Cultivation Practices Affect Biomass Yield and Quality of “Felina 32”, an Industrial Hemp Variety
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Soil Characteristics
2.3. Experimental Management
2.4. Yield Quality Characteristics Measures
2.5. Meteorological Data & Statistical Analysis
3. Results
3.1. Meteorological Data
3.2. Hemp’s Biomass Yield
3.3. Hemp’s Quality Characteristics
3.4. Yield–Nitrogen Uptake Relation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gilmore, S.; Peakall, R.; Robertson, J. Short tandem repeat (STR) DNA markers are hypervariable and informative in Cannabis sativa: Implications for forensic investigations. Forensic Sci. Int. 2003, 131, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Small, E. Evolution and Classification of Cannabis sativa (Marijuana, Hemp) in Relation to Human Utilization. Bot. Rev. 2015, 81, 189–294. [Google Scholar] [CrossRef]
- Clarke, R.C.; Merlin, M. Cannabis: Evolution and Ethnobotany; First Paperback Printing, Ed.; University of California Press: Berkeley, CA, USA; Los Angeles, CA, USA; London, UK, 2016; Available online: https://www.jstor.org/stable/10.1525/j.ctt3fh2f8 (accessed on 28 April 2021).
- McPartland, J.M.; Guy, G.W. The evolution of Cannabis and coevolution with the cannabinoid receptor—A hypothesis. In The Medicinal Uses of Cannabis and Cannabinoids; Royal Society of Pharmacists: London, UK, 2004; pp. 71–101. [Google Scholar]
- Hazekamp, A.; Tejkalová, K.; Papadimitriou, S. Cannabis: From Cultivar to Chemovar II—A Metabolomics Approach to Cannabis Classification. Cannabis Cannabinoid Res. 2016, 1, 202–215. [Google Scholar] [CrossRef]
- Piomelli, D.; Russo, E.B. The Cannabis sativa Versus Cannabis indica Debate: An Interview with Ethan Russo, MD. Cannabis Cannabinoid Res. 2016, 1, 44–46. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Wang, J.; Yang, Y.; Deng, G.; Yu, J.; Hu, W.; Guo, L.; Du, G.; Liu, F. Fiber hemp (Cannabis sativa L.) yield and its response to fertilization and planting density in China. Ind. Crops Prod. 2022, 177, 114542. [Google Scholar] [CrossRef]
- Tang, K.; Struik, P.C.; Yin, X.; Calzolari, D.; Musio, S.; Thouminot, C.; Bjelková, M.; Stramkale, V.; Magagnini, G.; Amaducci, S. A comprehensive study of planting density and nitrogen fertilization effect on dual-purpose hemp (Cannabis sativa L.) cultivation. Ind. Crops Prod. 2017, 107, 427–438. [Google Scholar] [CrossRef]
- Finnan, J.; Burke, B. Potassium fertilization of hemp (Cannabis sativa). Ind. Crops Prod. 2013, 41, 419–422. [Google Scholar] [CrossRef]
- Miller, N.G. The genera of the Cannabaceae in the southeastern United States. J. Arnold Arbor. 1970, 51, 185–203. [Google Scholar] [CrossRef]
- Aubin, M.; Seguin, P.; Vanasse, A.; Tremblay, G.F.; Mustafa, A.F.; Charron, J. Industrial Hemp Response to Nitrogen, Phosphorus, and Potassium Fertilization. Crop Forage Turfgrass Manag. 2015, 1, 1–10. [Google Scholar] [CrossRef]
- Papastylianou, P.; Kakabouki, I.; Travlos, I. Effect of Nitrogen Fertilization on Growth and Yield of Industrial Hemp (Cannabis sativa L.). Not. Bot. Horti Agrobot. 2018, 46, 197–201. [Google Scholar] [CrossRef]
- Jordan, H.V.; Lang, A.L.; Enfield, G.H. Effects of fertilizers on yields and breaking strengths of American hemp, Cannabis sativa. Agron. J. 1946, 38, 551–562. [Google Scholar] [CrossRef]
- Cosentino, S.L.; Riggi, E.; Testa, G.; Scordia, D.; Copani, V. Evaluation of European developed fibre hemp genotypes (Cannabis sativa L.) in semi-arid Mediterranean environment. Ind. Crops Prod. 2013, 50, 312–324. [Google Scholar] [CrossRef]
- Tang, K.; Fracasso, A.; Struik, P.C.; Yin, X.; Amaducci, S. Water-and nitrogen-use efficiencies of hemp (Cannabis sativa L.) based on whole-canopy measurements and modeling. Front. Plant Sci. 2018, 9, 951. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.; Bhattarai, S.P.; Midmore, D.J. Effect of industrial hemp (Cannabis sativa L.) planting density on weed suppression, crop growth, physiological responses, and fibre yield in the subtropics. Renew Bioresour. 2014, 2, 1–7. [Google Scholar] [CrossRef]
- Gorchs, G.; Lloveras, J.; Serrano, L.; Cela, S. Hemp Yields and Its Rotation Effects on Wheat under Rainfed Mediterranean Conditions. Agron. J. 2017, 109, 1551–1560. [Google Scholar] [CrossRef]
- Tang, K.; Struik, P.C.; Yin, X.; Thouminot, C.; Bjelková, M.; Stramkale, V.; Amaducci, S. Comparing hemp (Cannabis sativa L.) cultivars for dual-purpose production under contrasting environments. Ind. Crops Prod. 2016, 87, 33–44. [Google Scholar] [CrossRef]
- Cosentino, S.L.; Testa, G.; Scordia, D.; Copani, V. Sowing time and prediction of flowering of different hemp (Cannabis sativa L.) genotypes in southern Europe. Ind. Crops Prod. 2012, 37, 20–33. [Google Scholar] [CrossRef]
- Cappelletto, P.; Brizzi, M.; Mongardini, F.; Barberi, B.; Sannibale, M.; Nenci, G.; Poli, M.; Corsi, G.; Grassi, G.; Pasini, P. Italy-grown hemp: Yield, composition and cannabinoid content. Ind. Crops Prod. 2001, 13, 101–113. [Google Scholar] [CrossRef]
- Di Bari, V.; Campi, P.; Colucci, R.; Mastrorilli, M. Potential productivity of fibre hemp in southern Europe. Euphytica 2004, 140, 25–32. [Google Scholar] [CrossRef]
- Deleuran, L.C.; Flengmark, P.K. Yield Potential of Hemp (Cannabis sativa L.) Cultivars in Denmark. J. Ind. Hemp 2006, 10, 19–31. [Google Scholar] [CrossRef]
- Westerhuis, W.; Amaducci, S.; Struik, P.C.; Zatta, A.; Van Dam, J.E.G.; Stomp, T.J. Sowing density and harvest time affect fiber content in hemp (Cannabis sativa) through their effects on stem weight. Ann. Appl. Biol. 2009, 155, 225–244. [Google Scholar] [CrossRef]
- Jankauskienė, Z.; Gruzdevienė, E. Physical parameters of dew retted, and water retted hemp (Cannabis sativa L.) fibres. Zemdirbyste-Agriculture 2013, 100, 71–80. [Google Scholar] [CrossRef]
- Karche, T.; Singh, M.R. The application of hemp (Cannabis sativa L.) for a green economy: A review. Turk. J. Bot. 2019, 43, 710–723. [Google Scholar] [CrossRef]
- Sorrentino, G. Introduction to emerging industrial applications of cannabis (Cannabis sativa L.). Rend. Lincei 2021, 32, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Rheay, H.T.; Omondi, E.C.; Brewer, C.E. Potential of hemp (Cannabis sativa L.) for paired phytoremediation and bioenergy production. GCB Bioenergy 2021, 13, 525–536. [Google Scholar] [CrossRef]
- Young, E.M. Revival of Industrial Hemp: A Systematic Analysis of the Current Global Industry to Determine Limitations and Identify Future Potential Within the Concept of Sustainability. Master’s Thesis, Lund University, Lund, Sweden, 2005. Available online: https://www.lumes.lu.se/sites/lumes.lu.se/files/erin_young.pdf (accessed on 9 December 2005).
- FAO. The International Support Programme for Irrigation Water Management Land and Water Development Division; FAO Via delle Terme di Caracalla: Rome, Italy, 1986; pp. 1–74. [Google Scholar]
- USDA. Soil Survey Staff. Soil Taxonomy. Basic System of Soil Classification for Making and Interpreting Soil Surveys. In Agricultural Handbook; USDA: Washington, DC, USA, 1975; Volume 466, p. 754. [Google Scholar]
- Mishchenko, S.; Mokher, J.; Laiko, I.; Burbulis, N.; Kyrychenko, H.; Dudukova, S. Phenological growth stages of hemp (Cannabis sativa L.): Codification and description according to the BBCH scale. Žemės Ūkio Moksl. 2017, 24, 31–36. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics. A Biometrical Approach, 2nd ed.; McGraw-Hill, Inc.: New York, NY, USA, 1982; 633p. [Google Scholar]
- Yazici, L. Optimizing plant density for fiber and seed production in industrial hemp (Cannabis sativa L.). J. King Saud Univ.-Sci. 2023, 35, 102419. [Google Scholar] [CrossRef]
- Amaducci, S.; Colauzzi, M.; Bellocchi, G.; Cosentino, S.L.; Pahkala, K.; Stomph, T.J.; Westerhuis, W.; Zatta, A.; Venturi, G. Evaluation of a phenological model for strategic decisions for hemp (Cannabis sativa L.) biomass production across European sites. Ind. Crops Prod. 2012, 37, 100–110. [Google Scholar] [CrossRef]
- Amaducci, S.; Scordia, D.; Liu, F.H.; Zhang, Q.; Guo, H.; Testa, G.; Cosentino, S.L. Key cultivation techniques for hemp in Europe and China. Ind. Crops Prod. 2015, 68, 2–16. [Google Scholar] [CrossRef]
- Jasinskas, A.; Streikus, D.; Vonžodas, T. Fibrous hemp (Felina 32, USO 31, Finola) and fibrous nettle processing and usage of pressed biofuel for energy purposes. Renew. Energy 2020, 149, 11–21. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Bartels, D.; Sunkar, R. Drought and salt tolerance in plants CRC. Crit. Rev. Plant Sci. 2007, 24, 23–58. [Google Scholar] [CrossRef]
- Adesina, I.; Bhowmik, A.; Sharma, H.; Shahbazi, A. A review on the current state of knowledge of growing conditions, agronomic soil health practices and utilities of hemp in the United States. Agriculture 2020, 10, 129. [Google Scholar] [CrossRef]
- Berrada, A. Hemp Deficit Irrigation Trial at ARDEC South in 2017; Technical Report; Agricultural Experiment Station, Colorado State University: Fort Collins, CO, USA, 2019; pp. 64–67. [Google Scholar]
- Herppich, W.B.; Gusovius, H.J.; Flemming, I.; Drastig, K. Effects of drought and heat on photosynthetic performance, water use and yield of two selected fiber hemp cultivars at a poor-soil site in Brandenburg (Germany). Agronomy 2020, 10, 1361. [Google Scholar] [CrossRef]
- Jankauskienė, Z.; Gruzdevienė, E. Screening of Industrial Hemp (Cannabis sativa L.) Cultivars for Biomass Yielding Capacities in Lithuania. J. Nat. Fibers 2015, 12, 368–377. [Google Scholar] [CrossRef]
- House, J.D.; Neufeld, J.; Leson, G. Evaluating the Quality of Protein from Hemp Seed (Cannabis sativa L.) Products Through the use of the Protein Digestibility-Corrected Amino Acid Score Method. J. Agric. Food Chem. 2010, 58, 11801–11807. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, J.; Zhang, J.; Song, T.; Huang, M.; Yu, G. Preliminary study of fertilizing N, P and K on hemp stem yield. Plant Fiber Sci. China 2012, 34, 15–117. [Google Scholar]
- Prade, T.; Svensson, S.; Andersson, A.; Hutley, L. Biomass and energy yield of industrial hemp grown for biogas and solid fuel. Biomass Bioenergy 2011, 35, 3040–3049. [Google Scholar] [CrossRef]
- De Peters, E.J.; Medrano, J.F.; Bath, D.L. A Nutritional Evaluation of Mixed Winter Cereals with Vetch Utilized as Silage or Hay. J. Dairy Sci. 1989, 72, 3247–3254. [Google Scholar] [CrossRef]
- Jung, H.G. Forage Lignins and Their Effects on Fiber Digestibility. Agron. J. 1989, 81, 33–38. [Google Scholar] [CrossRef]
- Moore, K.J.; Jung, H.J.G. Lignin and fiber digestion. J. Range Manag. 2001, 54, 420–430. [Google Scholar] [CrossRef]
- Giannoulis, K.D.; Bartzialis, D.; Skoufogianni, E.; Gintsioudis, I.; Danalatos, N.G. Could a Legume–Switchgrass Sod-Seeding System Increase Forage Productivity? Plants 2022, 11, 2970. [Google Scholar] [CrossRef] [PubMed]
- Chiara Cattaneo, C.; Givonetti, A.; Leoni, V.; Guerrieri, N.; Manfredi, M.; Giorgi, A.; Cavaletto, M. Biochemical aspects of seeds from Cannabis sativa L. plants grown in a mountain environment. Sci. Rep. 2021, 11, 3927. [Google Scholar] [CrossRef]
- Kumar, V.; Rani, A.; Solanki, S.; Hussain, S.M. Influence of growing environment on the biochemical composition and physical characteristics of soybean seed. J. Food Compos. Anal. 2006, 19, 188–195. [Google Scholar] [CrossRef]
- Erickson, L.R.; Voldeng, H.D.; Beversdorf, W.D. Early generation selection for protein in Glycine max × G. soja crosses. Can. J. Plant Sci. 1981, 61, 901–908. [Google Scholar] [CrossRef]
- Giannoulis, K.D.; Danalatos, N.G. Switchgrass (Panicum virgatum L.) nutrients use efficiency and uptake characteristics, and biomass yield for solid biofuel production under Mediterranean conditions. Biomass Bioenergy 2014, 68, 24–31. [Google Scholar] [CrossRef]
- Tigka, E.L.; Beslemes, D.F.; Danalatos, N.G.; Tzortzios, S. Evaluation of cover-cropping managements on productivity and N-utilization efficiency of kenaf (Hibiscus cannabinus L.), under different nitrogen fertilization rates and soil types. Eur. J. Agron. 2013, 46, 1–9. [Google Scholar] [CrossRef]
- Skoufogianni, E.; Danalatos, N.G.; Dimoyiannis, D.; Efthimiadis, P. Effects of pea cultivation as cover crop on nitrogen-use efficiency and nitrogen uptake by subsequent maize and sunflower crops in a sandy soil in Central Greece. Commun. Soil Sci. Plant Anal. 2013, 44, 861–886. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannoulis, K.D.; Bartzialis, D.; Gintsioudis, I.; Danalatos, N.G. Cultivation Practices Affect Biomass Yield and Quality of “Felina 32”, an Industrial Hemp Variety. Agronomy 2024, 14, 2743. https://doi.org/10.3390/agronomy14112743
Giannoulis KD, Bartzialis D, Gintsioudis I, Danalatos NG. Cultivation Practices Affect Biomass Yield and Quality of “Felina 32”, an Industrial Hemp Variety. Agronomy. 2024; 14(11):2743. https://doi.org/10.3390/agronomy14112743
Chicago/Turabian StyleGiannoulis, Kyriakos D., Dimitrios Bartzialis, Ippolitos Gintsioudis, and Nicholaos G. Danalatos. 2024. "Cultivation Practices Affect Biomass Yield and Quality of “Felina 32”, an Industrial Hemp Variety" Agronomy 14, no. 11: 2743. https://doi.org/10.3390/agronomy14112743
APA StyleGiannoulis, K. D., Bartzialis, D., Gintsioudis, I., & Danalatos, N. G. (2024). Cultivation Practices Affect Biomass Yield and Quality of “Felina 32”, an Industrial Hemp Variety. Agronomy, 14(11), 2743. https://doi.org/10.3390/agronomy14112743