Croplands Quality Evaluation of Whole Tillage Layer Based on the Minimum Data Set in Jilin Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Soil Sampling and Laboratory Analysis
2.3. Soil Quality Evaluation
2.3.1. Indicator Selection
2.3.2. Soil Quality Evaluation Methods
2.4. Statistical Analysis
3. Results
3.1. Top-Tillage Soil Properties
3.2. Sub-Tillage Soil Properties
3.3. Top-Tillage Soil Minimum Data Set
3.4. Sub-Tillage Soil Minimum Data Set
3.5. Minimum Data Set Rationality Verification
3.6. Appropriate Range of Soil Parameters for Reasonable Whole Tillage
4. Discussion
4.1. Soil Fertility Characteristics of the Whole Tillage Layer in Jilin Province
4.2. Soil Quality Evaluation of the Whole Tillage in Jilin Province
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, P.J.; Liu, S.W.; Zhang, L.; Li, Q.; Zhou, D.W. Selecting the minimum data set and quantitative soil quality indexing of alkaline soils under different land uses in northeastern China. Sci. Total Environ. 2018, 616, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.L.; Jiang, L.L.; Liu, X.B.; Zhang, X.Y.; Fu, S.C.; Dai, L. Soil nutrient variance by slope position in a Mollisol farmland area of Northeast China. Chin. Geogr. Sci. 2016, 26, 508–517. [Google Scholar] [CrossRef]
- Li, X.Y.; Wang, D.Y.; Ren, Y.X.; Wang, Z.M.; Zhou, Y.H. Soil quality assessment of croplands in the black soil zone of Jilin Province, China: Establishing a minimum data set model. Ecol. Indic. 2019, 107, 105251. [Google Scholar] [CrossRef]
- Li, R.; Hu, W.Y.; Jia, Z.J.; Liu, H.Q.; Zhang, C.; Huang, B.; Yang, S.H.; Zhao, Y.G.; Zhao, Y.C.; Shukla, M.K.; et al. Soil degradation: A global threat to sustainable use of black soil. Pedosphere 2024, 6, 19. [Google Scholar] [CrossRef]
- Zhao, L.P.; Wang, H.B.; Liu, H.Q.; Wang, Y.L.; Liu, S.X.; Wang, Y. Mechanism of fertility degradation of black soil in corn belt of Songliao plain. Acta Pedol. Sin. 2006, 43, 78–84. [Google Scholar]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2019 national bulletin on cultivated land quality grades. Agric. Compr. Dev. China 2020, 6, 6–12. [Google Scholar]
- Song, X.W.; Zhang, B.C.; Bai, Y.; Pan, D.F.; Deng, X.D.; Wang, H.S.; Sun, B.; Cao, X.F. Application and review of biotechnology in promoting protective utilization of black soil. Bull. Chin. Acad. Sci. 2021, 36, 1488–1496. [Google Scholar]
- Mei, N.; Gu, Y.; Li, D.Z.; Liang, Y.; Yuan, J.C.; Liu, J.Z.; Ren, J.; Cai, H.G. Soil quality evaluation in topsoil layer of black soil in Jilin Province based on minimum data set. Trans. Chin. Soc. Agric. Eng. 2021, 37, 91–98. [Google Scholar]
- Ling, J.; Zhou, J.; Wu, G.; Zhao, D.Q.; Wang, Z.T.; Wen, Y.; Zhou, S.L. Deep-injected straw incorporation enhances subsoil quality and wheat productivity. Plant Soil 2024, 499, 207–220. [Google Scholar] [CrossRef]
- Cai, H.G.; Ma, W.; Zhang, X.Z.; Ping, J.Q.; Yan, X.G.; Liu, J.Z.; Yuan, J.C.; Wang, L.C.; Ren, J. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize. Crop J. 2014, 2, 297–307. [Google Scholar] [CrossRef]
- Palta, J.A.; Yang, J.C. Crop root system behaviour and yield. Field Crop Res. 2014, 165, 1–149. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Li, Y.; Zhang, J.; Zhang, F. Advances in the indicator system and evaluation approaches of soil health. Acta Pedol. Sin. 2022, 59, 603–616. [Google Scholar]
- Doran, J.W.; Stamatiadis, S.; Haberern, J. Soil health as an indicator of sustainable management. Agric. Ecosyst. Environ. 2002, 88, 107–110. [Google Scholar] [CrossRef]
- Obade, V.P.; Lal, R. A standardized soil quality index for diverse field conditions. Sci. Total Environ. 2015, 541, 424–434. [Google Scholar] [CrossRef]
- Mulat, Y.; Kibret, K.; Bedadi, B.; Mohammed, M. Soil quality evaluation under different land use types in Kersa sub-watershed, eastern Ethiopia. Environ. Syst. Res. 2021, 10, 19. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.K.; Mohamed, E.S.; Wagdi, E.M.; Shahin, S.A.; Alnaimy, M.A. Quantitative evaluation of soil quality using Principal Component Analysis: The case study of El-Fayoum depression Egypt. Sustainability 2021, 13, 1824. [Google Scholar] [CrossRef]
- Yao, R.J.; Yang, J.S.; Gao, P.; Zhang, J.B.; Jin, W.H. Determining minimum data set for soil quality assessment of typical salt-affected farmland in the coastal reclamation area. Soil Tillage Res. 2013, 128, 137–148. [Google Scholar] [CrossRef]
- Rezaei, S.A.; Gilkes, R.J.; Andrews, S.S. A minimum data set for assessing soil quality in rangelands. Geoderma 2006, 136, 229–234. [Google Scholar] [CrossRef]
- Manna, M.C.; Swarup, A.; Wanjari, R.H.; Ravankar, H.N.; Mishra, B.; Saha, M.N. Long term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under subhumid and semi-arid tropical India. Field Crop Res. 2005, 93, 264–280. [Google Scholar] [CrossRef]
- Bhaduri, D.; Purakayastha, T.J. Long-term tillage, water and nutrient management in rice-wheat cropping system: Assessment and response of soil quality. Soil Tillage Res. 2014, 144, 83–95. [Google Scholar] [CrossRef]
- Rahmanipour, F.; Marzaioli, R.; Bahrami, H.A.; Fereidouni, Z.; Bandarabadi, S.R. Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecol. Indic. 2014, 40, 19–26. [Google Scholar] [CrossRef]
- Guo, L.; Sun, Z.; Ouyang, Z.; Han, D.; Li, F. A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River. Catena 2017, 152, 135–143. [Google Scholar] [CrossRef]
- Qian, F.K.; Yu, Y.J.; Dong, X.R.; Gu, H.L. Soil quality evaluation based on a minimum data set (MDS)—A case study of Tieling County, Northeast China. Land 2023, 12, 1263. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Sun, Z.X.; Liu, S.; Wang, J.Q. Construction and application of the phaeozem health evaluation system in Liaoning Province, China. Agronomy 2024, 14, 1754. [Google Scholar] [CrossRef]
- Zou, W.X.; Han, X.Z.; Lu, X.C.; Chen, X.; Yan, J.; Song, B.H.; Yang, N.; Lin, Q.H.; He, Y. Effects of the construction of fertile and cultivated upland soil layer on soil fertility and maize yield in black soil region in Northeast China. Chin. J. Appl. Ecol. 2020, 31, 4134–4146. [Google Scholar]
- Man, W.D.; Yu, H.; Li, L.; Liu, M.Y.; Mao, D.H.; Ren, C.Y.; Wang, Z.M.; Jia, M.M.; Miao, Z.H.; Lu, C.Y.; et al. Spatial expansion and soil organic carbon storage changes of croplands in the Sanjiang Plain China. Sustainability 2017, 9, 563. [Google Scholar] [CrossRef]
- Jerray, A.; Rumpel, C.; Roux, X.L.; Massad, R.S.; Chabbi, A. N2O emissions from cropland and grassland management systems are determined by soil organic matter quality and soil physical parameters rather than carbon stock and denitrifier abundances. Soil Biol. Biochem. 2024, 190, 109274. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Liu, X.J.; Qiao, G.Y.; Guo, F.H.; Liu, D.; Li, Y.; Gou, Y.X.; Yu, R.Y.; Zhou, W.T.; Huang, Y.F. Ealuation and obstacle analysis of cultivated horizon soil quality based on MDS in the dry farming areas of Huang-Huai-Hai Region. Trans. Chin. Soc. Agric. Eng. 2023, 39, 104–113. [Google Scholar]
- Deng, S.H.; Zeng, L.T.; Guan, Q.; Li, P.; Liu, M.Q.; Li, H.X.; Jiao, J.G. Minimum dataset-based soil quality assessment of waterlogged paddy field in south China. Acta Pedol. Sinica 2016, 53, 1326–1333. [Google Scholar]
- Chen, Z.; Shi, D.M.; Jin, H.F.; Lou, Y.B.; He, W.; Xia, J.R. Evaluation on cultivated-layer soil quality of sloping farmland in Yunnan based on soil management assessment framework. Trans. Chin. Soc. Agric. Eng. 2019, 35, 256–267. [Google Scholar]
- National Soil Survey Office. Chinese Soil; China Agriculture Press: Beijing, China, 1998. [Google Scholar]
- Bai, X.; Yan, L.; Zhu, J.F.; Gao, Q.; Li, X.; Sun, M. Spatial and temporal characteristics of soil pH in the cultivated layer of farmland in Jilin province in the past 40 years. Soil Fertil. Sci. China 2023, 6, 23–34. [Google Scholar]
- Zhu, X.J.; Ros, G.H.; Xu, M.G.; Xu, D.H.; Cai, Z.J.; Sun, N.; Duan, Y.H.; Vries, W. The contribution of natural and anthropogenic causes to soil acidification rates under different fertilization practices and site conditions in southern China. Sci. Total Environ. 2024, 934, 172986. [Google Scholar] [CrossRef]
- Yan, L.; Wang, Y.; Feng, G.Z.; Gao, Q. Status and change characteristics of farmland soil fertility in Jilin Province. Sci. Agric. Sin. 2015, 48, 4800–4810. [Google Scholar]
- He, H.R.; Xu, M.Z.; Li, W.T.; Chen, L.; Chen, Y.N.; Moorhead, D.L.; Brangri, A.C.; Liu, J.; Cui, Y.X.; Zeng, Y.; et al. Linking soil depth to aridity effects on soil microbial community composition, diversity and resource limitation. Catena 2023, 232, 107393. [Google Scholar] [CrossRef]
- Brejde, J.J.; Mausbach, M.J.; Goebel, J.J.; Allan, D.L.; Smith, J.L. Estimating surface soil organic carbon content at a regional scale using the national resource inventory. Soil Sci. Soc. Am. J. 2001, 65, 842–849. [Google Scholar] [CrossRef]
- Xu, X.P.; Zhao, S.C.; Zhang, Y.G.; He, P.; Gao, Q. Spatial variations of soil nutrients in maize production areas of Jilin province. Plant Nutr. Fertil. Sci. 2011, 17, 1342–1350. [Google Scholar]
- Wang, Y.; Zhang, X.Y.; Gao, Q.; Li, C.L.; Yan, L.; Feng, G.Z. Temporal and spatial variability of soil pH in cropland of Jilin Province. Chin. J. Soil Sci. 2017, 48, 387–391. [Google Scholar]
- Jin, H.F.; Shi, D.M.; Chen, Z.F.; Liu, Y.J.; Lou, Y.B.; Yang, X. Evaluation indicators of cultivated layer soil qualityfor red soil slope farmland based on cluster and PCA analysis. Trans. Chin. Soc. Agric. Eng. 2018, 34, 155–164. [Google Scholar]
- Mahmood, S.; Nunes, M.R.; Kane, D.A.; Lin, Y. Soil health explains the yield-stabilizing effects of soil organic matter under drought. Soil Environ. Health 2023, 1, 100048. [Google Scholar] [CrossRef]
- Luo, G.W.; Sun, B.; Li, L.; Li, M.H.; Liu, M.Q.; Zhu, Y.Y.; Guo, S.W.; Ling, N.; Shen, Q.R. Understanding how long-term organic amendments increase soil phosphorus activities: Insight into phoD- and phoC-harboring functional microbial populations. Soil Biol. Biochem. 2019, 139, 107632. [Google Scholar] [CrossRef]
- Li, S.J.; Chen, X.X.; Wang, Z.K.; Wu, D.X.; Wang, M.; Mueller, T.; Zou, C.Q.; Chen, X.P.; Zhang, W. Phosphorus fertilizer management for high yields in intensive winter wheat-summer maize rotation system: Integrating phosphorus budget and soil available phosphorus. Field Crop Res. 2024, 313, 109410. [Google Scholar] [CrossRef]
- Suliman, M.; Scaini, A.; Manzoni, S.; Vico, G. Soil properties modulate actual evapotranspiration and precipitation impacts on crop yields in the USA. Sci. Total Environ. 2024, 949, 175172. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Zhou, F.W.; Li, J.F.; Shen, Z.Y.; Zhou, J.; Yang, J.; Jia, Z.J.; Zhang, Z.; Du, F.F.; Yao, D.R. Amendment-driven soil health restoration through soil pH and microbial robustness in a Cd/Cu-combined acidic soil: A ten-year in-situ field experiment. J. Hazard. Mater. 2024, 465, 133109. [Google Scholar] [CrossRef]
- Zhuo, Z.Q.; Li, Y.; Gou, Y.X.; Zhao, Y.Z.; Huang, Y.F.; Xing, A. Quality evaluation and obstacle diagnosis of plough horizon based on minimum data set in dry farming region of Northeast China. Trans. Chin. Soc. Agric. Mach. 2021, 52, 321–330. [Google Scholar]
- Wang, K.K.; Ren, T.; Yan, J.Y.; Lu, Z.F.; Cong, R.H.; Li, X.K.; Lu, J.W. Soil phosphorus availability alters the effects of straw carbon on microbial mediated phosphorus conversion. Plant Soil 2023, 491, 575–590. [Google Scholar] [CrossRef]
- Zhang, N.W.; Chen, X.; Wang, J.; Dong, H.; Han, X.; Lu, X.; Yan, J.; Zou, W. Anthropogenic soil management performs an important role in increasing soil organic carbon content in northeastern China: A meta-analysis. Agric. Ecosyst. Environ. 2023, 350, 108481. [Google Scholar] [CrossRef]
- Feng, H.L.; Han, X.Z.; Zhu, Y.C.; Zhang, M.; Ji, Y.X.; Lu, X.C.; Chen, X.; Yan, J.; Zou, W.X. Effects of long-term application of organic materials on soil water extractable organic matter, fulvic acid, humic acid structure and microbial driving mechanisms. Plant Soil 2024, 501, 323–341. [Google Scholar] [CrossRef]
- Getahun, G.T.; Ktterer, T.; Munkholm, L.J.; Parvage, M.M.; Keller, T.; Rychel, K.; Kirchmann, H. Short-term effects of loosening and incorporation of straw slurry into the upper subsoil on soil physical properties and crop yield. Soil Tillage Res. 2018, 184, 62–67. [Google Scholar] [CrossRef]
Function Type | Indicator | Affiliation Function | Parametric Expression | Subordinate Function Meaning |
---|---|---|---|---|
Type S | CEC | a: minimum value; b: maximum value | Evaluation indicators are positively correlated with soil quality within a certain range | |
SOM | ||||
TN | ||||
TP | ||||
TK | ||||
AN | ||||
AP | ||||
AK | ||||
Type parabola | pH | a: minimum value; b: maximum value; b1: lower bound of the appropriate value; b2: upper bound of the appropriate value | Evaluate the optimal range of the indicator and soil function; the greater the deviation, the lower the impact on soil function. |
Level | pH | CEC (cmol kg−1) | SOM (g kg−1) | TN (g kg−1) | TP (g kg−1) | TK (g kg−1) | AN (mg kg−1) | AP (mg kg−1) | AK (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|
I Extremely rich | >8.5 | >20.0 | >40 | >2.0 | >1.0 | >25 | >150 | >40 | >200 |
II Rich | 7.5~8.5 | 15.4~20.0 | 30~40 | 1.5~2.0 | 0.8~1.0 | 20~25 | 120~150 | 20~40 | 150~200 |
III Relatively rich | 6.5~7.5 | 10.5~15.4 | 20~30 | 1.0~1.5 | 0.6~0.8 | 15~20 | 90~120 | 10~20 | 100~150 |
IV Moderate | 5.5~6.5 | 6.2~10.5 | 10~20 | 0.75~1.0 | 0.4~0.6 | 10~l5 | 60~90 | 5~10 | 50~100 |
V Poor | 4.5~5.5 | <6.2 | 6~10 | 0.5~0.75 | 0.2~0.4 | 5~10 | 30~60 | 3~5 | 30~50 |
VI Extremely poor | <4.5 | - | <6 | <0.5 | <0.2 | <5 | <30 | <3 | <30 |
Indicator | Minimum | Maximum | Mean | Standard Deviation | Coefficient of Variation (%) | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
pH | 4.06 | 8.34 | 6.06 | 1.16 | 19.14 | 0.49 | −1.04 |
CEC (cmol kg−1) | 6.51 | 76.74 | 31.26 | 13.23 | 42.32 | 0.29 | −0.40 |
SOM (g kg−1) | 9.03 | 75.97 | 26.87 | 9.90 | 36.85 | 1.53 | 4.52 |
TN (g kg−1) | 0.92 | 5.93 | 2.19 | 0.85 | 38.74 | 1.42 | 3.36 |
TP (g kg−1) | 0.21 | 1.58 | 0.86 | 0.37 | 43.19 | 0.51 | −0.83 |
TK (g kg−1) | 6.54 | 24.20 | 12.58 | 4.82 | 38.30 | 1.05 | −0.44 |
AN (mg kg−1) | 51.45 | 403.20 | 151.16 | 59.17 | 39.15 | 1.20 | 1.95 |
AP (mg kg−1) | 5.43 | 95.16 | 21.92 | 14.55 | 66.40 | 1.92 | 5.28 |
AK (mg kg−1) | 50.00 | 404.00 | 176.59 | 82.30 | 46.60 | 0.85 | 0.02 |
Sand (%) | 16.49 | 89.95 | 48.28 | 16.89 | 34.99 | 0.49 | −0.48 |
Silt (%) | 1.01 | 48.96 | 23.66 | 10.92 | 46.16 | −0.17 | −0.83 |
Clay (%) | 5.04 | 48.94 | 28.07 | 8.71 | 31.04 | −0.24 | −0.27 |
Level | Frequency (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
pH | CEC | SOM | TN | TP | TK | AN | AP | AK | |
I Extremely rich | - | 75.7 | 9.7 | 51.9 | 31.4 | - | 42.7 | 9.7 | 31.4 |
II Rich | 21.6 | 7.6 | 20.6 | 29.2 | 16.2 | 15.7 | 20.5 | 34.1 | 22.2 |
III Relatively rich | 8.1 | 11.9 | 43.8 | 16.2 | 20.5 | 9.2 | 23.8 | 38.9 | 25.9 |
IV Moderate | 27.0 | 4.8 | 25.4 | 2.7 | 24.9 | 34.6 | 10.8 | 17.3 | 20.5 |
V Poor | 37.9 | - | 0.5 | - | 7.0 | 40.5 | 2.2 | - | - |
VI Extremely poor | 5.4 | - | - | - | - | - | - | - | - |
Region | City | pH | CEC (cmol kg−1) | SOM (g kg−1) | TN (g kg−1) | TP (g kg−1) | TK (g kg−1) | AN (mg kg−1) | AP (mg kg−1) | AK (mg kg−1) | Sand (%) | Silt (%) | Clay (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Western | Baicheng | 7.6 ± 0.7 a | 21.0 ± 9.3 d | 21.9 ± 4.1 d | 1.8 ± 0.6 c | 0.6 ± 0.2 d | 9.3 ± 0.5 de | 129.9 ± 68.8 cd | 19.6 ± 13.6 ab | 218.9 ± 116.2 ab | 64.0 ± 11.8 a | 14.8 ± 7.0 b | 21.2 ± 5.7 d |
Songyuan | 7.3 ± 1.0 a | 25.1 ± 12.2 cd | 22.2 ± 7.6 d | 2.0 ± 0.7 bc | 0.6 ± 0.2 d | 10.1 ± 1.0 de | 119.9 ± 53.0 d | 14.9 ± 10.0 b | 175.5 ± 96.3 abc | 60.1 ± 16.1 ab | 16.7 ± 10.6 b | 23.2 ± 7.4 cd | |
Average | 7.3 ± 1.0 A | 24.4 ± 11.8 B | 22.1 ± 7 B | 2.0 ± 0.7 B | 0.6 ± 0.2 C | 10.0 ± 1.0 B | 121.7 ± 55.4 B | 15.8 ± 10.7 B | 183.4 ± 100.2 A | 60.9 ± 15.3 A | 16.3 ± 10.0 C | 22.8 ± 7.1 B | |
Central | Changchun | 6.1 ± 0.9 b | 35.9 ± 12.9 ab | 23.4 ± 6.8 d | 1.8 ± 0.5 c | 0.7 ± 0.2 cd | 14.3 ± 6.0 b | 129.5 ± 29.7 cd | 22.0 ± 11.4 ab | 197.2 ± 64.9 abc | 49.2 ± 12.3 bcd | 18.1 ± 6.4 b | 32.8 ± 7.9 ab |
Siping | 6.4 ± 1.2 b | 31.1 ± 15.5 bc | 22.7 ± 8.1 d | 1.8 ± 0.6 c | 0.7 ± 0.3 cd | 19.5 ± 3.5 a | 120.1 ± 37.2 d | 21.5 ± 17.7 ab | 181.4 ± 80.1 abc | 53.4 ± 20.0 abc | 18.4 ± 9.9 b | 28.2 ± 10.8 abc | |
Liaoyuan | 5.1 ± 0.6 c | 31.2 ± 10.1 bc | 27.5 ± 4.4 cd | 2.3 ± 0.5 bc | 1.0 ± 0.3 b | 13.8 ± 4.3 bc | 167.2 ± 35.6 bc | 24.8 ± 13.1 ab | 108.7 ± 41.3 d | 40.4 ± 12.1 def | 31.8 ± 7.6 a | 27.8 ± 5.6 abc | |
Jilin | 5.3 ± 0.7 c | 41.4 ± 10.0 a | 30.4 ± 7.1 bc | 2.5 ± 0.7 ab | 1.1 ± 0.3 b | 9.3 ± 2.8 de | 168.6 ± 38.1 abc | 24.6 ± 12.6 ab | 177.1 ± 51.4 abc | 33.4 ± 9.4 ef | 33.8 ± 6.5 a | 32.9 ± 5.9 ab | |
Average | 5.9 ± 1.1 B | 34.8 ± 13.2 A | 25.3 ± 7.5 B | 2.0 ± 0.6 B | 0.8 ± 0.3 B | 14.8 ± 5.7 A | 140.7 ± 40.2 B | 22.8 ± 13.9 A | 174.0 ± 70.2 A | 45.8 ± 16.3 B | 23.6 ± 10.5 B | 30.6 ± 8.5 A | |
Eastern | Tonghua | 5.1 ± 0.6 c | 27.0 ± 10.3 bcd | 32.4 ± 11.4 abc | 3.0 ± 1.2 a | 1.3 ± 0.3 a | 11.7 ± 0.5 cd | 205.3 ± 58.1 ab | 30.6 ± 18.2 a | 162.4 ± 92.9 bcd | 44.9 ± 14.7 cde | 28.6 ± 8.4 a | 26.5 ± 8.2 bcd |
Baishan | 5.3 ± 0.9 c | 27.7 ± 16.6 bcd | 37.9 ± 16.9 a | 2.1 ± 0.9 bc | 1.1 ± 0.4 b | 10.5 ± 0.7 de | 208.4 ± 96.7 a | 15.9 ± 7.1 b | 148.9 ± 86.8 cd | 45.2 ± 22.1 cde | 30.7 ± 12.8 a | 24.0 ± 9.8 cd | |
Yanbian | 5.4 ± 0.5 c | 42.1 ± 16.3 a | 36.0 ± 16.5 ab | 2.4 ± 0.9 bc | 0.9 ± 0.4 bc | 8.5 ± 1.1 e | 172.6 ± 82.4 ab | 21.6 ± 11.8 ab | 229.9 ± 82.5 a | 31.1 ± 15.8 f | 34.6 ± 10.0 a | 34.4 ± 10.0 a | |
Average | 5.2 ± 0.6 C | 30.6 ± 14.3 A | 34.3 ± 13.7 A | 2.7 ± 1.1 A | 1.2 ± 0.4 A | 10.8 ± 1.5 B | 198.4 ± 72.0 A | 25.8 ± 16.4 A | 175.3 ± 92.8 A | 41.8 ± 17.2 B | 30.3 ± 9.8 A | 27.8 ± 9.5 A | |
Province | Average | 6.1 ± 1.2 | 31.3 ± 13.2 | 26.9 ± 9.9 | 2.2 ± 0.9 | 0.9 ± 0.4 | 12.6 ± 4.8 | 151.2 ± 59.2 | 21.9 ± 14.6 | 176.6 ± 82.3 | 48.3 ± 16.9 | 23.7 ± 10.9 | 28.1 ± 8.7 |
Indicator | Minimum | Maximum | Mean | Standard Deviation | Coefficient of Variation (%) | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
pH | 4.44 | 9.25 | 6.36 | 1.03 | 16.24 | 0.43 | −0.73 |
CEC (cmol kg−1) | 5.22 | 86.30 | 33.75 | 14.05 | 41.62 | 0.63 | 0.24 |
SOM (g kg−1) | 3.01 | 55.72 | 19.38 | 10.54 | 54.37 | 1.26 | 2.27 |
TN (g kg−1) | 0.14 | 3.65 | 1.44 | 0.61 | 42.18 | 0.98 | 1.39 |
TP (g kg−1) | 0.01 | 1.45 | 0.55 | 0.28 | 51.42 | 0.96 | 0.74 |
TK (g kg−1) | 5.85 | 16.30 | 8.85 | 2.68 | 30.30 | 0.98 | −0.37 |
AN (mg kg−1) | 28.70 | 316.40 | 127.35 | 63.45 | 49.83 | 1.01 | 0.64 |
AP (mg kg−1) | 4.31 | 80.42 | 12.53 | 10.90 | 86.99 | 3.44 | 15.39 |
AK (mg kg−1) | 36.50 | 407.50 | 144.65 | 71.34 | 49.32 | 1.29 | 2.01 |
Sand (%) | 11.25 | 91.98 | 40.11 | 19.59 | 48.83 | 0.51 | −0.75 |
Silt (%) | 4.07 | 54.64 | 33.04 | 12.43 | 37.62 | −0.28 | −1.05 |
Clay (%) | 2.00 | 55.44 | 26.85 | 8.99 | 33.48 | −0.09 | −0.10 |
Level | Frequency (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
pH | CEC | SOM | TN | TP | TK | AN | AP | AK | |
I Extremely rich | 4.3 | 82.7 | 3.8 | 13.5 | 7.6 | - | 25.9 | 2.7 | 14.1 |
II Rich | 19.5 | 9.2 | 7.6 | 25.4 | 8.1 | - | 15.7 | 9.7 | 25.4 |
III Relatively rich | 20.6 | 6.5 | 28.6 | 35.7 | 18.4 | 0.6 | 22.7 | 26.5 | 33.5 |
IV Moderate | 35.1 | 0.5 | 39.5 | 15.7 | 25.4 | 27.0 | 20.0 | 53.5 | 22.7 |
V Poor | 20.0 | 1.1 | 14.6 | 9.2 | 32.4 | 72.4 | 14.1 | 7.6 | 4.3 |
VI Extremely poor | 0.5 | - | 5.9 | 0.5 | 8.1 | - | 1.6 | - | - |
Region | City (State) | pH | CEC (cmol kg−1) | SOM (g kg−1) | TN (g kg−1) | TP (g kg−1) | TK (g kg−1) | AN (mg kg−1) | AP (mg kg−1) | AK (mg kg−1) | Sand (%) | Silt (%) | Clay (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Western | Baicheng | 8.5 ± 0.8 a | 24.2 ± 8.2 d | 10.8 ± 3.9 b | 1.1 ± 0.3 b | 0.2 ± 0.2 e | 9.7 ± 1.0 c | 63.2 ± 24.1 c | 11.8 ± 10.8 abc | 128.4 ± 85.3 abc | 63.4 ± 11.0 a | 13.5 ± 5.1 d | 23.0 ± 7.0 de |
Songyuan | 7.4 ± 0.8 b | 25.3 ± 11.3 d | 17.7 ± 7.9 ab | 1.5 ± 0.7 ab | 0.5 ± 0.2 cd | 12.4 ± 1.8 b | 103.4 ± 45.2 bc | 10.4 ± 6.8 abc | 146.1 ± 73.1 abc | 59.0 ± 12.8 a | 19.5 ± 6.8 d | 21.4 ± 6.8 e | |
Average | 7.6 ± 0.9 A | 25.1 ± 10.7 B | 16.4 ± 7.8 B | 1.5 ± 0.7 AB | 0.4 ± 0.2 B | 11.9 ± 2.0 A | 96.1 ± 44.7 B | 10.6 ± 7.6 A | 142.9 ± 74.7 A | 59.8 ± 12.5 A | 18.4 ± 6.9 B | 21.7 ± 6.8 B | |
Central | Changchun | 6.6 ± 0.9 c | 39.8 ± 15.9 bc | 19.2 ± 10.0 a | 1.3 ± 0.4 ab | 0.4 ± 0.1 d | 7.4 ± 0.6 d | 118.0 ± 45.9 b | 10.1 ± 5.0 abc | 168.0 ± 50.2 a | 39.1 ± 16.4 bc | 29.9 ± 8.9 c | 31.0 ± 8.5 abc |
Siping | 6.8 ± 1.2 bc | 31.6 ± 14.7 cd | 16.2 ± 7.4 ab | 1.3 ± 0.5 b | 0.4 ± 0.3 cd | 7.5 ± 0.6 d | 104.1 ± 51.6 bc | 15.6 ± 16.5 ab | 155.7 ± 87.6 ab | 45.1 ± 19.0 b | 29.6 ± 11.4 c | 25.3 ± 8.7 cde | |
Liaoyuan | 5.9 ± 0.4 d | 42.9 ± 12.0 ab | 20.2 ± 8.9 a | 1.5 ± 0.5 ab | 0.6 ± 0.2 bc | 7.6 ± 1.0 d | 139.5 ± 69.6 ab | 6.8 ± 1.9.0 c | 100.8 ± 29.8 bc | 27.7 ± 15.2 cd | 43.6 ± 9.3 a | 28.7 ± 6.3 bcd | |
Jilin | 5.7 ± 0.5 d | 40.0 ± 14.0 bc | 19.6 ± 10.7 a | 1.2 ± 0.5 b | 0.6 ± 0.3 bc | 7.2 ± 0.6 d | 113.1 ± 57.5 b | 10.4 ± 6.0 abc | 127.9 ± 36.6 abc | 25.6 ± 14.3 d | 41.9 ± 8.5 a | 32.5 ± 8.5 ab | |
Average | 6.4 ± 1.0 B | 37.9 ± 15.0 A | 18.5 ± 9.2 AB | 1.3 ± 0.5 B | 0.5 ± 0.2 B | 7.4 ± 0.7 C | 116.3 ± 54.7 B | 11.3 ± 10.3 A | 145.3 ± 63.7 A | 36.3 ± 18.2 B | 34.5 ± 11.4 A | 29.2 ± 8.6 A | |
Eastern | Tonghua | 5.6 ± 0.6 d | 32.0 ± 11.8 cd | 23.4 ± 14.3 a | 1.7 ± 0.8 a | 0.9 ± 0.3 a | 7.9 ± 1.8 d | 175.9 ± 77.9 a | 18.1 ± 15.3 a | 146.0 ± 92.3 abc | 34.3 ± 17.9 bcd | 40.0 ± 10.2 ab | 25.7 ± 9.6 cde |
Baishan | 5.8 ± 0.8 d | 29.2 ± 6.8 d | 17.2 ± 13.8 ab | 1.2 ± 0.3 b | 0.7 ± 0.3 ab | 13.9 ± 0.6 a | 134.5 ± 79.2 ab | 10.3 ± 3.8 abc | 98.7 ± 45.5 c | 38.4 ± 23.2 bcd | 36.5 ± 13.7 abc | 25.1 ± 10.2 cde | |
Yanbian | 6.2 ± 0.8 cd | 52.2 ± 18.8 a | 19.5 ± 11.5 a | 1.5 ± 0.7 ab | 0.6 ± 0.3 bc | 10.6 ± 1.2 c | 98.7 ± 58.1 bc | 8.0 ± 2.8 bc | 172.7 ± 70.3 a | 28.9 ± 18.9 cd | 33.8 ± 11.0 bc | 37.3 ± 11.4 a | |
Average | 5.7 ± 0.7 C | 36.1 ± 15.6 A | 21.4 ± 13.6 A | 1.6 ± 0.7 A | 0.8 ± 0.3 A | 9.7 ± 2.7 B | 150.4 ± 79.6 A | 14.3 ± 12.6 A | 143.3 ± 83.0 A | 33.8 ± 19.0 B | 37.9 ± 11.1 A | 28.2 ± 11.1 A | |
Province | Average | 6.4 ± 1.0 | 33.7 ± 14.0 | 19.4 ± 10.5 | 1.4 ± 0.6 | 0.6 ± 0.3 | 8.8 ± 2.7 | 127.3 ± 63.5 | 12.5 ± 10.9 | 144.6 ± 71.3 | 40.1 ± 19.6 | 33.0 ± 12.4 | 26.9 ± 9.0 |
Parameters | PC1 | PC2 | PC3 | PC4 | Grouping | Common Factor Variance | Weights | Norm Value |
---|---|---|---|---|---|---|---|---|
pH | −0.57 | −0.38 | 0.12 | −0.38 | 1 | 0.63 | 0.069 | 1.81 |
CEC | 0.04 | 0.80 | 0.10 | −0.10 | 2 | 0.67 | 0.073 | 1.99 |
SOM | 0.88 | −0.02 | 0.27 | 0.00 | 1 | 0.84 | 0.092 | 2.86 |
TN | 0.77 | 0.13 | 0.18 | −0.20 | 1 | 0.67 | 0.074 | 2.25 |
TP | 0.72 | 0.33 | −0.05 | −0.22 | 1 | 0.68 | 0.074 | 2.26 |
TK | −0.23 | −0.07 | 0.00 | 0.84 | 4 | 0.76 | 0.083 | 0.97 |
AN | 0.79 | 0.14 | −0.19 | −0.06 | 1 | 0.69 | 0.075 | 2.38 |
AP | 0.50 | 0.01 | 0.65 | 0.36 | 3 | 0.79 | 0.087 | 1.61 |
AK | −0.08 | 0.10 | 0.90 | −0.12 | 3 | 0.84 | 0.092 | 1.21 |
Sand | −0.37 | −0.89 | 0.00 | −0.01 | 2 | 0.93 | 0.102 | 2.91 |
Silt | 0.57 | 0.67 | −0.06 | −0.02 | 2 | 0.78 | 0.086 | 2.55 |
Clay | 0.02 | 0.92 | 0.06 | 0.03 | 2 | 0.85 | 0.093 | 2.58 |
Eigenvalue (λ) | 3.39 | 3.08 | 1.50 | 1.16 | ||||
Variance contribution (%) | 28.28 | 25.65 | 12.48 | 9.70 | ||||
Cumulative contribution (%) | 28.28 | 53.93 | 66.41 | 76.11 |
Parameters | PC1 | PC2 | PC3 | PC4 | Grouping | Common Factor Variance | Weights | Norm Value |
---|---|---|---|---|---|---|---|---|
pH | −0.29 | −0.12 | −0.81 | −0.04 | 3 | 0.76 | 0.083 | 1.42 |
CEC | 0.82 | 0.18 | 0.00 | −0.03 | 1 | 0.71 | 0.077 | 2.26 |
SOM | 0.24 | 0.83 | 0.02 | 0.05 | 2 | 0.74 | 0.081 | 1.93 |
TN | 0.07 | 0.91 | 0.01 | 0.13 | 2 | 0.85 | 0.092 | 2.15 |
TP | −0.06 | 0.71 | 0.45 | 0.33 | 2 | 0.82 | 0.089 | 1.82 |
TK | −0.48 | 0.22 | −0.31 | −0.04 | 1 | 0.37 | 0.040 | 1.03 |
AN | 0.07 | 0.55 | 0.49 | 0.13 | 3 | 0.56 | 0.061 | 1.22 |
AP | −0.10 | 0.20 | 0.29 | 0.86 | 4 | 0.87 | 0.095 | 1.50 |
AK | 0.33 | 0.13 | −0.15 | 0.86 | 4 | 0.88 | 0.096 | 1.65 |
Sand | −0.87 | −0.17 | −0.38 | −0.10 | 1 | 0.93 | 0.101 | 2.76 |
Silt | 0.69 | 0.21 | 0.48 | 0.03 | 1 | 0.85 | 0.092 | 2.03 |
Clay | 0.91 | 0.08 | 0.02 | 0.17 | 1 | 0.86 | 0.094 | 2.74 |
Eigenvalue (λ) | 3.23 | 2.55 | 1.68 | 1.66 | ||||
Variance contribution (%) | 26.94 | 21.26 | 14.86 | 13.79 | ||||
Cumulative contribution (%) | 26.94 | 48.19 | 63.05 | 76.84 |
Soil Index | 0–20 cm | 20–40 cm | ||||||
---|---|---|---|---|---|---|---|---|
Common Factor Variance | Weights | Common Factor Variance | Weights | |||||
TDS | MDS | TDS | MDS | TDS | MDS | TDS | MDS | |
pH | 0.632 | 0.069 | 0.761 | 0.513 | 0.083 | 0.281 | ||
CEC | 0.665 | 0.073 | 0.708 | 0.077 | ||||
SOM | 0.839 | 0.758 | 0.092 | 0.267 | 0.743 | 0.081 | ||
TN | 0.673 | 0.074 | 0.847 | 0.275 | 0.092 | 0.151 | ||
TP | 0.678 | 0.074 | 0.820 | 0.089 | ||||
TK | 0.760 | 0.847 | 0.083 | 0.299 | 0.373 | 0.040 | ||
AN | 0.689 | 0.075 | 0.564 | 0.061 | ||||
AP | 0.791 | 0.807 | 0.087 | 0.285 | 0.874 | 0.095 | ||
AK | 0.841 | 0.092 | 0.881 | 0.326 | 0.096 | 0.179 | ||
Sand | 0.931 | 0.424 | 0.102 | 0.150 | 0.933 | 0.710 | 0.101 | 0.389 |
Silt | 0.782 | 0.086 | 0.852 | 0.092 | ||||
Clay | 0.851 | 0.093 | 0.864 | 0.094 |
Soil Layer | Index | Membership Function Type | Membership Function | Threshold | Appropriate Range |
---|---|---|---|---|---|
Top-tillage | SOM (g kg−1) | Type S | u(x) = 0.1029 + 0.0144x | 34.5 | ≥34.5 |
Sand (%) | Type parabola | u(x) = −0.074 + 0.034x − 0.0004x2 | 31.5–53.5 | 31.5–53.5 | |
AP (mg kg−1) | Type S | u(x) = 0.2118 − 0.0121x | 32.1 | ≥32.1 | |
TK (g kg−1) | Type S | u(x) = 0.0898 + 0.0336x | 15.18 | ≥15.18 | |
Sub-tillage | Sand (%) | Type parabola | u(x) = 0.2793 + 0.0165x − 0.0002x2 | 31.3–51.2 | 31.3–51.2 |
TN (g kg−1) | Type S | u(x) = 0.1957 + 0.2724x | 1.48 | ≥1.48 | |
pH | Type parabola | u(x) = −1.4574 + 0.6116x − 0.0453x2 | 6.4–7.1 | 6.4–7.1 | |
AK (mg kg−1) | Type S | u(x) = 0.2375 + 0.0023x | 157.6 | ≥157.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Xu, K.; Du, D.; Jia, X.; Fan, W.; Liang, Y.; Li, D.; Zhang, Y.; Ren, J.; Liu, J.; et al. Croplands Quality Evaluation of Whole Tillage Layer Based on the Minimum Data Set in Jilin Province, China. Agronomy 2024, 14, 2728. https://doi.org/10.3390/agronomy14112728
Yan J, Xu K, Du D, Jia X, Fan W, Liang Y, Li D, Zhang Y, Ren J, Liu J, et al. Croplands Quality Evaluation of Whole Tillage Layer Based on the Minimum Data Set in Jilin Province, China. Agronomy. 2024; 14(11):2728. https://doi.org/10.3390/agronomy14112728
Chicago/Turabian StyleYan, Jinyao, Kangning Xu, Dongming Du, Xinyu Jia, Wei Fan, Yao Liang, Dezhong Li, Ying Zhang, Jun Ren, Jianzhao Liu, and et al. 2024. "Croplands Quality Evaluation of Whole Tillage Layer Based on the Minimum Data Set in Jilin Province, China" Agronomy 14, no. 11: 2728. https://doi.org/10.3390/agronomy14112728
APA StyleYan, J., Xu, K., Du, D., Jia, X., Fan, W., Liang, Y., Li, D., Zhang, Y., Ren, J., Liu, J., & Cai, H. (2024). Croplands Quality Evaluation of Whole Tillage Layer Based on the Minimum Data Set in Jilin Province, China. Agronomy, 14(11), 2728. https://doi.org/10.3390/agronomy14112728