Morphoanatomic and Physiological Characterization of Cacao (Theobroma cacao L.) Genotypes in the South of Bahia, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Cultivation Conditions
2.2. Gas Exchange
2.3. Growth Analysis
2.4. Anatomical Characterization
2.5. Histochemical Analysis
2.6. Stomatal Density
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muller, M.F.; Valle, R.R. Ecofisiologia do cacaueiro. In Ciência, Tecnologia e Manejo do Cacaueiro, 2nd ed.; CEPLAC: Ilhéus, BA, Brazil, 2012; pp. 31–66. [Google Scholar]
- Halim, A.N.; Abd Gani, S.S.; Zaidan, U.H.; Halmi, M.I.E.; Wahab, N.A.; Yusof, A.H.M. Potentiality of incorporating cocoa liquor in skin care cosmetics. PalArch’s J. Archaeol. Egypt/Egyptol. 2020, 17, 1039–1046. [Google Scholar]
- Zarrillo, S.; Gaikwad, N.; Lanaud, C.; Powis, T.; Viot, C.; Lesur, I.; Fouet, O.; Argout, X.; Guichoux, E.; Valdez, F.; et al. The use and domestication of Theobroma cacao during the mid-Holocene in the upper Amazon. Nat. Ecol. Evol. 2018, 2, 1879–1888. [Google Scholar] [CrossRef] [PubMed]
- Greathouse, D.C.; Laetsch, W.M.; Phinney, B.O. The stem-growth rhythm of a tropical tree, Theobroma cacao. Am. J. Bot. 1971, 58, 281–286. [Google Scholar] [CrossRef]
- Yamada, M.M.; Pires, J.L.; Faleiro, F.G.; Lopes, U.V.; Macedo, M.M.; Melo, G.R.; Clement, D.; dos Snatos, R.C.; Dantos, A.; Santos, R.F.; et al. Histórico das seleções de cacaueiros da série ESJOB. Ilhéus, BA, CEPLAC/CEPEC. Bol. Técnico 2014, 206, 2–16. [Google Scholar]
- Almeida, A.A.F.; Valle, R.R. Ecophysiology of the cacao tree. Braz. J. Plant Physiol. 2007, 19, 425–448. [Google Scholar] [CrossRef]
- Balasimha, D.; Rajagopal, V. Stoamatal responses of cocoa to changes in climatic factors. J. Agric. Sci. 1988, 58, 213–216. [Google Scholar]
- Niether, W.; Armengot, L.; Andres, C.; Schneider, M.; Gerold, G. Shade trees and tree pruning alter throughfall and microclimate in cocoa (Theobroma cacao L.) production systems. Ann. For. Sci. 2018, 75, 38. [Google Scholar] [CrossRef]
- Lahive, F.; Hadley, P.; Daymond, A.J. The physiological responses of cacao to the environment and the implications for climate change resilience. A review. Agron. Sustain. Dev. 2019, 39, 5–27. [Google Scholar] [CrossRef]
- Vásquez, C.E.; Hipólito-Romero, E.; Ricaño-Rodríguez, J.; Ramos-Prado, J.M. Ecophysiological plasticity of Theobroma cacao L. clones in response to the structure and microclimate of agroforestry systems in Mexico. Bot. Sci. 2022, 100, 960–976. [Google Scholar] [CrossRef]
- Daymond, A.J.; Hadley, P.; Machado, R.C.R.; Ng, E. Genetic variability in partitioning to the yield component of cacao (Theobroma cacao L.). HortScience 2002, 37, 799–801. [Google Scholar] [CrossRef]
- Daymond, A.J.; Hadley, P.; Machado, R.C.R.; Ng, E. Canopy characteristics of contrasting clones of cacao (Theobroma cacao). Exp. Agric. 2002, 38, 359–367. [Google Scholar] [CrossRef]
- Daymond, A.J.; Tricker, P.J.; Hadley, P. Genotypic variation in photosynthetic and leaf traits in Cocoa. In Proceedings of the International Cocoa Research Conference, Bali, Indonésia, 16–21 November 2009. [Google Scholar]
- Araque, O.; Jaimez, R.E.; Tezara, W.; Coronel, I.; Urich, R.; Espinoza, W. Comparative photosynthesis, water relations, growth and survival rates in juvenile Criollo cacao cultivars (Theobroma cacao) during dry and wet seasons. Exp. Agric. 2012, 48, 513–522. [Google Scholar] [CrossRef]
- Dzandu, E.; Enu-Kwesi, L.; Markwei, C.M.; Ayeh, K.O. Screening for drought tolerance potential of nine cocoa (Theobroma cacao L.) genotypes from Ghana. Heliyon 2021, 7, e08389. [Google Scholar] [CrossRef] [PubMed]
- Santos, I.C.D.; Almeida, A.A.F.D.; Anhert, D.; Conceição, A.S.D.; Pirovani, C.P.; Pires, J.L.; Valle, A.A.; Baligar, V.C. Molecular, physiological and biochemical responses of Theobroma cacao L. genotypes to soil water deficit. PLoS ONE 2014, 9, e115746. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.A.; Almeida, A.A.F.D.; Ahnert, D.; Branco, M.C.D.S.; Valle, R.R.; Baligar, V.C. Diallel analysis and growth parameters as selection tools for drought tolerance in young Theobroma cacao plants. PLoS ONE 2016, 11, e0160647. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.A.F.; Aguilar, M.A.G.; Araújo, I.S.; Valle, R.R. Modificações Anatômicas em dois genótipos de cacau infectados com Crinipellis perniciosa. Agrotrop 1998, 10, 199–202. [Google Scholar]
- Sena, K.; Alemanno, L.; Gramacho, K.P. The infection process of Moniliophthora perniciosa in cacao. Plant Path 2014, 63, 1272–1281. [Google Scholar] [CrossRef]
- Santos, E.C.; Pirovani, C.P.; Correa, S.C.; Micheli, F.; Gramacho, K.P. The pathogen Moniliophthora perniciosa promotes differential proteomic modulation of cacao genotypes with contrasting resistance to witches’ broom disease. BMC Plant Biol. 2020, 20, 1. [Google Scholar] [CrossRef]
- Guiltinan, M.J.; Verica, J.; Zhang, D.; Figueira, A. Genomics of Theobroma cacao, “the Food of the Gods”. In Genomics of Tropical Crop Plants. Plant Genetics and Genomics: Crops and Models, 1st ed.; Moore, P.H., Ming, R., Eds.; Springer: New York, NY, USA, 2008; pp. 145–170. [Google Scholar]
- Costa, L.C.B.; Almeida, A.-A.F.; Valle, R.R. Crescimento, teor de clorofila e estrutura anatômica em plântulas de Theobroma cacao submetidas a diferentes irradiâncias e doses de nitrogênio. Agrotrópica 1998, 10, 21–30. [Google Scholar]
- Araújo, R.P.; Almeida AA, F.; Barroso, J.P.; Oliveira, R.A.; Gomes, F.P.; Ahnert, D.; Baligar, V. Molecular and morphophysiological responses cocoa leaves with different concentrations of anthocyanin to variations in light levels. Sci. Hortic. 2017, 224, 188–197. [Google Scholar] [CrossRef]
- Baligar, V.C.; Elson, M.K.; Almeida AA, F.; Araujo, Q.R.; Ahnert, D.; He, Z. The impact of carbon dioxide concentrations and low to adequate photosynthetic photon flux density on growth, physiology and nutrient use efficiency of juvenile cacao genotypes. Agronomy 2021, 11, 397. [Google Scholar] [CrossRef]
- Almeida, A.A.F.; Brito, R.C.T.; Aguilar, M.A.G.; Valle, R.R. Aspectos das relações hídricas de clones de Theobroma cacao L. Agrotrópica 2002, 14, 35–44. [Google Scholar]
- Bertolde, F.Z.; Almeida, A.A.F.; Pirovani, C.P. Analysis of gene expression and proteomic profiles of clonal genotypes from Theobroma cacao subjected to soil flooding. PLoS ONE 2014, 9, e108705. [Google Scholar] [CrossRef] [PubMed]
- Rehem, B.C.; Almeida AA, F.; Mielke, M.S.; Gomes, F.P.; Valle, R.R. Photosynthetic and growth responses of Theobroma cacao L. clones to waterlogging. J. Trop. Agric. 2010, 48, 17–22. [Google Scholar]
- Cochard, H.; Nardini, A.; Coll, L. Hydraulic architecture of leaf blades: Where is the main resistance? Plant Cell Environ. 2004, 27, 1257–1267. [Google Scholar] [CrossRef]
- Castro, A.V.; DEAlmeida, A.A.F.; Pirovani, C.P.; Reis, G.S.; Almeida, N.M.; Mangabeira, P.A. Morphological, biochemical, molecular and ultrastructural changes induced by Cd toxicity in seedlings of Theobroma cacao L. Ecotoxic. Environ. Saf. 2015, 115, 174–186. [Google Scholar] [CrossRef]
- Monteiro, R.W.; Ahnert, D. Melhoramento Genético do Cacaueiro. In Ciência, Tecnologia e Manejo do Cacaueiro, 2nd ed.; Valle, R.R., Ed.; CEPLAC: Ilhéus, BA, Brazil, 2012; pp. 11–29. [Google Scholar]
- Bote, A.D.; Struik, P.C. Effects of shade on growth, production and quality of coffee (Coffea arabica) in Ethiopia. J. Hortic. For. 2011, 3, 336–341. [Google Scholar]
- Lin, B.B. The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in Coffee agroecosystems. Agr. For. Meteorol. 2010, 150, 510–518. [Google Scholar] [CrossRef]
- Daymond, A.J.; Tricker, P.J.; Hadley, P. Genotypic variation in photosynthesis in cacao is correlated with stomatal conductance and leaf nitrogen. Biol. Plant 2011, 55, 99–104. [Google Scholar] [CrossRef]
- Avila-Lovera, E.; Coronel, I.; Jaimez, R.; Urich, R.; Pereyra, G.; Araque, O.; Chacon, I.; Tezara, W. Ecophysiological traits of adult trees of Criollo cocoa cultivars (Theobroma cacao L.) from a germplasm bank in Venezuela. Exp. Agric. 2016, 52, 137–153. [Google Scholar] [CrossRef]
- Monteiro, M.V.; Blanuša, T.; Verhoef, A.; Hadley, P.; Cameron, R.W. Relative importance of transpiration rate and leaf morphological traits for the regulation of leaf temperature. Aust. J. of Bot. 2016, 64, 32–44. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; Mcmahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydr. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Souza Júnior, J.O.; Sodré, G.A.; Neves, J.C.L. Fertilidade do solo, correção de acidez e recomendação de adubação para o cacaueiro. In Cacau, Cultivo, Pesquisa e Inovação, 1st ed.; Souza Júnior, J.O., Ed.; Editus: Ilhéus, BA, Brazil, 2018; pp. 13–33. [Google Scholar]
- Souza, C.C.D.; Oliveira, F.A.D.; Silva, I.D.F.D.; Amorim Neto, M.D.S. Avaliação de métodos de determinação de água disponível e manejo da irrigação em terra roxa sob cultivo de algodoeiro herbáceo. Rev. Bras. Eng. Agrícola Ambient. 2000, 4, 338–342. [Google Scholar] [CrossRef]
- Casaroli, D.; Jong Van Lier, Q.D. Critérios para determinação da capacidade de vaso. Rev. Bras. Ciência Solo 2008, 32, 59–66. [Google Scholar] [CrossRef]
- Von Caemmerer, S.; Farquhar, G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Hunt, R. Basic Growth Analysis; Unwin Hyman: London, UK, 1990; pp. 98–112. [Google Scholar]
- Johansen, D.A. Plant Microtechnique, 1st ed.; McGraw-Hill: New York, NY, USA, 1940; pp. 521–523. [Google Scholar]
- O’brien, T.P.; MCcully, M.E. The Study of Plant Structure. Principles and Selected Methods, 1st ed.; Termarcarphi Pty. Ltd.: Melbourne, Australia, 1981; pp. 333–357. [Google Scholar]
- Pizzolatto, P.; Lillie, R.D. Mayer’s tannic acid-ferric chloride stain for mucins. J. Histochem. Cytochem. 1973, 21, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Segatto, F.B.; Bisognin, D.A.; Benedetti, M.; Costa, L.C.D.; Rampelotto, M.V.; NicoloSO, F.T. A technique for the anatomical study of potato leaf epidermis. Ciência Rural 2004, 34, 1597–1601. [Google Scholar] [CrossRef]
- CRAN—Comprehensive R Archive Network. Available online: https://cran.r.project.org/ (accessed on 2 January 2020).
- Müller, M.W.; Serrano-Minar, P.; Biehl, B. Photosynthetic characteristics during development of leaves from Theobroma cacao L. Physiol. Plant 1992, 853, 105–599. [Google Scholar]
- Apshara, S.E.; Rajesh, M.K.; Balasimha, D. Assessment of morphological, physiological and molecular characteristics of cocoa accessions from Central and South America in relation to drought tolerance. J. Plant Crop. 2013, 41, 389–397. [Google Scholar]
- Poorter, L. Growth responses of 15 rain-forest tree species to a light gradient: The relative importance of morphological and physiological traits. Funct. Ecol. 1999, 13, 396–410. [Google Scholar] [CrossRef]
- Poorter, H.; Evans, J.R. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia 1998, 116, 26–37. [Google Scholar] [CrossRef]
- Jegadeeswari, V.; Arunkumar, K.; Santhini, B.G. Root morphology and root characters of different cocoa (Theobroma cacao L) types at 100 and 50 percent field capacity under water deficit condition. J. Phytol. 2019, 11, 10–15. [Google Scholar]
- Ofori, A.; Padi, F.K.; Akpertey, A.; Adu-Gyamfi, P.; Dadzie, M.A.; Amoah, F.M. Variability of survival and yield traits in cacao (Theobroma cacao L.) clones under marginal field conditions in Ghana. J. Crop Improv. 2017, 31, 847–861. [Google Scholar] [CrossRef]
- Lambers, H.; Chapin, F.S., III; Pons, T.L. Plant Physiological Ecology, 2nd ed.; Springer: New York, NY, USA, 1988; pp. 11–99. [Google Scholar]
- Valladares, F.; Skillman, J.B.; Pearcy, R.W. Convergence in light capture efficiencies among tropical forest understory plants with contrasting crown architectures: A case of morphological compensation. Am. J. Bot. 2002, 89, 1275–1284. [Google Scholar] [CrossRef] [PubMed]
- Valladares, F.; Niinemets, Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 237–257. [Google Scholar] [CrossRef]
- Givnish, T.J. Adaptation to sun and shade: A whole-plant perspective. Funct. Plant Biol. 1988, 15, 63–92. [Google Scholar] [CrossRef]
- Evans, J.; Poorter, H. Photosynthetic acclimation of plants to growth irradiance: The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ. 2001, 24, 755–767. [Google Scholar] [CrossRef]
- Alvim, P.T. Cacao. In Ecophysiology of Tropical Crops, 1st ed.; Academic Press: London, UK, 1977; pp. 279–313. [Google Scholar]
- Gutschick, V.P.; Wiegel, F.W. Optimizing the canopy photosynthetic rate by patterns of investment in specific leaf mass. Am. Nat. 1998, 132, 67–86. [Google Scholar] [CrossRef]
- Lambers, H.; Poorter, H. Inherent variation in growth-rate between higher-plants—A search for physiological causes and ecological consequences. Adv. Ecol. Res. 1992, 23, 187–261. [Google Scholar]
- Grime, J.P. Plant Strategies, Vegetation Processes, and Ecosystem Properties, 2nd ed.; John Wiley & Sons: Chichester, UK, 2006; p. 418. [Google Scholar]
- Saavedra, F.; Jordan Peña, E.; Schneider, M.; Naoki, K. Effects of environmental variables and foliar traits on the transpiration rate of cocoa (Theobroma cacao L.) under different cultivation systems. Agrosystem 2020, 94, 2021–2031. [Google Scholar] [CrossRef]
- Martins, S.C.; Galmes, J.; Cavatte, P.C.; Pereira, L.F.; Ventrella, M.C.; Damatta, F.M. Understanding the low photosynthetic rates of sun and shade coffee leaves: Bridging the gap on the relative roles of hydraulic, diffusive and biochemical constraints to photosynthesis. PLoS ONE 2014, 9, e95571. [Google Scholar] [CrossRef] [PubMed]
- Amaral, J.A.T.; Rena, A.B.; Amaral, J.F.T. Crescimento vegetativo sazonal do cafeeiro e suas relações com fotoperíodo, frutificação, resistência estomática e fotossíntese. Pesqui. Agropecu. Bras. 2006, 4, 377–384. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Villar, R.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Lahive, F.; Handley, L.R.; Hadley, P.; Daymond, A.J. Climate change impacts on cacao: Genotypic variation in responses of mature cacao to elevated CO2 and water deficit. Agronomy 2021, 11, 818. [Google Scholar] [CrossRef]
- Carr, M.K.V.; Lockwood, G. The water relations and irrigation requirements of cocoa (Theobroma cacao L.): A review. Exp. Agric. 2011, 47, 653–676. [Google Scholar] [CrossRef]
- Abo-Hamed, S.; Collin, H.A.; Hardwick, K. Biochemical and physiological aspects of leaf development in cocoa (Theobroma cacao L.) VII. Growth, orientation, surface structure and water loss from developing flush leaves. New Phytol 1983, 95, 9–17. [Google Scholar] [CrossRef]
- Voltan, R.B.Q.; Fahl, J.I.; Carelli, M.L.C. Variação na anatomia foliar de cafeeiros submetidos a diferentes intensidades luminosas. Rev. Bras. Fis. Veg. 1992, 4, 99–105. [Google Scholar]
- Bai, T.; Li, Z.; Song, C.; Song, S.; Jiao, J.; Liu, Y.; Dong, Z.; Zheng, X. Contrasting Drought Tolerance in Two Apple Cultivars Associated with Difference in Leaf Morphology and Anatomy. Am. J. Plant Sci. 2019, 10, 709–722. [Google Scholar] [CrossRef]
- Ennajeh, M.; Vadel, A.M.; Cochard, H.; Khemira, H. Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. Hortic. Sci. Biotechnol. 2010, 85, 289–294. [Google Scholar] [CrossRef]
- Zakariyya, F.; Setiyawan, B.; Susilo, A.W. Stomatal, proline, and leaf water status characters of some cocoa clones (Theobroma cacao L.) on prolonged dry season. Pelita Perkeb. 2016, 33, 109–117. [Google Scholar] [CrossRef]
- Brodribb, T.J.; Feild, T.S.; Jordan, G.J. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol. 2007, 144, 1890–1898. [Google Scholar] [CrossRef] [PubMed]
- Brodribb, T.J.; Feild, T.S.; Sack, L. Viewing leaf structure and evolution from a hydraulic perspective. Funct. Plant Biol. 2010, 37, 488–498. [Google Scholar] [CrossRef]
- Zanetti, L.V.; Milanez, C.R.D.; Gama, V.N.; Aguilar, M.A.G.; Souza, C.A.S.; Campostrini, E.; Ferraz, T.M.; Figueiredo, F.A.M.M.d.A. Leaf application of silicon in young cacao plants subjected to water deficit. Pesqui. Agropecu. Bras. 2016, 51, 215–223. [Google Scholar] [CrossRef]
- Brooks, E.R.; Guard, A.T. Vegetative anatomy of Theobroma cacao. Bot. Gaz. 1952, 113, 444–454. [Google Scholar] [CrossRef]
- Hanba, Y.T.; Miyazawa, S.I.; Terashima, I. The influence of leaf thickness on the CO2 transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm-temperate forests. Funct. Ecol. 1999, 13, 632–639. [Google Scholar] [CrossRef]
- Jones, H.G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, 3rd ed.; Cambridge Univ. Press: Cambridge, UK, 2013; pp. 122–152. [Google Scholar]
- Jordaan, A.; Kruger, H. Structure of xerophytic plants from Southern Africa leaf anatomy of Antizoma miersiana and Diospyros ramulosa. Isr. J. Bot. 1992, 41, 57–65. [Google Scholar]
- Chapotin, S.M.; Holbrook, N.M.; Morse, S.R.; Gutiérrez, M.V. Water relations of tropical dry forest flowers: Pathways for water entry and the role of extracellular polysaccharides. Plant Cell Environ. 2009, 26, 623–630. [Google Scholar]
- Clifford, S.C.; Arndt, S.K.; Popp, M.; Jones, H.G. Mucilages and polysaccharides in Ziziphus species (Rhamnaceae): Localization, composition and physiological roles during drought-stress. J. Exp. Bot. 2002, 53, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, L.H.I.; Soares, M.K.M.; Appezzato-Da-Glória, B. Contribuição ao estudo anatômico da folha e do caule do cacaueiro (Theobroma cacao L.). Sci. Agric. 1996, 53, 73. [Google Scholar] [CrossRef]
- Shahidi, F.; Naczk, M. Phenolics in Foods and Nutraceuticals, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2003; p. 576. [Google Scholar]
- Vizzotto, M.; Krolow, A.C.R.; Weber, G.E.B. Metabólitos secundários encontrados em plantas e sua importância. Embrapa Clima Temperado Pelotas Braz. 2010, 316, 1–17. [Google Scholar]
- Shatil-Cohen, A.; Attia, Z.; Moshelion, M. Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: A target of xylem-borne ABA? Plant J. 2011, 67, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Lynch, D.J.; Mcinerney, F.A.; Kouwenberg, L.L.; Gonzalez-Meler, M.A. Plasticity in bundle sheath extensions of heterobaric leaves. Am. J. Bot. 2012, 99, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, T.C. Plant responses to water stress. Ann. Rev. Plant Physiol. 1973, 24, 519–570. [Google Scholar] [CrossRef]
- Ahnert, D.; Melo, H.L.; Santos, F.F.J.; Lima, L.R.; Baligar, V.C. Melhoramento genético e produtividade do cacaueiro no Brasil. In Cacau, Cultivo, Pesquisa e Inovação, 1st ed.; Souza Júnior, J.O., Ed.; Editus: Ilhéus, BA, Brazil, 2018; pp. 151–182. [Google Scholar]
- Alonso, R.S. Caracterização Fisiológica, Morfoanatômica e Histoquímica dos Órgãos Vegetativos de Clones de Cacaueiro. Master’s Thesis, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil, 26 February 2021. [Google Scholar]
Genotypes | Variables | ||||||||
---|---|---|---|---|---|---|---|---|---|
Aa | gs | E | Ci | Ci/Ca | Aa/gs | Aa/E | Aa/Ci | Am | |
Ipiranga-01 | 4.16 ± 0.230 a | 0.04 ± 0.004 b | 1.12 ± 0.080 b | 212.29 ± 8.40 a | 0.52 ± 0.020 b | 105.00 ± 4.200 a | 3.7 ± 0.180 b | 0.02 ± 0.003 a | 984.25 ± 120 b |
CCN-10 | 2.63 ± 0.220 b | 0.04 ± 0.009 b | 0.73 ± 0.040 c | 219.12 ± 11.70 a | 0.58 ± 0.060 b | 98.9 ± 6.34 b | 3.6 ± 0.260 b | 0.01 ± 0.00 b | 687.67 ± 170 b |
CCN-51 | 3.27 ± 0.3 9 b | 0.02 ± 0.003 d | 0.79 ± 0.150 c | 202.68 ± 41.60 a | 0.51 ± 0.11 b | 109.63 ± 6.67 a | 4.2 ± 0.570 a | 0.02 ± 0.001 b | 945.62 ± 310 b |
SJ-02 | 3.35 ± 0.55 b | 0.05 ± 0.002 a | 1.37 ± 0.050 a | 262.76 ± 24.40 a | 0.70 ± 0.10 a | 69.44 ± 6.84 d | 2.4 ± 0.200 b | 0.01 ± 0.001 b | 742.85 ± 280 b |
Cepec-2002 | 3.30 ± 0.78 b | 0.03 ± 0.006 c | 0.67 ± 0.060 d | 236.42 ± 17.40 a | 0.61 ± 0.05 a | 99.81 ± 6.49 b | 4.9 ± 0.230 a | 0.01 ± 0.003 b | 789.2 ± 120 b |
PH-16 | 3.34 ± 0.15 b | 0.03 ± 0.003 c | 0.85 ± 0.070 c | 220.75 ± 38.70 a | 0.52 ± 0.04 b | 89.70 ± 18.03 c | 3.9 ± 0.760 b | 0.01 ± 0.003 b | 689.0 ± 120 b |
PS-13.19 | 3.05 ± 0.27 b | 0.02 ± 0.004 d | 0.58 ± 0.090 d | 149.64 ± 33.70 b | 0.52 ± 0.05 b | 119.75 ± 6.38 a | 5.3 ± 0.270 a | 0.02 ± 0.005 a | 1322.0 ± 200 a |
Genotypes | Variables | ||||||||
---|---|---|---|---|---|---|---|---|---|
RDW | SDW | LDW | TDW | SD | RL | Height | LN | LA | |
Ipiranga-01 | 2.6 ± 0.33 c | 2.6 ± 0.61 a | 3.6 ± 0.63 a | 9.0 ± 0.62 b | 0.70 ± 0.10 a | 38.0 ± 9.14 a | 59.0 ± 8.70 a | 12.0 ± 3.26 b | 837.6 ± 73 a |
CCN-10 | 5.0 ± 0.83 a | 2.9 ± 0.47 a | 3.3 ± 0.50 a | 11.7 ± 1.52 a | 0.71 ± 0.01 a | 40.5 ± 7.10 a | 43.4 ± 4.30 b | 15.2 ± 2.87 a | 805.0 ± 130 a |
CCN-51 | 1.6 ± 0.31 c | 2.3 ± 0.45 a | 1.2 ± 0.23 c | 7.1 ± 1.0 c | 0.77 ± 0.08 a | 30.2 ± 6.73 a | 35.0 ± 1.76 c | 7.7 ± 0.50 c | 336.4 ± 92 c |
SJ-02 | 3.4 ± 0.99 b | 2.7 ± 0.37 a | 3.3 ± 1.0 a | 9.4 ± 0.73 b | 0.70 ± 0.21 a | 48.8 ± 9.70 a | 44.0 ± 2.95 b | 9.2 ± 0.50 c | 670.4 ± 185 b |
Cepec-2002 | 3.5 ± 0.73 b | 2.8 ± 0.45 a | 3.0 ± 0.57 a | 9.2 ± 0.41 b | 0.70 ± 0.09 a | 31.5 ± 1.31 a | 37.0 ± 2.90 c | 11.0 ± 1.63 b | 679.9 ± 32 b |
PH-16 | 2.8 ± 0.07 c | 2.3 ± 0.30 a | 2.8 ± 0.26 a | 8.0 ± 1.1 c | 0.73 ± 0.13 a | 37.5 ± 3.22 a | 39.9 ± 1.50 b | 9.2 ± 1.25 c | 572.4 ± 57 b |
PS-13.19 | 2.2 ± 0.20 c | 2.8 ± 0.50 a | 2.1 ± 0.44 b | 7.9 ± 0.57 c | 0.70 ± 0.13 a | 37.0 ± 6.84 a | 42.5 ± 5.16 b | 8.0 ± 0.81 c | 910.4 ± 108 a |
Genotypes | Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
RWR | SWR | LWR | LAR | R:AP | SLA | SLW | RGR | NAR | |
Ipiranga-01 | 0.32 ± 0.06 a | 0.32 ± 0.02 b | 0.36 ± 0.08 a | 92.9 ± 11.5 b | 0.43 ± 0.04 c | 236.87 ± 0.00 a | 0.004 ± 0.00 a | 20.37 ± 1.70 a | 0.21 ± 0.03 b |
CCN-10 | 0.43 ± 0.06 a | 0.25 ± 0.06 b | 0.30 ± 0.07 a | 67.5 ± 13.20 b | 0.82 ± 0.18 a | 263.7 ± 0.00 a | 0.004 ± 0.00 a | 21.43 ± 3.20 a | 0.27 ± 0.02 a |
CCN-51 | 0.37 ± 0.03 a | 0.40 ± 0.08 a | 0.23 ± 0.04 a | 63.2 ± 3.60 b | 0.46 ± 0.07 c | 289.10 ± 0.00 a | 0.003 ± 0.00 b | 12.43 ± 3.70 b | 0.20 ± 0.08 b |
SJ-02 | 0.36 ± 0.03 a | 0.30 ± 0.04 b | 0.35 ± 0.04 a | 72.8 ± 15.8 b | 0.56 ± 0.06 b | 214.2 ± 0.00 a | 0.005 ± 0.00 a | 12.24 ± 1.90 b | 0.13 ± 0.04 c |
Cepec-2002 | 0.40 ± 0.06 a | 0.31 ± 0.04 b | 0.33 ± 0.03 a | 80.6 ± 23.60 b | 0.60 ± 0.06 b | 234.8 ± 0.00 a | 0.004 ± 0.00 a | 9.03 ± 1.10 b | 0.13 ± 0.01 c |
PH-16 | 0.35 ± 0.06 a | 0.30 ± 0.03 b | 0.35 ± 0.05 a | 71.7 ± 6.80 b | 0.55 ± 0.05 b | 205.8 ± 0.00 a | 0.005 ± 0.00 a | 5.45 ± 3.60 c | 0.06 ± 0.04 d |
PS-13.19 | 0.32 ± 0.05 a | 0.40 ± 0.03 a | 0.31 ± 0.08 a | 162.2 ± 42.0 a | 0.46 ± 0.08 c | 433.2 ± 0.00 b | 0.002 ± 0.00 b | 2.66 ± 1.70 c | 0.03 ± 0.03 d |
Genotypes | Variables | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
EPAD | EPAB | PP | PL | MES | PP/PL | EST | Fl | X | Me | Diam | |
Ipiranga-01 | 24.0 ± 1.9 a | 8.6 ± 0.6 a | 33.7 ± 5.0 a | 51.4 ± 8.0 a | 85.2 ± 4.4 b | 0.6 ± 0.1 a | 1250.4 ± 23 a | 169 ± 30 a | 206.2 ± 40 a | 1115 ± 170 a | 2560 ± 150 a |
CCN-10 | 18.7 ± 3.1 b | 10.2 ± 0.9 a | 35.6 ± 2.5 a | 58.5 ± 5.0 a | 94.2 ± 3.5 a | 0.6 ± 0.1 a | 862. 1 ± 85 c | 219 ± 40 a | 285.6 ± 40 a | 942 ± 100 a | 2685 ± 190 a |
CCN-51 | 23.6 ± 1.5 a | 8.3 ± 1.4 a | 35.7 ± 5.5 a | 44.5 ± 8.0 b | 80.2 ± 5.2 b | 0.8 ± 0.1 a | 941.3 ± 50 c | 93 ± 15 b | 156 ± 20 b | 956 ± 240 a | 2210 ± 115 b |
SJ-02 | 16.8 ± 2.0 b | 9.5 ± 1.3 a | 35.4 ± 6.0 a | 59.5 ± 7.5 a | 95.0 ± 6.0 a | 0.6 ± 0.0 a | 1035.6 ± 40 b | 169 ± 50 a | 270 ± 60 a | 1152 ± 130 a | 2760 ± 120 a |
Cepec-2002 | 18.6 ± 0.8 b | 8.4 ± 0.9 a | 28.4 ± 8.0 a | 40.2 ± 4.0 b | 68.7 ± 12.0 b | 0.7 ± 0.1 a | 1068.8 ± 30 b | 200 ± 30 a | 218.0 ± 20 a | 1246 ± 70 a | 2874 ± 65 a |
PH-16 | 17.20.9 b | 11.3 ± 0.6 b | 33.5 ± 5.5 a | 59.6 ± 5.0 a | 93.1 ± 10.0 a | 0.5 ± 0.0 a | 917.5 ± 70 c | 147 ± 20 a | 232.0 ± 30 a | 1158 ± 100 a | 2761 ± 150 a |
PS-1319 | 24.7 ± 2.1 a | 9.6 ± 0.4 a | 41.1 ± 2.5 a | 52.8 ± 5.0 a | 93.9 ± 4.5 a | 0.8 ± 0.1 a | 900.1 ± 65 c | 153 ± 30 a | 204.4 ± 30 a | 1262 ± 100 a | 2830 ± 160 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso, R.S.; Gomes, F.P.; Silva, D.C. Morphoanatomic and Physiological Characterization of Cacao (Theobroma cacao L.) Genotypes in the South of Bahia, Brazil. Agronomy 2024, 14, 2730. https://doi.org/10.3390/agronomy14112730
Alonso RS, Gomes FP, Silva DC. Morphoanatomic and Physiological Characterization of Cacao (Theobroma cacao L.) Genotypes in the South of Bahia, Brazil. Agronomy. 2024; 14(11):2730. https://doi.org/10.3390/agronomy14112730
Chicago/Turabian StyleAlonso, Rogerio S., Fábio P. Gomes, and Delmira C. Silva. 2024. "Morphoanatomic and Physiological Characterization of Cacao (Theobroma cacao L.) Genotypes in the South of Bahia, Brazil" Agronomy 14, no. 11: 2730. https://doi.org/10.3390/agronomy14112730
APA StyleAlonso, R. S., Gomes, F. P., & Silva, D. C. (2024). Morphoanatomic and Physiological Characterization of Cacao (Theobroma cacao L.) Genotypes in the South of Bahia, Brazil. Agronomy, 14(11), 2730. https://doi.org/10.3390/agronomy14112730