amplification Technique for the Rapid Detection of Plant Viruses in Various Crops. Physiol. Mol. Plant. Pathol. 2024, 130, 102229. [Google Scholar] [CrossRef]
- Delgado, C.; Benitez, H.; Cruz, M.; Selvaraj, M. Digital Disease Phenotyping. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Athens, Greece, 7–12 July 2024; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 5702–5705. [Google Scholar]
- Verma, S.; Chug, A.; Singh, A.P.; Singh, D. Plant Disease Detection and Severity Assessment Using Image Processing and Deep Learning Techniques. SN Comput. Sci. 2024, 5, 83. [Google Scholar] [CrossRef]
- Maski, P.; Thondiyath, A. Plant Disease Detection Using Advanced Deep Learning Algorithms: A Case Study of Papaya Ring Spot Disease. In Proceedings of the 2021 6th International Conference on Image, Vision and Computing, ICIVC 2021, Qingdao, China, 23–25 July 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021; pp. 49–54. [Google Scholar]
- Albattah, W.; Javed, A.; Nawaz, M.; Masood, M.; Albahli, S. Artificial Intelligence-Based Drone System for Multiclass Plant Disease Detection Using an Improved Efficient Convolutional Neural Network. Front. Plant Sci. 2022, 13, 808380. [Google Scholar] [CrossRef]
- Falaschetti, L.; Manoni, L.; Di Leo, D.; Pau, D.; Tomaselli, V.; Turchetti, C. A CNN-Based Image Detector for Plant Leaf Diseases Classification. HardwareX 2022, 12, e00363. [Google Scholar] [CrossRef] [PubMed]
- Karthik, R.; Hariharan, M.; Anand, S.; Mathikshara, P.; Johnson, A.; Menaka, R. Attention Embedded Residual CNN for Disease Detection in Tomato Leaves. Appl. Soft Comput. J. 2020, 86, 105933. [Google Scholar] [CrossRef]
- Sharma, P.; Berwal, Y.P.S.; Ghai, W. Performance Analysis of Deep Learning CNN Models for Disease Detection in Plants Using Image Segmentation. Inf. Process. Agric. 2020, 7, 566–574. [Google Scholar] [CrossRef]
- Gerasimchuk, M.; Uzhinskiy, A. R-CCN Plant Diseases Detector Using Triples Loss and Siamese Neural Networks. Phys. Part. Nucl. Lett. 2022, 19, 570–573. [Google Scholar] [CrossRef]
- Wang, H.; Shang, S.; Wang, D.; He, X.; Feng, K.; Zhu, H. Plant Disease Detection and Classification Method Based on the Optimized Lightweight YOLOv5 Model. Agriculture 2022, 12, 931. [Google Scholar] [CrossRef]
- Saleem, M.H.; Potgieter, J.; Arif, K.M. A Performance-Optimized Deep Learning-Based Plant Disease Detection Approach for Horticultural Crops of New Zealand. IEEE Access 2022, 10, 89798–89822. [Google Scholar] [CrossRef]
- Gandhi, R.; Nimbalkar, S.; Yelamanchili, N.; Ponkshe, S. Plant Disease Detection Using CNNs and GANs as an Augmentative Approach. In Proceedings of the 2018 IEEE International Conference on Innovative Research and Development, ICIRD 2018, Bangkok, Thailand, 1–12 May 2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Zhao, Y.; Chen, Z.; Gao, X.; Song, W.; Xiong, Q.; Hu, J.; Zhang, Z. Plant Disease Detection Using Generated Leaves Based on DoubleGAN. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 19, 1817–1826. [Google Scholar] [CrossRef]
- Alatawi, A.A.; Alomani, S.M.; Alhawiti, N.I.; Ayaz, M. Plant Disease Detection Using AI Based VGG-16 Model. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 718–727. [Google Scholar] [CrossRef]
- Agrawal, R.; Verma, P.; Garg, P.; Jain, D.; Raikwar, S. Plant Disease Analysis and Identification Using Multi SVM Approach. Int. J. Adv. Sci. Technol. 2020, 29, 4848–4856. [Google Scholar]
- Dalal, T.; Singh, M. Review Paper on Leaf Diseases Detection and Classification Using Various Cnn Techniques; Springer Science and Business Media Deutschland GmbH: Singapore, 2021; Volume 140. [Google Scholar]
- Karunanidhi, B.; Nandhini, B.; Ruth Jeba Kumari, S.; Sirpikadevi, M.; Sugassini, M. Plant Disease Detection and Classification Using Deep Learning CNN Algorithms. In Proceedings of the 2022 IEEE International Conference on Electronics, Computing and Communication Technologies, CONECCT 2022, Bangalore, India, 9–11 July 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022. [Google Scholar]
- Diah, N.M.; Jahim, M.L.M.; Roslan, N.A.M.; Ibrahim, Z.; Abdullah, A. Development of Mobile Application for Plant Disease Recognition Using Convolutional Neural Network Method. In Proceedings of the 2021 6th IEEE International Conference on Recent Advances and Innovations in Engineering, ICRAIE 2021, Kedah, Malaysia, 1–3 December 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022. [Google Scholar]
- Janarthan, S.; Thuseethan, S.; Rajasegarar, S.; Yearwood, J. P2OP—Plant Pathology on Palms: A Deep Learning-Based Mobile Solution for in-Field Plant Disease Detection. Comput. Electron. Agric. 2022, 202, 107371. [Google Scholar] [CrossRef]
- Rishiikeshwer, B.S.; Shriram, T.A.; Raju, J.S.; Hari, M.; Santhi, B.; Brindha, G.R. Farmer-Friendly Mobile Application for Automated Leaf Disease Detection of Real-Time Augmented Data Set Using Convolution Neural Networks. J. Comput. Sci. 2020, 16, 158–166. [Google Scholar] [CrossRef]
- Angin, P.; Anisi, M.H.; Göksel, F.; Gürsoy, C.; Büyükgülcü, A. Agrilora: A Digital Twin Framework for Smart Agriculture. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 2020, 11, 77–96. [Google Scholar] [CrossRef]
- Daniya, T.; Vidyadhari, C.; Aluri, S. Rice Plant Disease Detection Using Sensing Recognition Strategy Based on Artificial Intelligence. J. Mob. Multimed. 2022, 18, 705–722. [Google Scholar] [CrossRef]
- van den Bosch, F.; Paveley, N.; Shaw, M.; Hobbelen, P.; Oliver, R. The Dose Rate Debate: Does the Risk of Fungicide Resistance Increase or Decrease with Dose? Plant Pathol. 2011, 60, 597–606. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
2000–2024 | Before 2000 |
Peer-review and grey literature | Websites and project pages |
English | Beyond English |
Scopus | Other search engines |
Keywords: plant disease detection, artificial intelligence, image, sensing | Other plant disease biology-based detection methods |
Crop | Disease | Study Scale * | Acquisition Methods ** | Citations |
---|---|---|---|---|
Almond (Prunus amygdalus) | Leaf blotch (Polystigma ochraceum) | Leaves | UAV (RGB) | [52] |
Avocado (Persea americana) | Laurel wilt (Raffaelea lauricola); Phytophtora root rot (Phytophthora spp.) | Tree | Multispectral camera | [53] |
Apple (Malus domestica) | Alternaria leaf blotch (Alternaria spp.), Apple black spot (Venturia inaequalis), and apple leaf miner (Lyonetia clerkella) | Leaf, Tree | Photo (Plant Village) Own photo database (VIS) | [54,55,56,57,58] |
Asparagus (Asparagus officinalis) | Purple spot disease (Stemphylium vesicarium) | Plant | Photo (VIS & IR) and Satellite | [59] |
Banana (Musa) | Banana fusarium wilt (Fusarium oxysporum f. sp. cubense) | Plant | UAV | [60,61,62] |
Barley (Hordeum vulgare) | Powdery mildew (Blumeria graminis f. sp. hordei) | Leaf | RGB | [63] |
Bean (Phaseolus vulgaris) | Rust (Uromyces phaseoli var. typica) and Angular leaf spot (Pseudocercospora griseola) | Leaf | Photo (VIS) | [64,65] |
Cardamon (Elettaria cardamomum) | Colletotrichum Blight (Colletotrichum gloeosporioides) and Phyllosticta Leaf Spot (Phyllosticta capitalensis) | Leaves | Photo (VIS) | [66] |
Cassava (Manihot esculenta) | Brown leaf spot (Mycosphaerella henningsii), Red mite damage (Tetranychus urticae), Green mite damage (Mononychellus tanajoa), Cassava brown streak virus, Cassava mosaic virus | Leaf | Photo (VIS) Photo (Kaggle) | [67,68] |
Citrus | Citrus black spot (Phyllosticta citricarpa), Citrus bacterial canker (Xanthomonas citri subsp. Citri), Huanglongbing citrus greening (Candidatus Liberibacter asiaticus) | Leaves, Leaf | Photo (RGB) Hyperspectral | [69,70,71,72,73,74] |
Coffee (Coffea arabica) | Leaf miner (Leucoptera caffeine) and Rust (Hemileia vastatrix) | Leaves | UAV | [75] |
Cotton (Gossypium hirsutum) | Several | Leaf, Plants | Photo (VIS) Photo (Plant Village) UAV | [76,77,78,79] |
Cucumber (Cucumis sativus) | Several | Leaf | Photo (Plant Village) | [80] |
Durian (Durio zibethinus) | Several | Leaf | Photo (VIS) | [81] |
Eggplant (Solanum melongena) | Fruit rot, Alternaria leaf spot (Alternaria sp.), Little leaf of Brinjal (phytoplasma), Mosaic virus, Collar rot (Sclerotinia sclerotiorum) | Leaves, Fruit, Plant | Photo (VIS) | [82] |
Grapevine (Vitis vinifera) | Grapevine flavescence dorée phytoplasma, Yellows, Esca (Phaeomoniella chlamydospora, Phellinus punctatus, Fomitiporia mediterranea, Phaeoacremonium minimum), Downy mildew (Plasmopara viticola) | Leaves Leaf | RGB; Spectroradiometer Photo (in vitro) Photo (Plant Village) | [36,83,84,85,86,87] |
Guava (Psidium guajava L.) | Guava rust (Austropuccinia psidii), Scabby fruit canker (Pestalotia psidii), Mummy disease (Gloeosporium Psidii) | Fruits & Leaves | Photo (VIS) | [61,88] |
Maize (Zea mais L.) | Northern corn leaf blight (Exserohilum turcicum), Southern corn leaf blight (Bipolaris maydis), Common rust (Puccinia sorghi) | Leaf | Photo (VIS) | [89,90,91,92,93,94,95] |
Mango (Mangifera indica L.) | Sooty mould (Capnodium salicinum) | Leaf, Leaves | Photo (Plant Village, leaf snap) | [96,97,98] |
Melon (Cucumis melo L.) | Powdery mildew (Sphaerotheca fuliginea) | Leaves | Photo (VIS) UAV | [37,99] |
Mulberry (Morus nigra) | Leaf rust (Peridiospora mori) and Leaf spot (Mycosphaerella mori) | Leaf | Photo (VIS) | [100] |
Oil palm (Elaeis guineensis) | Basal stem rot of oil palm (Ganoderma boninense) | Leaf | Photo (VIS) FTIR and Raman spectroscopy | [8,101] |
Olive tree (Olea europaea) | Several | Leaf | Photo (VIS) | [102,103] |
Onion (Allium cepa L.) | Onion Smudge (Colletotrichum circinans) | Satellite (VIS-NIR) | [104,105] | |
Papaya (Carica papaya L.) | Begomovirus (Geminiviridae) | Leaf | NIR and FT-IR ATR | [106] |
Pea (Pisum sativum L.) | Rust disease (Uromyces viciae-fabae Pers. de-Bary) | Leaf | Microscopic images | [107] |
Peanuts (Arachis hypogaea) | Peanut stem rot (Athelia rolfsii) | Leaves | UV, VIS, NIR, Thermal | [108] |
Pepper (Capsicum spp.) | Pepper yellow leaf curl virus (PepYLClV), Several | Leaf, Pulp, Stem | FT-IR Photo (VIS, Plant Village + pepper diseased dataset) | [109,110,111,112,113] |
Pigeon pea (Cajanus cajan) | Fusarium wilt (Fusarium udum), Pigeonpea sterility mosaic virus (PPSMV), Ashy stem blight (Macrophomina phaseolina), Phytophthora blight (Phytophthora drechsleri f. sp. cajani) | Leaf | Photo (VIS) | [114] |
Plum (Prunus subg. Prunus) | Several | Leaves, Leaves & Fruit | Photo (VIS) | [115] |
Potato (Solanum tuberosum) | Early blight (Alternaria solani), Late blight of potato (Phytophthora infestans) | Leaf | Photo (Plant Village) | [116,117,118,119] |
Rapeseed (Brassica napus L.) | Sclerotinia stem rot (Sclerotinia sclerotiorum) | Leaves | Hyperspectral | [120] |
Rice (Oryza sativa) | Bacterial leaf blight (Xanthomonas oryzae pv. oryzae), Brown spot of rice (Cochliobolus miyabeanus), Tungrovirus oryzae, Entyloma oryzae (leaf smut of rice) | Leaves, Panicle | Photo (VIS) | [121,122,123,124,125,126,127,128,129,130] |
Rose (Rosa sp.) | Powdery mildew of rose (Podosphaera pannosa) and Gray mold of roses (Botrytis cinerea) | Leaf | Thermal and visible images | [131] |
Solanum | Blight (n.d.), several | Leaf | Photo (Plant Village) | [132,133,134] |
Soybean (Glycine max.) | Nematodes cyst nematode, Anthracnose of soybean (Colletotrichum truncatum) Wildfire (Pseudomonas syringae pv. tabaci) | Field, Pods, Leaves, | Satellite (hyperspectral) VIS+NIR | [135,136,137] |
Squash (Cucurbita) | Cucurbit powdery mildew (Podosphaera xanthii) | Plant | UAV (multispectral) | [138] |
Strawberry (Fragaria x ananassa) | Anthracnose (Colletotrichum fragariae), Gray mold of strawberries (Botrytis cinerea) | Leaf | Photo (VIS) Hyperspectral | [139,140,141] |
Sugar beet (Beta vulgaris) | Cercospora leaf spot (Cercospora beticola) | Plants | UAV | [19,142,143] |
Sugarcane (Saccharum officinarum) | Orange rust disease of sugarcane (Puccinia kuehnii), Sugarcane yellow leaf virus (ScYLV), Eye spot disease of sugarcane (Helminthosporium saccahari), Brown leaf spot of sugarcane (Cercospora longipies), Red rot of sugarcane (Colletotrichum falcatum) | Leaf | Photo (VIS) | [144,145] |
Tomato (Solanum lycopersicum) | 10 diseases, early blight (Alternaria solani), Tomato Spotted Wilt Virus (TSWV) | Leaf | Photo (Plant Village) Own database VIS + NIR Hyperspectral | [24,146,147,148,149,150,151,152,153,154,155] |
Green Tea (Camellia sinensis) | Blister blight of tea (Exobasidium vexans), Leafhopper, Caterpillars, Mosquito, Yellow mite | Leaf | Photo (VIS) | [156] |
Walnut (Juglans regia L.) | Diseased (n.d.) | Leaf | Photo (VIS) | [157] |
Wheat (Triticum aestivum L.) | Wheat stripe (yellow) rust (Puccinia striiformis f. sp. tritici), Wheatbrown rust (Puccinia triticina) Fusarium head blight (Fusarium graminearum) | Field, Spikes, Leaves | UAV VIS Hyperspectral + Fluorescence Photo (VIS) | [20,158,159,160,161,162,163,164,165,166,167] |
Tool | Source | Advantages/Constraints |
---|---|---|
LabelImg | https://github.com/heartexlabs/labelImg (accessed on 10 September 2024) | Python based, open-source, needs programming skills |
VGG Image Annotator (VIA) | https://www.robots.ox.ac.uk/~vgg/software/via/ (accessed on 10 September 2024) | Web-based tool, open-source, requires internet connection, some issues with large dataset |
Labelbox | https://labelbox.com/customers/genetech-customer-story/ (accessed on 10 September 2024) | Python based, commercial, complex feature set |
SLOTH | https://github.com/cvhciKIT/sloth (accessed on 10 September 2024) | Python based, open-source, not supported an all platforms, some issues with large dataset |
Hasty | https://hasty.ai/v2 (accessed on 10 September 2024) | Cloud Annotations GUI, Commercial, auto label function |
IBM Cloud Annotations Tool | https://developer.ibm.com/blogs/ibm-cloud-annotations-tool-eases-the-process-of-ai-data-labeling/ (accessed on 10 September 2024) | Cloud Annotations GUI, auto label function |
RectLabel | https://github.com/ryouchinsa/Rectlabel-support (accessed on 10 September 2024) | Support only Linux environment, commercial |
Labelme | https://developer.ibm.com/blogs/ibm-cloud-annotations-tool-eases-the-process-of-ai-data-labeling/ (accessed on 10 September 2024) | Python, based, open-source, some issues with large dataset |
Scale | https://scale.com/image (accessed on 10 September 2024) | Cloud Annotations GUI, auto label function, commercial |
SUPERVISELY | https://supervise.ly/ (accessed on 10 September 2024) | Cloud Annotations GUI, auto label function, commercial |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebrini, Y.; Ayerdi Gotor, A. Crops Disease Detection, from Leaves to Field: What We Can Expect from Artificial Intelligence. Agronomy 2024, 14, 2719. https://doi.org/10.3390/agronomy14112719
Lebrini Y, Ayerdi Gotor A. Crops Disease Detection, from Leaves to Field: What We Can Expect from Artificial Intelligence. Agronomy. 2024; 14(11):2719. https://doi.org/10.3390/agronomy14112719
Chicago/Turabian StyleLebrini, Youssef, and Alicia Ayerdi Gotor. 2024. "Crops Disease Detection, from Leaves to Field: What We Can Expect from Artificial Intelligence" Agronomy 14, no. 11: 2719. https://doi.org/10.3390/agronomy14112719
APA StyleLebrini, Y., & Ayerdi Gotor, A. (2024). Crops Disease Detection, from Leaves to Field: What We Can Expect from Artificial Intelligence. Agronomy, 14(11), 2719. https://doi.org/10.3390/agronomy14112719