The Role of Bacillus sp. in Reducing Chemical Inputs for Sustainable Crop Production
Abstract
:1. Introduction
1.1. The Change in Classification of Bacillus sp.
1.2. The Importance of Omics Technology to Bacillus sp.
1.3. Mode of Action
1.4. Consistency in Field Performance
1.5. Reduction in Nitrogen Fertilization
Reduction in Phosphorous Fertilization
1.6. Compatibility with Other Inputs
1.7. Strain Specificity and Host Compatibility
1.8. Impact on Soil Microbiome
1.9. Formulation and Delivery Methods
1.10. Regulatory and Safety Aspects
1.11. Integration into Crop Management Systems
2. Conclusions
3. Future and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dwivedi, U.; Apeksha, M.; Komatineni, B.K.; Vishwakarma, S.K.; Chettri, S.; Gupta, A. Agriculture Equipment’s and Smart Technology. In Futuristic Trends in Agriculture Engineering & Food Sciences; Iterative International Publishers: Chikkamagaluru, India, 2024; pp. 107–125. ISBN 9789357477307. [Google Scholar]
- Soni, R.; Yadav, S.K. Prospects of Organic Farming as Financial Sustainable Strategy in Modern Agriculture. In Soil Fertility Management for Sustainable Development; Springer: Singapore, 2019; pp. 251–265. ISBN 9789811359033. [Google Scholar]
- Choudhary, M.; Meena, V.S.; Kumar, S.; Singh, S.; Yadav, R.P.; Bisht, J.K.; Ghasal, P.C. Conservation Agriculture and Climate Change: An Overview. In Conservation Agriculture; Springer: Singapore, 2016; pp. 1–37. ISBN 9789811025570. [Google Scholar]
- Forster, D.; Adamtey, N.; Messmer, M.M.; Pfiffner, L.; Baker, B.; Huber, B.; Niggli, U. Chapter 2—Organic Agriculture—Driving Innovations in Crop Research. In Agricultural Sustainability; Elsevier: Amsterdam, The Netherlands, 2012; pp. 21–46. ISBN 978-0-12-404560-6. [Google Scholar]
- Nadarajan, S.; Sukumaran, S. Chapter 12—Chemistry and Toxicology behind Chemical Fertilizers. In Controlled Release Fertilizers for Sustainable Agriculture; Elsevier: Amsterdam, The Netherlands, 2020; pp. 195–229. ISBN 9780128195550. [Google Scholar]
- Singh, U.R. Bio-Fertilizers: Demand of Modern Time and Safe Future. Anusandhaan Vigyaan Shodh Patrika 2017, 5, 1220. [Google Scholar] [CrossRef]
- Dhankhar, N.; Kumar, J. Impact of Increasing Pesticides and Fertilizers on Human Health: A Review. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Hossain, M.E.; Hossain, S.A.; Shahrukh, S. Chemical Fertilizers and Pesticides: Impacts on Soil Degradation, Groundwater, and Human Health in Bangladesh. In Environmental Degradation: Challenges and Strategies for Mitigation; Springer: Berlin/Heidelberg, Germany, 2022; pp. 63–92. ISBN 9783030955410. [Google Scholar]
- Ijaz, M.; Hussain, I.; Rasheed, I.; Zafar, M.; Shahid, M.; Nawaz, A.; Tahir, M.; Ul-Allah, S. Alternatives to Synthetic Fertilizers. In Physical Sciences Grade 12; Apple Academic: Cupertino, CA, USA, 2021; pp. 253–273. ISBN 9781003105046. [Google Scholar]
- Arjumend, T.; Osman Sarıhan, E.; Uğur Yıldırım, M. Plant-Bacterial Symbiosis: An Ecologically Sustainable Agriculture Production Alternative to Chemical Fertilizers; Intechopen: London, UK, 2022; ISBN 9781803555522. [Google Scholar]
- da Silva Coelho-Moreira, J.; Dorneles, F.; da Silva Mariano, S.; Castoldi, R.; Marina, R.; Maria, G.; Bracht, A. Involvement of Lignin-Modifying Enzymes in the Degradation of Herbicides. In Herbicides—Advances in Research; Institute for New Technologies: Lodz, PL, USA, 2013; ISBN 9789535111221. [Google Scholar]
- Grant, W.F. Cytogenetic Studies of Agricultural Chemicals in Plants. Basic Life Sci. 1982, 21, 353–378. [Google Scholar] [CrossRef] [PubMed]
- Ojanperä, I. Chapter 11C Pesticides. In Handbook of Analytical Separations; Elsevier: Amsterdam, The Netherlands, 2000; Volume 2, pp. 391–403. ISBN 978-0-444-82998-6. [Google Scholar]
- Sood, P. Pesticides Usage and Its Toxic Effects—A Review. Indian J. Entomol. 2023, 86, 339–347. [Google Scholar] [CrossRef]
- Punniyakotti, P.; Vinayagam, S.; Rajamohan, R.; Priya, S.; Moovendhan, M.; Sundaram, T. Environmental Fate and Ecotoxicological Behaviour of Pesticides and Insecticides in Non-Target Environments: Nanotechnology-Based Mitigation Strategies. J. Environ. Chem. Eng. 2024, 12, 113349. [Google Scholar] [CrossRef]
- Økstad, O.A.; Kolstø, A.-B. Genomics of Bacillus species. In Genomics of Foodborne Bacterial Pathogens; Springer: New York, NY, USA, 2010; pp. 29–53. ISBN 9781441976857. [Google Scholar]
- Saxena, A.K.; Kumar, M.; Anuroopa, N.; Bagyaraj, D.J.; Chakdar, H. Bacillus Species in Soil as a Natural Resource for Plant Health and Nutrition. J. Appl. Microbiol. 2019, 128, 1583–1594. [Google Scholar] [CrossRef]
- Cote, C.K.; Heffron, J.D.; Bozue, J.A.; Welkos, S.L. Chapter 102—Bacillus Anthracis and Other Bacillus species. In Molecular Medical Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1789–1844. ISBN 9780123971692. [Google Scholar]
- Ibraheem, K.J. Antimicrobial Activity of Extracts Bacillus Species Isolated From Baghdad Soil Against Some Human Pathogenic Microorganisms. Al Mustansiriyah J. Pharm. Sci. 2016, 16, 82–87. [Google Scholar] [CrossRef]
- Raddadi, N.; Marasco, R.; Daffonchio, D.; Rolli, E.; Fava, F.; Crotti, E. The Most Important Bacillus species in Biotechnology. In Bacillus thuringiensis Biotechnology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 329–345. ISBN 9789400730205. [Google Scholar]
- Qian, J.; Wang, Y.; Hu, Z.; Shi, T.; Wang, Y.; Ye, C.; Huang, H. Bacillus sp. as a Microbial Cell Factory: Advancements and Future Prospects. Biotechnol. Adv. 2023, 69, 108278. [Google Scholar] [CrossRef]
- Ortiz, A.; Sansinenea, E. The Industrially Important Enzymes from Bacillus species. In Bacilli in Agrobiotechnology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 89–99. ISBN 9783030854645. [Google Scholar]
- Roy, B.; Maitra, D.; Bhattacharya, A.; Mondal, A.; Pal, N.; Nandy, A.; Bakshi, B.; Ghosh, J.; Mitra, A.K. Alleviation of Abiotic Stress in Oryza Sativa by the Application of Novel Polyextremophilic Plant Growth Promoting Bacillus. Biocatal. Agric. Biotechnol. 2024, 60, 103272. [Google Scholar] [CrossRef]
- Carlin, F.; Nguyen-The, C. 4—Pathogen Update: Bacillus Species. In Advances in Microbial Food Safety; Elsevier: Amsterdam, The Netherlands, 2013; pp. 70–96. ISBN 9780857094384. [Google Scholar]
- Cavalini, L.; Jankoski, P.; Motta, A.S.D.; Brandelli, A.; Correa, A.P.F. Characterization of the Antimicrobial Activity Produced by Bacillus Sp. Isolated from Wetland Sediment. An. Acad. Bras. Ciências 2021, 93, e20201820. [Google Scholar] [CrossRef]
- Pontieri, E. Chapter 2—Bacillus cereus Group Diagnostics: Chromogenic Media and Molecular Tools. In The Diverse Faces of Bacillus cereus; Elsevier: Amsterdam, The Netherlands, 2016; pp. 15–33. ISBN 9780128014745. [Google Scholar]
- Shin, H.-J.; Jeong, Y.-K.; Kim, D.-W.; Bang, J.-H.; Choi, H.-J.; Ahn, C.-S.; Joo, W.-H. Potential Use of Indigenous Bacillus sp. BCNU 9028 Isolated from Meju as a Probiotic. J. Life Sci. 2012, 22, 605–612. [Google Scholar] [CrossRef]
- Patani, A.; Yadav, A.N.; Islam, S.; Patel, M.; Patel, A.; Prajapati, D.; Yadav, V.K.; Sahoo, D.K. Recent Advances in Bacillus-Mediated Plant Growth Enhancement: A Paradigm Shift in Redefining Crop Resilience. World J. Microbiol. Biotechnol. 2024, 40, 77. [Google Scholar] [CrossRef]
- Dunlap, C.A. Taxonomy of Registered Bacillus spp. Strains Used as Plant Pathogen Antagonists. Biol. Control 2019, 134, 82–86. [Google Scholar] [CrossRef]
- Janda, J.M. Clinical Decisions: How Relevant Is Modern Bacterial Taxonomy for Clinical Microbiologists? Clin. Microbiol. Newsl. 2018, 40, 51–57. [Google Scholar] [CrossRef]
- Yadav, D.; Tanveer, A.; Malviya, N.; Yadav, S. Chapter 1—Overview and Principles of Bioengineering: The Drivers of Omics Technologies. In Omics Technologies and Bio-Engineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–23. ISBN 9780128046593. [Google Scholar]
- Jaumot, J.; Bedia, C. Introduction to Data Analysis in Omics Sciences. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2019; pp. 226–240. ISBN 9780128163962. [Google Scholar]
- Peng, A.; Fan, S.; Zhong, J.; Mao, X.; Hu, Y. Single-Cell Multi-Omics and Its Prospective Application in Cancer Biology. Proteomics 2020, 20, 1900271. [Google Scholar] [CrossRef] [PubMed]
- Olabemiwo, F.A.; Hagan, A.; Cham, M.; Cohan, F.M. Two Plant-Growth-Promoting Bacillus Species Can Utilize Nanoplastics. Sci. Total Environ. 2023, 907, 167972. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.-K.; Liu, R.-H.; Jin, H.-Z.; Liu, X.-R.; Ye, J.; Shan, L.; Zhang, W.-D. “Omics” in Pharmaceutical Research: Overview, Applications, Challenges, and Future Perspectives. Chin. J. Nat. Med. 2015, 13, 3–21. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Li, W.; Li, E.; Wang, L.; Luo, Y. Multi-Omics Technology and Its Applications to Life Sciences: A Review. Sheng Wu Gong Cheng Xue Bao = Chin. J. Biotechnol. 2022, 38, 3581–3593. [Google Scholar] [CrossRef]
- Sinchaikul, S.; Sookkheo, B.; Topanuruk, S.; Juan, H.-F.; Phutrakul, S.; Chen, S.-T. Bioinformatics, Functional Genomics, and Proteomics Study of Bacillus sp. J. Chromatogr. B 2002, 771, 261–287. [Google Scholar] [CrossRef]
- Sansinenea, E. Bacillus spp.: As Plant Growth-Promoting Bacteria. In Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms; Springer: Singapore, 2019; pp. 225–237. ISBN 9789811358616. [Google Scholar]
- Khabbaz, S.E.; Kandan, A.; Al-Mughrabi, T.; Babu, M.; Ramamoorthy, V.; Kandasamy, S.; Ladhalakshmi, D.; Saravanakumar, D. Plant Growth Promoting Bacteria (PGPB)—A Versatile Tool for Plant Health Management. Can. J. Pestic. Pest Manag. 2019, 1, 1. [Google Scholar] [CrossRef]
- Ramírez-Pool, J.A.; Xoconostle-Cazares, B.; Ortiz-Castro, R.; Ruiz-Medrano, R.; Calderón-Pérez, B. Bacillus Strains as Effective Biocontrol Agents Against Phytopathogenic Bacteria and Promoters of Plant Growth. Microb. Ecol. 2024, 87, 76. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Santa Ana, A.; Kirchmayr, M.R.; Contreras-Ramos, S.M.; Carrillo-Cerda, H.A.; Rodriguez-Campos, J.; Velázquez-Fernández, J.B. Volatile Emission Compounds from Plant Growth-Promoting Bacteria Are Responsible for the Antifungal Activity against F. solani. 3 Biotech 2020, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Shen, H.; Xu, X.; Qin, L.; Yang, X. Bacillus paralicheniformis RP01 Enhances the Expression of Growth-Related Genes in Cotton and Promotes Plant Growth by Altering Microbiota inside and Outside the Root. Int. J. Mol. Sci. 2023, 24, 7227. [Google Scholar] [CrossRef]
- Lastochkina, O.; Garshina, D.; Allagulova, C.; Pusenkova, L.; Garipova, S.; Maslennikova, D.; Fedorova, K.; Shpirnaya, I.; Ibragimov, A.; Koryakov, I.; et al. Potential Aspects of Plant Growth Promoting Bacteria to Improve Horticultural Crop Production. J. Hortic. Sci. 2021, 8, 103–122. [Google Scholar] [CrossRef]
- He, X.; Lach, A.; Seifert, T.; Hanusch, M.; Böll, L.; Junker, R.R. Adding Experimental Precision to the Realism of Field Observations: Plant Communities Structure Bacterial Communities in a Glacier Forefield. Environ. Microbiol. 2024, 26, e16590. [Google Scholar] [CrossRef]
- Novikova, E.V.; Zenchenko, E.V.; Trimonova, M.A.; Turuntaev, S.B.; Zenchenko, P.E. Backstress Influence on the Formation Stress Field in Hydraulic Fracturing Experiments. Geosciences 2023, 13, 153. [Google Scholar] [CrossRef]
- Gruber, C.; Zhu, C.; Georg, R.B.; Zakon, Y.; Ganor, J. Resolving the Gap between Laboratory and Field Rates of Feldspar Weathering. Geochim. Cosmochim. Acta 2014, 147, 90–106. [Google Scholar] [CrossRef]
- Bougoffa, M.S.E.; Bachir Bey, M.N.; Fellah, M.; Benouali, C.; Sayah, T.; Abdul Samad, M. Dry Sliding Friction and Wear Behavior of CuZn39Pb2 and AA7075 Under Industrial and Laboratory Conditions. J. Bio- Tribo-Corros. 2021, 7, 38. [Google Scholar] [CrossRef]
- Chuong, N.V. The Impact of Bacillus Sp. NTLG2-20 and Reduced Nitrogen Fertilization on Soil Properties and Peanut Yield. Commun. Sci. Technol. 2024, 9, 112–120. [Google Scholar] [CrossRef]
- Ekin, Z.; Erman, M.; Oğuz, F.; Öğün, E. The Effect of Bacillus Sp. OSU-142 Inoculation at Various Levels of Nitrogen Fertilization on Growth, Tuber Distribution and Yield of Potato (Solanum Tuberosum L.). Afr. J. Biotechnol. 2009, 8, 4418–4424. [Google Scholar]
- Yang, X.; Wan, Q.; Wu, D.; Wang, J.; Abbas, T.; Zhang, Q. The Impact of Novel Azotobacter Bacillus Sp. T28 Combined Sea Buckthorn Pomace on Microbial Community Structure in Paddy Soil. Environ. Res. 2023, 224, 115548. [Google Scholar] [CrossRef]
- Santos, S.D.O.; Silva, A.O.D.; Nogueira, R.D.S.; Viana, T.V.D.A.; Muengo, J.M.K.; Oliveira, G.D.S.; Sousa, G.G.D.; Gomes, K.R.; Silva, A.R.A.D.; Goes, G.F. Bacillus Sp., Formas de Adubação e Estresse Salino Na Produção Da Soja. Rev. Bras. Eng. Agrícola Ambient. 2024, 28, e279072. [Google Scholar] [CrossRef]
- Estrada-Bonilla, G.A.; Durrer, A.; Cardoso, E.J.B.N. Use of Compost and Phosphate-Solubilizing Bacteria Affect Sugarcane Mineral Nutrition, Phosphorus Availability, and the Soil Bacterial Community. Appl. Soil Ecol. 2020, 157, 103760. [Google Scholar] [CrossRef]
- Erkovan, H.; Daşçı, M.; Güllap, M.; Koç, A. Effects of Phosphorus Fertilizer and Phosphorus Solubilizing Bacteria Applications on Clover Dominant Meadow: I. Hay Yıeld and Botanıcal Composition. Turk. J. Field Crops 2010, 15, 12–17. [Google Scholar]
- Pajooheshgar, R.; Azizi, M.; Nemati, H.; Khorasani, R. Effect of Organic Substrate and Phosphorus Fertilization on Seed, Oil Yields and Composition of Medicinal Pumpkin (Cucurbita pepo var. styriaca). Indian J. Sci. Technol. 2015, 8, 38. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, G.; Huang, G.; Wang, X.; Zhao, W.; Zhou, Z.; Han, Q. The Application of Mixed Organic and Inorganic Fertilizers Drives Soil Nutrient and Bacterial Community Changes in Teak Plantations. Microorganisms 2022, 10, 958. [Google Scholar] [CrossRef]
- Geist, L.; Thielicke, M.; Eichler-Löbermann, B.; Wolfer, R.; Thiem, R.; Müller, M.E.H.; Eulenstein, F. Alternative Starter Fertilization Strategies in Maize (Zea mays L.) Cultivation: Agronomic Potential of Microgranular Fertilizer and Plant Growth-Promoting Microorganisms and Their Impact on the Soil Native Microbial Community. Agronomy 2023, 13, 2900. [Google Scholar] [CrossRef]
- Moraes, C.; Rigobelo, E.C.; Santos, R.M.D. Rock Phosphate Fertilization Harms Azospirillum brasilense Selection by Maize. Aust. J. Crop Sci. 2019, 13, 1967–1974. [Google Scholar] [CrossRef]
- Sun, T.; Qu, B.; Liu, Y.; Wu, S.; Xu, J.; Zhang, J. Effects of Background Fertilization Followed by Co-Application of Two Kinds of Bacteria on Soil Nutrient Content and Rice Yield in Northeast China. Int. J. Agric. Biol. Eng. 2020, 13, 154–162. [Google Scholar] [CrossRef]
- Lindley, J.A. Mixing Processes for Agricultural and Food Materials: 1. Fundamentals of Mixing. J. Agric. Eng. Res. 1991, 48, 153–170. [Google Scholar] [CrossRef]
- Yunus, N.; Manan, Z.A. Chapter 17—Optimization of Blending-Based Products. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2016; Volume 39, pp. 475–486. ISBN 978-0-444-63683-6. [Google Scholar]
- Borsato, E.; Tarolli, P.; Marinello, F. Sustainable Patterns of Main Agricultural Products Combining Different Footprint Parameters. J. Clean. Prod. 2018, 179, 357–367. [Google Scholar] [CrossRef]
- Samani, R.; Poursaeed, A. Cropping Pattern and Comparative Advantage of Agricultural Products in Ilam Province. Int. J. Agric. Manag. Dev. 2015, 5, 235. [Google Scholar] [CrossRef]
- Gregory, G.J.; Vlachos, D.G.; Wang, C.; Lobo, R.F.; Koval, S.; Sadula, S.; Papoutsakis, E.T. Polyethylene Valorization by Combined Chemical Catalysis with Bioconversion by Plastic-Enriched Microbial Consortia. ACS Sustain. Chem. Eng. 2023, 11, 3494–3505. [Google Scholar] [CrossRef]
- Tasanarong, P.; Dechatiwongse Na Ayudhya, T.; Techanitiswad, T.; Koontongkaew, S. Reduction of Viable Bacteria in Dentinal Tubules Treated with a Novel Medicament (Z-Mix). J. Dent. Sci. 2016, 11, 419–426. [Google Scholar] [CrossRef]
- Nascimento, W.C.A.D.; Martins, M.L.L. Studies on the Stability of Protease from Bacillus Sp. and Its Compatibility with Commercial Detergent. Braz. J. Microbiol. 2006, 37, 307–311. [Google Scholar] [CrossRef]
- Adıgüzel, A.O.; Tunçer, M. Purification and Characterization of Cutinase from Bacillus sp. KY0701 Isolated from Plastic Wastes. Prep. Biochem. Biotechnol. 2017, 47, 925–933. [Google Scholar] [CrossRef]
- Ladeira, S.A.; Cruz, E.; Martins, M.L.L.; Delatorre, A.B.; Barbosa, J.B. Cellulase Production by Thermophilic Bacillus sp. SMIA-2 and Its Detergent Compatibility. Electron. J. Biotechnol. 2015, 18, 110–115. [Google Scholar] [CrossRef]
- Di Pietrantonio, T.; Schurr, E. Host–Pathogen Specificity in Tuberculosis. Adv. Exp. Med. Biol. 2013, 783, 33–44. [Google Scholar]
- Ruiz-Rodriguez, P.; Caballer-Gual, M.; Santamaria, G.; Coscolla, M.; Hiza, H. Host-Strain Compatibility Influences Transcriptional Responses in Mycobacterium tuberculosis Infections. bioRxiv 2024. [Google Scholar] [CrossRef]
- Harper, S.J.; Cowell, S.J.; Dawson, W.O. With a Little Help from My Friends: Complementation as a Survival Strategy for Viruses in a Long-Lived Host System. Virology 2015, 478, 123–128. [Google Scholar] [CrossRef]
- Dick, C.W.; Dittmar, K. Parasitic Bat Flies (Diptera: Streblidae and Nycteribiidae): Host Specificity and Potential as Vectors. In Bats (Chiroptera) as Vectors of Diseases and Parasites; Springer: Berlin/Heidelberg, Germany, 2013; pp. 131–155. ISBN 9783642393327. [Google Scholar]
- Du, D.; Baker, D.D. Actinorhizal Host-Specificity of Chinese Frankia Strains. Plant Soil 1992, 144, 113–116. [Google Scholar] [CrossRef]
- Arif, I.; Batool, M.; Schenk, P.M. Plant Microbiome Engineering: Expected Benefits for Improved Crop Growth and Resilience. Trends Biotechnol. 2020, 38, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Li, Y.; Wang, Z.; Yu, Y.; Zhang, N.; Yang, C.; Zeng, Q.; Wang, Q. Synthetic Community with Six Pseudomonas Strains Screened from Garlic Rhizosphere Microbiome Promotes Plant Growth. Microb. Biotechnol. 2020, 14, 488–502. [Google Scholar] [CrossRef]
- Mohan, S.M.; Sudhakar, P. Metagenomic Approaches for Studying Plant–Microbe Interactions. In Understanding the Microbiome Interactions in Agriculture and the Environment; Springer: Singapore, 2022; pp. 243–254. ISBN 9789811936951. [Google Scholar]
- Raaijmakers, J.M. The Minimal Rhizosphere Microbiome. In Principles of Plant-Microbe Interactions; Springer: Berlin/Heidelberg, Germany, 2014; pp. 411–417. ISBN 9783319085746. [Google Scholar]
- Yang, S.; Yuan, J.; Shen, Q.; Wen, T.; Liu, H.; Xie, P. Emerging Pathways for Engineering the Rhizosphere Microbiome for Optimal Plant Health. J. Agric. Food Chem. 2023, 71, 4441–4449. [Google Scholar] [CrossRef]
- Orozco-Mosqueda, M.D.C.; Rocha-Granados, M.D.C.; Glick, B.R.; Santoyo, G. Microbiome Engineering to Improve Biocontrol and Plant Growth-Promoting Mechanisms. Microbiol. Res. 2018, 208, 25–31. [Google Scholar] [CrossRef]
- Xiong, W.; Li, R.; Guo, S.; Karlsson, I.; Jiao, Z.; Xun, W.; Kowalchuk, G.A.; Shen, Q.; Geisen, S. Microbial Amendments Alter Protist Communities within the Soil Microbiome. Soil Biol. Biochem. 2019, 135, 379–382. [Google Scholar] [CrossRef]
- Stamenov, D.R.; Djuric, S.; Andjelkovic, S.; Hajnal-Jafari, T. Influence of Pseudomonas and Bacillus Strains Isolated from Lolium Perenne Rhizospheric Soil in Vojvodina (Serbia) on Planth Growth and Soil Microbial Communities. Pol. J. Microbiol. 2017, 66, 269–272. [Google Scholar] [CrossRef]
- Pishchik, V.N.; Moiseev, K.G.; Surin, V.G.; Sviridova, O.V.; Vorobyev, N.I. Influence of Bacillus Subtilis on the Physiological State of Wheat and the Microbial Community of the Soil under Different Rates of Nitrogen Fertilizers. Eurasian Soil Sci. 2015, 48, 77–84. [Google Scholar] [CrossRef]
- Tang, C.; Zhong, J.; Liu, X.; Li, Y.; Lv, Y.; Yan, X.; Sun, W.; Zhang, M. Response and Dynamic Change of Microbial Community during Bioremediation of Uranium Tailings by Bacillus sp. Minerals 2021, 11, 967. [Google Scholar] [CrossRef]
- Amalraj, L.D. Effect of Polymeric Additives, Adjuvants, Surfactants on Survival, Stability and Plant Growth Promoting Ability of Liquid Bioinoculants. J. Plant Physiol. Pathol. 2013, 1, 2. [Google Scholar] [CrossRef]
- Deivamani, M.; Muthamilan, M. Studies on Shelf-Life of Streptomyces spp. in Different Carrier Materials. Int. J. Process. Post Harvest Technol. 2016, 7, 16–20. [Google Scholar] [CrossRef]
- Rojas-Sánchez, B.; Santoyo, G.; Fadiji, A.E.; Orozco-Mosqueda, M.D.C.; Glick, B.R.; Guzmán-Guzmán, P.; Morales-Cedeño, L.R.; Sánchez-Yáñez, J.M.; Saucedo-Martínez, B.C.; Babalola, O.O. Bioencapsulation of Microbial Inoculants: Mechanisms, Formulation Types and Application Techniques. Appl. Biosci. 2022, 1, 198–220. [Google Scholar] [CrossRef]
- Ramazanidoroh, F.; Shahrampour, D.; Wu, X.; Hosseininezhad, M. Edible Packaging as a Functional Carrier of Prebiotics, Probiotics, and Postbiotics to Boost Food Safety, Quality, and Shelf Life. Probiotics Antimicrob. Proteins 2023, 16, 1327–1347. [Google Scholar] [CrossRef]
- Zablotowicz, R.M.; Scher, F.M.; Kloepper, J.W.; Ijzerman, M.; Tipping, E.M. In-Furrow Spray as a Delivery System for Plant Growth-Promoting Rhizobacteria and Other Rhizosphere-Competent Bacteria. Can. J. Microbiol. 1991, 37, 632–636. [Google Scholar] [CrossRef]
- Weng, J.; Shen, Q.; Wang, Y.; Zhang, R.; Li, J. Enhanced Root Colonization and Biocontrol Activity of Bacillus amyloliquefaciens SQR9 by AbrB Gene Disruption. Appl. Microbiol. Biotechnol. 2012, 97, 8823–8830. [Google Scholar] [CrossRef]
- Liu, Y.; Shu, X.; Zhang, R.; Xu, Z.; Xun, W.; Feng, H.; Zhang, H.; Pieterse, C.M.J.; Zhang, N.; Chen, L.; et al. Plant Commensal Type VII Secretion System Causes Iron Leakage from Roots to Promote Colonization. Nat. Microbiol. 2023, 8, 1434–1449. [Google Scholar] [CrossRef]
- Schallmey, M.; Ward, O.P.; Singh, A. Developments in the Use of Bacillus species for Industrial Production. Can. J. Microbiol. 2004, 50, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Karačić, V.; Milošević, D.; Miljaković, D.; Ignjatov, M.; Tamindžić, G.; Marinković, J.; Ivanović, M. Bacillus Species: Excellent Biocontrol Agents against Tomato Diseases. Microorganisms 2024, 12, 457. [Google Scholar] [CrossRef]
- Abdullahi, S.; Mia, M.A.B.; Ghazali, A.H. Growth Enhancement and Bioremediation of Heavy Metal in Crop Plants Through Bacillus species Application. In Bacilli in Agrobiotechnology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 319–334. ISBN 9783030854645. [Google Scholar]
- Hadi, J.; Brightwell, G. Safety of Alternative Proteins: Technological, Environmental and Regulatory Aspects of Cultured Meat, Plant-Based Meat, Insect Protein and Single-Cell Protein. Foods 2021, 10, 1226. [Google Scholar] [CrossRef]
- Zhang, X.; Lan, L.; Peng, F.; Mao, G.; Guan, J.; Zhao, H. Advance in Research and Application of Bacillus Probiotics. Chin. J. Appplied Environ. Biol. 2013, 19, 891–897. [Google Scholar] [CrossRef]
- Ortiz, A.; Sansinenea, E. Chapter 1—Bacillus Thuringiensis Based Biopesticides for Integrated Crop Management. In Biopesticides; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–6. ISBN 9780128233559. [Google Scholar]
- Zinati, G.M. Transition from Conventional to Organic Farming Systems: I. Challenges, Recommendations, and Guidelines for Pest Management. HortTechnology 2002, 12, 606–610. [Google Scholar] [CrossRef]
Bacillus spp. | Improvement | References |
---|---|---|
Bacillus sp. | 50% reduction (20 kg N ha−1) 17.6% higher yield | [2] |
Bacillus sp. | Effective at 120 kg N ha−1 Increased tuber yield | [5] |
Bacillus sp. | Reduced NO3−-N by 33.1–43.8%, decreased N2O release rates by 8–26 times | [6] |
B. subtilis B. megaterium | 50% mineral and 50% organic fertilizer | [7] |
Bacillus sp. | Increased P content in shoots | [8] |
B. atrophaeus, B. subtilis | Enhanced yield by 4.2%, improved plant parameters | [9] |
B. subtilis | Changed the microbiome and improved crop yield and resilience | [10] |
Bacillus sp. | Increased microorganism heterotrophs | [29] |
Bacillus sp. | Decreased nitrogen fertilization | [30] |
Bacillus sp. | Promoted plant growth, enhance soil microbial diversity | [31] |
Bacillus sp. | Changed the microbiome and promoted plant growth because of these changes | [13] |
Bacillus sp. | Altered the relationships between the microbes and facilitated plant growth. | [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sales, L.R.; Rigobelo, E.C. The Role of Bacillus sp. in Reducing Chemical Inputs for Sustainable Crop Production. Agronomy 2024, 14, 2723. https://doi.org/10.3390/agronomy14112723
Sales LR, Rigobelo EC. The Role of Bacillus sp. in Reducing Chemical Inputs for Sustainable Crop Production. Agronomy. 2024; 14(11):2723. https://doi.org/10.3390/agronomy14112723
Chicago/Turabian StyleSales, Luziane Ramos, and Everlon Cid Rigobelo. 2024. "The Role of Bacillus sp. in Reducing Chemical Inputs for Sustainable Crop Production" Agronomy 14, no. 11: 2723. https://doi.org/10.3390/agronomy14112723
APA StyleSales, L. R., & Rigobelo, E. C. (2024). The Role of Bacillus sp. in Reducing Chemical Inputs for Sustainable Crop Production. Agronomy, 14(11), 2723. https://doi.org/10.3390/agronomy14112723