Fostering Sustainable Potato Production: A Collaborative European Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pedoclimatic Regions and Study Areas
2.2. Potato Agronomical Situation: A Regional Overview
2.3. Survey to Stakeholders
- Section 1. A brief explanation of the project, the purpose of the survey, and the respondent’s informed consent are required to be signed by each respondent before the questionnaire can be filled out.
- Section 2. General respondent information (gender, age, type of stakeholder, etc.).
- Section 3. Identification of the most relevant agronomic and environmental problems of potato production in the area (choice from a list of options) and qualitative assessment of their severity.
- Section 4. Identification of end-users’ needs through a qualitative assessment of the priority that should be given to different objectives related to the major agronomic and environmental problems of potato production in the area.
- Section 5. Identification of the farming practices best suited to addressing the previously identified problems. Farming practices were grouped into tillage, fertilization, soil conservation, and pest/disease control practices. Each respondent could choose from a list of practices and add other practices not included in the list.
2.4. Stakeholders Participating in the Survey
2.5. Analysis of Survey Results
- D = {D1, …, Di, …, Dn} is the set of possible alternatives to adopt, which, in our case, were the different agricultural practices that would meet the proposed objectives to a different degree of efficiency.
- C = {C1, …, Cj, …, Cm} is the set of m criteria, in our case objectives, with which each agricultural practice (D) to be adopted was valued for effectiveness. In this case, D and C were finite sets, which allowed us to avoid convergence, integrability, and measurability problems.
- r: D × C → r is a function where each decision (Di) and each criterion (Cj) corresponds to a real interval: (Cj): (Di, Cj) → r (Di, Cj) = rij
- I is the set of linguistic labels used by decision makers to evaluate the priority of each alternative Di to meet each objective Cj and takes values between “Very low” (0) and “Very high” (5).
- ≺ are the evaluations of the decision makers regarding the different alternatives Di and their effectiveness in meeting the objectives Cj considered in the decision.
2.6. Focus Groups
3. Results
3.1. Assessment of the Most Relevant Agro-Environmental Problems in Each Study Area
3.2. Prioritization of Objectives (End-Users’ Needs)
3.3. Identification of the Most Effective Farming Practices to Address Agronomic and Environmental Problems
3.3.1. Tillage Practices
3.3.2. Fertilization Practices
3.3.3. Soil Conservation Practices
3.3.4. Pest and Disease Control Practices
3.3.5. Summary of the Proposed Farming Practices
3.4. Results from Focus Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, L.; Mu, T.; Ma, M.; Zhang, R.; Sun, Q.; Xu, Y. Nutritional Evaluation of Different Cultivars of Potatoes (Solanum tuberosum L.) from China by Grey Relational Analysis (GRA) and Its Application in Potato Steamed Bread Making. J. Integr. Agric. 2019, 18, 231–245. [Google Scholar] [CrossRef]
- European Statistical Office (Eurostat). Crop Production in EU Standard Humidity. Available online: https://ec.europa.eu/eurostat/databrowser/view/apro_cpsh1__custom_13542774/default/table?lang=en (accessed on 30 October 2024).
- Scott, G.J.; Rosegrant, M.W.; Ringler, C. Global Projections for Root and Tuber Crops to the Year 2020. Food Policy 2000, 25, 561–597. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, K.; Khan, K.S.; Fudjoe, S.K.; Li, L.; Wang, L.; Luo, Z. Deficit Irrigation as an Effective Way to Increase Potato Water Use Efficiency in Northern China: A Meta-Analysis. Agronomy 2024, 14, 1533. [Google Scholar] [CrossRef]
- FAOSTAT. 2024. Available online: https://www.fao.org/faostat/#home (accessed on 3 September 2024).
- Bomers, S.; Ribarits, A.; Kamptner, A.; Tripolt, T.; von Gehren, P.; Prat, N.; Söllinger, J. Survey of Potato Growers’ Perception of Climate Change and Its Impacts on Potato Production in Germany, Switzerland, and Austria. Agronomy 2024, 14, 1399. [Google Scholar] [CrossRef]
- Quinton, J.N.; Fiener, P. Soil Erosion on Arable Land: An Unresolved Global Environmental Threat. Prog. Phys. Geogr. Earth Environ. 2023, 48, 136–161. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil Degradation in the European Mediterranean Region: Processes, Status and Consequences. Sci. Tot. Environ. 2022, 805, 150106. [Google Scholar] [CrossRef] [PubMed]
- Prăvălie, R.; Patriche, C.; Bandoc, G. Quantification of Land Degradation Sensitivity Areas in Southern and Central Southeastern Europe. New Results Based on Improving DISMED Methodology with New Climate Data. Catena 2017, 158, 309–320. [Google Scholar] [CrossRef]
- FAO World Fertilizer Trends and Outlook to 2018; FAO: Rome, Italy, 2015.
- Sabir, M.S.; Shahzadi, F.; Ali, F.; Shakeela, Q.; Niaz, Z.; Ahmed, S. Comparative Effect of Fertilization Practices on Soil Microbial Diversity and Activity: An Overview. Curr. Microbiol. 2021, 78, 3644–3655. [Google Scholar] [CrossRef]
- Ollio, I.; Santás-Miguel, V.; Gómez, D.S.; Lloret, E.; Sánchez-Navarro, V.; Martínez-Martínez, S.; Egea-Gilabert, C.; Fernández, J.A.; Calviño, D.F.; Zornoza, R. Effect of Biofertilizers on Broccoli Yield and Soil Quality Indicators. Horticulturae 2024, 10, 42. [Google Scholar] [CrossRef]
- Lutaladio, N.; Ortíz, O.; Haverkort, A.; Caldiz, D. Sustainable potato production, guidelines for developing countries. In International Year of the Potato Secretariat Plant Production and Protection Division; Food and Agriculture Organization of the United Nations: Washington, DC, USA, 2009; ISBN 978-92-5-106409-2. [Google Scholar]
- Alcântara, D.B.; Fernandes, T.S.M.; Nascimento, H.O.; Lopes, A.F.; Menezes, M.G.G.; Lima, A.C.A.; Carvalho, T.V.; Grinberg, P.; Milhome, M.A.L.; Oliveira, A.H.B.; et al. Diagnostic Detection Systems and QuEChERS Methods for Multiclass Pesticide Analyses in Different Types of Fruits: An Overview from the Last Decade. Food Chem. 2019, 298, 124958. [Google Scholar] [CrossRef]
- Eskola, M.; Elliott, C.T.; Hajšlová, J.; Steiner, D.; Krska, R. Towards a Dietary-Exposome Assessment of Chemicals in Food: An Update on the Chronic Health Risks for the European Consumer. Crit. Rev. Food Sci. Nutr. 2020, 60, 1890–1911. [Google Scholar] [CrossRef] [PubMed]
- Morugán-Coronado, A.; Pérez-Rodríguez, P.; Insolia, E.; Soto-Gómez, D.; Fernández-Calviño, D.; Zornoza, R. The Impact of Crop Diversification, Tillage and Fertilization Type on Soil Total Microbial, Fungal and Bacterial Abundance: A Worldwide Meta-Analysis of Agricultural Sites. Agric. Ecosyst. Environ. 2022, 329, 107867. [Google Scholar] [CrossRef]
- Calatrava, J.; Martínez-Granados, D.; Zornoza, R.; González-Rosado, M.; Lozano-García, B.; Vega-Zamora, M.; Gómez-López, M.D. Barriers and Opportunities for the Implementation of Sustainable Farming Practices in Mediterranean Tree Orchards. Agronomy 2021, 11, 821. [Google Scholar] [CrossRef]
- Che, T.; Zhang, X.; He, M.; Wang, F.; Li, N.; Zang, X.; Xiao, Z.; Xu, Y.; Hu, F.; Ren, Y.; et al. Common vetch intercropping with reduced irrigation ensures potato production by optimizing microbial interactions. Field Crops Res. 2024, 307, 109267. [Google Scholar] [CrossRef]
- Hendriks, C.M.J.; Shrivastava, V.; Sigurnjak, I.; Lesschen, J.P.; Meers, E.; Van Noort, R.; Yang, Z.; Rietra, R.P.J.J. Replacing Mineral Fertilisers for Bio-Based Fertilisers in Potato Growing on Sandy Soil: A Case Study. Appl. Sci. 2022, 12, 341. [Google Scholar] [CrossRef]
- European Commission Farm to Fork Strategy. DG SANTE/Unit ‘Food Information and Composition, Food Waste’; European Commission: Brussels, Belgium, 2020; Volume 23. [Google Scholar]
- Okoli, C.; Pawlowski, S.D. The Delphi method as a research tool: An example, design considerations and applications. Inf. Manag. 2004, 42, 15–29. [Google Scholar] [CrossRef]
- Skulmoski, G.J.; Hartman, F.T.; Krahn, J. The Delphi method for graduate research. J. Inf. Technol. Educ. Res. 2007, 6, 1–21. [Google Scholar] [CrossRef]
- Sturgis, P.; Roberts, C.; Smith, P. Middle Alternatives Revisited: How the Neither/nor Response Acts as a Way of Saying “I Don’t Know”? Sociol. Methods Res. 2012, 43, 15–38. [Google Scholar] [CrossRef]
- Zeleny, M. Multiple Criteria Decision Making (MCDM); Wiley StatsRef: Statistics Reference Online; Wiley: Chichester, UK, 2014. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1981; Volume 186. [Google Scholar] [CrossRef]
- Lai, Y.J.; Liu, T.Y.; Hwang, C.L. TOPSIS for MODM. Eur. J. Oper. Res. 1994, 76, 486–500. [Google Scholar] [CrossRef]
- Ghadermarzi, H.; Ataei, P.; Karimi, H.; Safaei, S.A. Assessment of Social Sustainability Components in Agriculture Sector of Iran Using a Systemic Approach. Paddy Water Environ. 2020, 18, 547–559. [Google Scholar] [CrossRef]
- Di Bene, C.; Dolores Gómez-López, M.; Francaviglia, R.; Farina, R.; Blasi, E.; Martínez-Granados, D.; Calatrava, J. Barriers and Opportunities for Sustainable Farming Practices and Crop Diversification Strategies in Mediterranean Cereal-Based Systems. Front. Environ. Sci. 2022, 10, 861225. [Google Scholar] [CrossRef]
- Muangman, J.; Krootsong, K.; Polrong, P.; Yukunthorn, W.; Udomsap, W. Fuzzy Multicriteria Decision-Making for Ranking Intercrop in Rubber Plantations under Social, Economic, and Environmental Criteria. Adv. Fuzzy Syst. 2020, 2020, 6508590. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Harasim, E. Chemical Properties of Soil in Four-Field Crop Rotations under Organic and Conventional Farming Systems. Agronomy 2020, 10, 1045. [Google Scholar] [CrossRef]
- Li, H.; Liu, P.; Sun, W.; Zhang, H.; Liu, X.; Li, P.; Zhang, F. Mechanized No-Tillage Planting with Maize Straw Mulching Improves Potato Yield and Water Use Efficiency in Arid Regions of Northwest China. Agronomy 2024, 8, 1711. [Google Scholar] [CrossRef]
- Mukherjee, A.; Naskar, S.K.; Ray, R.C.; Pati, K.; Mukherjee, A.K. Sweet Potato and Taro Resilient to Stresses: Sustainable Livelihood in Fragile Zones Vulnerable to Climate Changes. J. Environ. Sociobiol. 2015, 12, 53–64. [Google Scholar]
- van Capelle, C.; Schrader, S.; Brunotte, J. Tillage-Induced Changes in the Functional Diversity of Soil Biota—A Review with a Focus on German Data. Eur. J. Soil. Biol. 2012, 50, 165–181. [Google Scholar] [CrossRef]
- Larkin, R.P.; Griffin, T.S.; Honeycutt, C.W.; Olanya, O.M.; He, Z. Potato Cropping System Management Strategy Impacts Soil Physical, Chemical, and Biological Properties over Time. Soil. Till. Res. 2021, 213, 105148. [Google Scholar] [CrossRef]
- Djaman, K.; Koudahe, K.; Koubodana, H.D.; Saibou, A.; Essah, S. Tillage Practices in Potato (Solanum tuberosum, L.) Production: A Review. Am. J. Potato Res. 2022, 99, 1–12. [Google Scholar] [CrossRef]
- Londhe, S. Sustainable Potato Production and the Impact of Climate Change; IGI Global: Hershey, PA, USA, 2016; pp. 1–322. [Google Scholar] [CrossRef]
- Penuelas, J.; Coello, F.; Sardans, J. A Better Use of Fertilizers Is Needed for Global Food Security and Environmental Sustainability. Agric. Food Secur. 2023, 12, 5. [Google Scholar] [CrossRef]
- Penuelas, J.; Janssens, I.A.; Ciais, P.; Obersteiner, M.; Sardans, J. Anthropogenic Global Shifts in Biospheric N and P Concentrations and Ratios and Their Impacts on Biodiversity, Ecosystem Productivity, Food Security, and Human Health. Glob. Chang. Biol. 2020, 26, 1962–1985. [Google Scholar] [CrossRef]
- Xiong, W.; Tarnavsky, E. Better Agronomic Management Increases Climate Resilience of Maize to Drought in Tanzania. Atmosphere 2020, 11, 982. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Potassium: A Neglected Nutrient in Global Change. Glob. Ecol. Biogeogr. 2015, 24, 261–275. [Google Scholar] [CrossRef]
- Barreiro Hurle, J.; Bogonos, M.; Himics, M.; Hristov, J.; Perez Dominguez, I.; Sahoo, A.; Salputra, G.; Weiss, F.; Baldoni, E.; Elleby, C. Modelling Environmental and Climate Ambition in the Agricultural Sector with the CAPRI Model; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Lóránt, A.; Allen, B. Net-Zero Agriculture in 2050: How to Get There? Institute for European Environmental Policy: London, UK, 2019. [Google Scholar]
- Poux, X.; Aubert, P.M. An Agroecological Europe in 2050: Multifunctional Agriculture for Healthy Eating. Findings from the Ten Years for Agroecology (TYFA) Modelling Exercise; Institute of Sustainable Development and International Relations: Paris, France, 2018; Volume 9. [Google Scholar]
- Liu, X.; Lehtonen, H.; Purola, T.; Pavlova, Y.; Rötter, R.; Palosuo, T. Dynamic Economic Modelling of Crop Rotations with Farm Management Practices under Future Pest Pressure. Agric. Syst. 2016, 144, 65–76. [Google Scholar] [CrossRef]
- Davidson, R.D.; Houser, A.J.; Haslar, R. Control of Early Blight in the San Luis Valley, Colorado. Am. J. Potato Res. 2016, 93, 43–49. [Google Scholar] [CrossRef]
- Meno, L.; Escuredo, O.; Rodríguez-Flores, M.S.; Seijo, M.C. Looking for a Sustainable Potato Crop. Field Assessment of Early Blight Management. Agric. For. Meteorol. 2021, 308–309, 108617. [Google Scholar] [CrossRef]
- Abuley, I.K.; Hansen, J.G.; Fariñas, L.M. Evaluation of Models Based on a Generic Infection Model for Controlling Early Blight in Potatoes. J. Crop Prot. 2023, 169, 106229. [Google Scholar] [CrossRef]
- Lechenet, M.; Dessaint, F.; Py, G.; Makowski, D.; Munier-Jolain, N. Reducing Pesticide Use While Preserving Crop Productivity and Profitability on Arable Farms. Nat. Plants 2017, 3, 17008. [Google Scholar] [CrossRef]
- Pasche, J.S.; Piche, L.M.; Gudmestad, N.C. Effect of the F129L Mutation in Alternaria Solani on Fungicides Affecting Mitochondrial Respiration. Plant Dis. 2007, 89, 269–278. [Google Scholar] [CrossRef]
- Rosenzweig, N.; Atallah, Z.K.; Olaya, G.; Stevenson, W.R. Evaluation of QoI Fungicide Application Strategies for Managing Fungicide Resistance and Potato Early Blight Epidemics in Wisconsin. Plant Dis. 2008, 92, 561–568. [Google Scholar] [CrossRef]
- Altieri, M.A. The Ecological Role of Biodiversity in Agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef]
- Wang, C.; Yi, Z.; Chen, S.; Peng, F.; Zhao, Q.; Tang, Z.; Shao, M.; Lv, D. Potato–Soybean Intercropping Increased Equivalent Tuber Yield by Improving Rhizosphere Soil Quality, Root Growth, and Plant Physiology of Potato. Agronomy 2024, 14, 2362. [Google Scholar] [CrossRef]
- Tamburini, G.; Bommarco, R.; Wanger, T.C.; Kremen, C.; van der Heijden, M.G.A.; Liebman, M.; Hallin, S. Agricultural Diversification Promotes Multiple Ecosystem Services without Compromising Yield. Sci. Adv. 2020, 6, eaba1715. [Google Scholar] [CrossRef] [PubMed]
- Harbach, C.J.; Wlezien, E.; Tylka, G.L. A Mechanistic Approach to Assessing the Potential for Cover Crops to Serve as Trap Crops for the Soybean Cyst Nematode. Plant Dis. 2021, 105, 1136–1142. [Google Scholar] [CrossRef] [PubMed]
- Vestergård, M. Trap Crops for Meloidogyne Hapla Management and Its Integration with Supplementary Strategies. Appl. Soil. Ecol. 2019, 134, 105–110. [Google Scholar] [CrossRef]
- Piñeiro, J.C. Controlling Cucumber Beetles and Squash Bugs in Cucurbit Crop. A Simple, Effective and Affordable Integrated Pest Management Strategy. Guide Sheet, Integrated Pest Management Program; University of Missouri: Columbia, MO, USA, 2017. [Google Scholar]
- Lichtenberg, E.; Zimmerman, R. Information and Farmers’ Attitudes about Pesticides, Water Quality, and Related Environmental Effects. Agric. Ecosyst. Environ. 1999, 73, 227–236. [Google Scholar] [CrossRef]
- Abuley, I.K.; Nielsen, B.J. Corrigendum to “Evaluation of Models to Control Potato Early Blight (Alternaria solani) in Denmark” [Crop Protection 102 (2017) 118–128]. Crop Prot. 2018, 113, 112. [Google Scholar] [CrossRef]
- Hansen, J.G.; Lassen, P.; Koppel, M.; Valskyte, A.; Turka, I. Operational Use of Internet Based Decision Support for the Control of Potato Late Blight in Estonia, Latvia and Lithuania, 2001 with Focus on late blight monitoring, forecasting, and cultivar observation trials. In Proceedings of the Workshop on the European Network for Development of an Integrated Control Strategy of Potato Late Blight, Edinburgh, UK, 26–30 September 2002; PPO Special Report no. 8. Schepers, H.T.M., Westerdijk, C.E., Eds.; Wageningen University & Research: Wageningen, The Netherlands, 2001; pp. 25–38. [Google Scholar]
- Prokopy, L.S.; Floress, K.; Arbuckle, J.G.; Church, S.P.; Eanes, F.R.; Gao, Y.; Gramig, B.M.; Ranjan, P.; Singh, A.S. Adoption of Agricultural Conservation Practices in the United States: Evidence from 35 Years of Quantitative Literature. J. Soil. Water Conserv. 2019, 74, 520–534. [Google Scholar] [CrossRef]
- Irvine, R.; Houser, M.; Marquart-Pyatt, S.T.; Bogar, G.; Bolin, L.G.; Browning, E.G.; Evans, S.E.; Howard, M.M.; Lau, J.A.; Lennon, J.T. Soil Health through Farmers’ Eyes: Toward a Better Understanding of How Farmers View, Value, and Manage for Healthier Soils. J. Soil. Water Conserv. 2023, 78, 82–92. [Google Scholar] [CrossRef]
- Houser, M.; Campbell, B.; Jacobs, A.; Fanok, S.; Johnson, S.E. Farmers’ Participation in Incentivized Conservation Programs: Exploring Barriers and Opportunities for Innovative Designs. J. Soil. Water Conserv. 2024, 79, 20–30. [Google Scholar] [CrossRef]
- Reimer, A.P.; Weinkauf, D.K.; Prokopy, L.S. The Influence of Perceptions of Practice Characteristics: An Examination of Agricultural Best Management Practice Adoption in Two Indiana Watersheds. J. Rural. Stud. 2012, 28, 118–128. [Google Scholar] [CrossRef]
- Iocola, I.; Angevin, F.; Bockstaller, C.; Catarino, R.; Curran, M.; Messéan, A.; Schader, C.; Stilmant, D.; Van Stappen, F.; Vanhove, P.; et al. An Actor-Oriented Multi-Criteria Assessment Framework to Support a Transition towards Sustainable Agricultural Systems Based on Crop Diversification. Sustainability 2020, 12, 5434. [Google Scholar] [CrossRef]
Bioregion/Country | Common Agricultural Practices | Main Problems | Pesticides in 2020 (kg/ha) * |
---|---|---|---|
Mediterranean South, Spain |
|
| 4.6 |
Lusitanean, Spain |
|
| |
Atlantic Central, Belgium |
|
| 6.4 |
Continental, Germany |
|
| 4.0 |
Nemoral, Estonia |
|
| 1.1 |
Boreal, Finland |
|
| 2.2 |
Case Studies | Code | Potato Acreage in the Case Study Area (ha) (2020) | Production (Tons) (2020) | Efficiency Ratio (Tons/ha) | Average Temperature (°C) | Average Rainfall (mm/Year) |
---|---|---|---|---|---|---|
Mediterranean South, (Murcia) Spain | MDS a | 4592 | 168,623 | 36.72 | 17 (1996–2020) | 312 (1996–2020) |
Lusitanean, (Galicia) Spain | LUS b | 16,003 | 283,667 | 17.72 | 13.6 (1981–2010) | 1299 (1981–2010) |
Atlantic Central, Belgium | ATC c | 38,833 | 1,584,753 | 40.80 | 11 (1991–2020) | 837 (1991–2020) |
Continental, Germany | CON d | 100,700 | 3,973,800 | 39.46 | 9.3 (1991–2020) | 791.4 (1991–2020) |
Nemoral, Estonia | NEM e | 3369 | 94,414 | 28.02 | 6.4 (1991–2020) | 661 (1991–2020) |
Boreal, Finland | BOR f | 20,700 | 624,400 | 30.16 | 6.5 (1991–2020) | 653 (1991–2020) |
Case Studies | Female | Male | ND | Farmers | Advisory Services | Researcher/Academic | NGO | Total Respondents | Average Respondent Age (Years) |
---|---|---|---|---|---|---|---|---|---|
MDS | 5 | 18 | 0 | 15 | 5 | 3 | 0 | 23 | 41.3 |
LUS | 14 | 49 | 0 | 48 | 10 | 4 | 1 | 63 | 45.7 |
ATC | 5 | 17 | 0 | 9 | 5 | 8 | 0 | 22 | 45.3 |
CON | 2 | 16 | 0 | 12 | 4 | 2 | 0 | 18 | 48.0 |
NEM | 10 | 19 | 0 | 16 | 4 | 8 | 1 | 29 | 50.8 |
BOR | 12 | 35 | 1 | 24 | 18 | 4 | 2 | 48 | 51.1 |
Problems | MDS | LUS | ATC | CON | NEM | BOR |
---|---|---|---|---|---|---|
Low and/or variable yields | 2.45 | 3.21 | 2.40 | 3.18 | 2.93 | 2.50 |
Low soil fertility | 2.41 | 2.89 | 1.95 | 2.22 | 2.63 | 2.40 |
Rainfall scarcity in growing period | 2.91 | 2.75 | 3.71 | 3.56 | 2.96 | 2.93 |
Irrigation water scarcity | 2.52 | 3.02 | 3.00 | n.r. | n.r. | n.r. |
High incidence of pests | 2.68 | 3.41 | 3.00 | 3.17 | 2.21 | 1.47 |
High incidence of fungal diseases | 2.77 | 3.33 | 3.47 | 3.11 | 2.75 | 2.44 |
High use of phytosanitary products | 2.55 | 3.24 | 3.41 | 2.28 | 2.25 | 1.59 |
Development of resistance to phytosanitary products | 2.41 | 3.05 | 2.88 | 1.44 | 2.35 | 1.68 |
Low presence of beneficial invertebrates/insects in the soil | 2.86 | 2.57 | 2.20 | 2.47 | 1.91 | 2.26 |
Low soil microbial biodiversity | 3.17 | 2.62 | 2.27 | 1.88 | 2.60 | 2.34 |
Waterlogged soils/inadequate drainage | n.r. | 3.37 | 1.83 | n.r. | 2.48 | 2.42 |
Excessive use of machinery | 2.64 | 2.79 | 2.65 | 2.17 | 2.61 | 2.12 |
Soil compaction | 3.14 | 2.77 | 2.95 | 2.41 | 2.78 | 2.74 |
Water pollution by leaching or run-off of nutrients | 2.73 | 2.80 | 2.86 | 1.41 | 1.74 | 1.40 |
Soil erosion | 2.74 | 2.33 | 2.67 | 1.89 | 1.58 | 2.10 |
SOM loss | 3.48 | 2.39 | 2.75 | 2.39 | 2.58 | 2.79 |
Soil acidification | n.r. | 2.42 | 2.06 | 1.65 | n.r. | n.r. |
High incidence of bacterial diseases | 2.64 | 2.57 | 2.41 | n.r. | n.r. | n.r. |
High weed pressure | 3.04 | 2.98 | 2.42 | 3.35 | n.r. | n.r. |
Low number of earthworms in soil | 3.05 | 2.47 | 2.24 | 1.53 | 2.57 | 2.50 |
Excess rainfall | n.r. | 2.58 | n.r. | 2.72 | 2.30 | 1.93 |
Objectives | MDS | LUS | ATC | CON | NEM | BOR |
---|---|---|---|---|---|---|
Increase soil fertility | 3.96 | 3.11 | 3.71 | 3.47 | 3.61 | 3.80 |
Mobilize soil nutrients during plant growth | 3.73 | 3.22 | 3.53 | 3.69 | 3.63 | 3.45 |
Reduce the incidence of pests and diseases | 3.57 | 3.51 | 3.65 | 3.65 | 3.67 | 3.30 |
Increase soil OM content | 4.00 | 2.92 | 4.00 | 3.24 | 3.70 | 3.88 |
Improve soil structure to improve aeration, water retention and rooting | 4.00 | 3.11 | 3.86 | 3.13 | 3.78 | 4.09 |
Increase soil biodiversity | 3.65 | 3.00 | 3.58 | 3.06 | 3.46 | 3.68 |
Reduce soil erosion | 3.26 | 2.48 | 2.85 | 2.71 | 2.64 | 3.30 |
Reduce soil pollution | 3.45 | 2.77 | 2.32 | 1.94 | 2.52 | 2.15 |
Reduce soil salinization | 3.61 | 2.13 | n.r. | n.r. | n.r. | n.r. |
Reduce soil acidification | n.r. | 2.49 | 2.67 | 2.13 | n.r. | n.r. |
Improve water infiltration/drainage systems | 3.36 | 2.82 | n.r. | 2.6 | 3.46 | 3.52 |
Improve water quality | n.r. | 2.75 | 3.35 | n.r. | n.r. | 2.77 |
Reduce weed incidence | n.r. | 2.81 | n.r. | 3.71 | 3.52 | 2.79 |
Case Studies | MDS | LUS | ATC | CON | NEM | BOR | |
---|---|---|---|---|---|---|---|
Tillage | Conventional tillage | 0.194 | 0.797 | 0.396 | 0.501 | 0.713 | 0.434 |
Tillage according to level curves | 0.240 | 0.024 | 0.301 | 0.000 | 0.156 | 0.038 | |
Shallow tillage | 0.427 | 0.392 | 0.287 | 0.240 | 0.178 | 0.335 | |
Minimum tillage | 0.820 | 0.316 | 0.589 | 0.516 | 0.433 | 0.502 | |
No tillage with herbicides | 0.135 | 0.164 | 0.000 | 0.360 | 0.237 | 0.125 | |
No tillage without herbicides (mechanical weed control) | 0.531 | 0.197 | 0.298 | 0.193 | 0.200 | 0.419 | |
None of these are effective | 0.394 | 0.554 | 0.526 | 0.357 | 0.382 | 0.690 | |
Fertilization | Incorporating crop residues to soil | 0.343 | 0.245 | 0.093 | 0.323 | 0.181 | 0.196 |
Addition of solid OM/manures | 0.441 | 0.462 | 0.696 | 0.462 | 0.427 | 0.664 | |
Use of green manure | 0.457 | 0.117 | 0.548 | 0.61 | 0.710 | 0.627 | |
Combination of manure and mineral fertilizers | 0.290 | 0.263 | 0.140 | 0.258 | 0.230 | 0.226 | |
Precision agriculture to optimize fertilization | 0.250 | 0.431 | 0.163 | 0.203 | 0.313 | 0.303 | |
Use of biostimulants. etc. | 0.547 | 0.254 | 0.256 | 0.345 | 0.309 | 0.060 | |
Addition of slurries | 0.000 | 0.000 | 0.000 | n.r. | 0.000 | 0.000 | |
None of these are effective | 0.293 | 0.667 | 0.305 | 0.226 | 0.436 | 0.283 | |
Soil conservation | Mulching (with crushed offcuts from pruning. etc.) | 0.338 | 0.122 | 0.426 | 0.290 | n.r. | n.r. |
Maintain vegetation cover (natural or cover crops) | 0.296 | 0.236 | 0.394 | 0.636 | n.r. | n.r. | |
Maintain strips of vegetation between lines | 0.234 | 0.055 | 0.194 | 0.113 | n.r. | n.r. | |
Hedges or natural vegetation on edges of the plots | 0.09 | 0.059 | 0.290 | 0.000 | n.r. | n.r. | |
Erosion barriers or margins with vegetation | 0.300 | 0.077 | 0.172 | n.r. | n.r. | n.r. | |
Addition of OM | 0.563 | 0.367 | n.r. | n.r. | 0.397 | 0.428 | |
Crop diversification | 0.666 | 0.706 | n.r. | 0.635 | 0.797 | 0.832 | |
Use of catch crops to reduce N/P leaching | 0.181 | 0.222 | 0.619 | 0.333 | n.r. | n.r. | |
Avoiding plant protection products | n.r. | 0.262 | 0.389 | 0.185 | 0.222 | 0.130 | |
None of these are effective | 0.342 | 0.547 | 0.286 | 0.339 | 0.072 | 0.100 | |
Pest and disease control | Pest alerts | 0.171 | 0.187 | 0.327 | 0 | 0.196 | 0.031 |
Crop diversification | 0.925 | 0.788 | n.r. | 0.646 | 0.787 | 1.000 | |
Trap crops | 0.169 | 0.066 | 0.079 | 0.223 | n.r. | n.r. | |
Increase soil invertebrate biodiversity | 0.378 | 0.249 | n.r. | 0.391 | n.r. | n.r. | |
Use of biostimulants and mycorrhizas | 0.321 | 0.238 | n.r. | 0.359 | n.r. | n.r. | |
Pesticide use | 0.206 | 0.325 | 0.216 | 0.371 | 0.300 | 0.150 | |
Ploughing | n.r. | 0.286 | n.r. | n.r. | 0.158 | 0.149 | |
Allelopathic crops | 0 | n.r. | 0.401 | 0.121 | n.r. | n.r. | |
None of these are effective | 0.306 | 0.495 | 0.754 | 0.221 | 0.139 | 0.135 |
Tillage | MDS | LUS | ATC | CON | NEM | BOR |
---|---|---|---|---|---|---|
Lack of knowledge among farmers about the effectiveness of farming practices | 66.67% | 59.68% | 62.50% | 50.00% | 23.08% | 34.15% |
Lack of tradition in the region | 42.86% | 46.77% | 50.00% | 18.75% | 19.23% | 31.71% |
Complex/difficult to carry out without technical advice | 23.81% | 53.22% | 31.25% | 31.25% | 15.38% | 2.44% |
Complex/difficult to carry out even with technical advice | 14.29% | 3.23% | 0.00% | 31.25% | 11.54% | 4.88% |
Lack of adequate farm machinery | 19.05% | 4.84% | 37.50% | 18.75% | 23.08% | 19.51% |
Inadequate/insufficient governmental support on technical issues | 14.29% | 16.13% | 12.50% | 0.00% | 19.23% | 2.44% |
Lack of enabling legislation/regulations | 4.76% | 4.84% | 12.50% | 18.75% | 0.00% | 2.44% |
The costs are too high | 33.33% | 12.90% | 18.75% | 18.75% | 26.92% | 14.63% |
The benefits do not outweigh the costs | 23.81% | 4.84% | 18.75% | 31.25% | 23.08% | 24.39% |
Incompatibility with other farming practices | 23.81% | 6.45% | 18.75% | 0.00% | 26.92% | 26.83% |
Fertilization | ||||||
Lack of knowledge among farmers about the effectiveness of farming practices | 57.89% | 56.45% | 50.00% | 46.67% | 36.00% | 46.34% |
Lack of tradition in the region | 47.37% | 37.10% | 28.57% | 26.67% | 40.00% | 34.15% |
Complex/difficult to carry out without technical advice | 31.58% | 62.90% | 14.29% | 13.33% | 16.00% | 14.63% |
Complex/difficult to carry out even with technical advice | 15.79% | 3.23% | 7.14% | 33.33% | 0.00% | 12.20% |
Lack of adequate farm machinery | 5.26% | 0.00% | 21.43% | 20.00% | 12.00% | 21.95% |
Inadequate/insufficient governmental support on technical issues | 15.79% | 12.90% | 14.29% | 0.00% | 16.00% | 9.76% |
Lack of enabling legislation/regulation | 0.00% | 6.45% | 28.57% | 26.67% | 4.00% | 4.88% |
The costs are too high | 31.58% | 8.06% | 7.14% | 13.33% | 28.00% | 24.39% |
The benefits do not outweigh the costs | 31.58% | 1.61% | 0.00% | 13.33% | 16.00% | 29.27% |
Incompatibility with other farming practices | 15.79% | 3.23% | 28.57% | 13.33% | 24.00% | 14.63% |
Soil conservation | ||||||
Lack of knowledge among farmers about the effectiveness of farming practices | 66.67% | 61.29% | 50.00% | 33.33% | 52.00% | 48.78% |
Lack of tradition in the region | 44.44% | 45.16% | 50.00% | 20.00% | 20.00% | 31.71% |
Complex/difficult to carry out without technical advice | 38.89% | 54.84% | 21.43% | 26.67% | 12.00% | 14.63% |
Complex/difficult to carry out even with technical advice | 5.56% | 1.61% | 7.14% | 26.67% | 4.00% | 4.88% |
Lack of adequate farm machinery | 5.56% | 3.23% | 0.00% | 13.33% | 16.00% | 21.95% |
Inadequate/insufficient governmental support on technical issues | 16.67% | 14.52% | 42.86% | 6.67% | 24.00% | 14.63% |
Lack of enabling legislation/regulations | 11.11% | 4.84% | 42.86% | 6.67% | 4.00% | 7.32% |
The costs are too high | 27.78% | 3.23% | 28.57% | 6.67% | 20.00% | 21.95% |
The benefits do not outweigh the costs | 16.67% | 0.00% | 0.00% | 20.00% | 12.00% | 21.95% |
Incompatibility with other farming practices | 22.22% | 3.23% | 7.14% | 6.67% | 16.00% | 7.32% |
Pest and disease control | ||||||
Lack of knowledge among farmers about the effectiveness of farming practices | 44.44% | 48.39% | 42.86% | 28.57% | 44.00% | 41.46% |
Lack of tradition in the region | 22.22% | 33.87% | 14.29% | 14.29% | 16.00% | 39.02% |
Complex/difficult to carry out without technical advice | 38.89% | 62.90% | 14.29% | 21.43% | 12.00% | 14.63% |
Complex/difficult to carry out even with technical advice | 5.56% | 4.84% | 7.14% | 35.71% | 12.00% | 4.88% |
Lack of adequate farm machinery | 0.00% | 1.61% | 0.00% | 14.29% | 12.00% | 12.20% |
Inadequate/insufficient governmental support on technical issues | 16.67% | 14.52% | 7.14% | 7.14% | 12.00% | 12.20% |
Lack of enabling legislation/regulations | 27.78% | 6.45% | 28.57% | 21.43% | 12.00% | 7.32% |
The costs are too high | 38.89% | 11.29% | 7.14% | 14.29% | 28.00% | 21.95% |
The benefits do not outweigh the costs | 16.67% | 1.61% | 0.00% | 7.14% | 20.00% | 21.95% |
Incompatibility with other farming practices | 16.67% | 3.22% | 0.00% | 0.00% | 4.00% | 12.20% |
Case Studies | Tillage Practices | Fertilization Practices | Soil Conservation Practices | Pest and Disease Control Practices |
---|---|---|---|---|
MDS | Minimum tillage (0.82); No tillage without herbicides (0.53) | Use of biostimulants, biofertilizers... (0.55); Green manure (0.46); Addition of solid OM/manures (0.44) | Crop diversification (0.67); Addition of solid OM/manures (0.56) | Crop diversification (0.93); Increase soil invertebrates biodiversity (0.38) |
LUS | Conventional tillage (0.80); Shallow tillage (0.39) | Addition of solid OM/manures (0.46); Precision agriculture (0.43) | Crop diversification (0.71); Addition of solid OM/manures (0.37) | Crop diversification (0.79); Use of pesticides (0.32) |
ATC | Minimum tillage (0.59); Conventional tillage (0.40) | Addition of solid OM/manures (0.70); Use of green manure (0.55) | Catch crops to reduce N/P leaching (0.62); Mulching/Vegetation covers (0.43) | Allelopathic crops (0.40); Pest alerts (0.33) |
CON | Minimum tillage (0.52); Conventional tillage (0.50) | Use of green manure (0.61); Addition of solid OM/manures (0.46) | Vegetation covers (0.64); Crop diversification (0.64) | Crop diversification (0.66); Increase soil invertebrates biodiversity (0.39) |
NEM | Conventional tillage (0.71); Minimum tillage (0.43) | Use of green manure (0.71); Addition of solid OM/manures (0.43) | Crop diversification (0.80); Addition of OM (0.40) | Crop diversification (0.79); Use of pesticides (0.30) |
BOR | Minimum tillage (0.50); Conventional tillage (0.43); No tillage without herbicide (0.42) | Addition of solid OM/manures (0.66); Use of green manure (0.63) | Crop diversification (0.83); Addition of OM (0.43) | Crop diversification (1.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morugán-Coronado, A.; Gómez-López, M.D.; Meno, L.; Fernández-Calviño, D.; Wustenberghs, H.; Schrader, S.; Bind, D.-A.; Põder, A.; Shanskiy, M.; Pouta, E.; et al. Fostering Sustainable Potato Production: A Collaborative European Approach. Agronomy 2024, 14, 2762. https://doi.org/10.3390/agronomy14122762
Morugán-Coronado A, Gómez-López MD, Meno L, Fernández-Calviño D, Wustenberghs H, Schrader S, Bind D-A, Põder A, Shanskiy M, Pouta E, et al. Fostering Sustainable Potato Production: A Collaborative European Approach. Agronomy. 2024; 14(12):2762. https://doi.org/10.3390/agronomy14122762
Chicago/Turabian StyleMorugán-Coronado, Alicia, María Dolores Gómez-López, Laura Meno, David Fernández-Calviño, Hilde Wustenberghs, Stefan Schrader, David-Alexander Bind, Anne Põder, Merrit Shanskiy, Eija Pouta, and et al. 2024. "Fostering Sustainable Potato Production: A Collaborative European Approach" Agronomy 14, no. 12: 2762. https://doi.org/10.3390/agronomy14122762
APA StyleMorugán-Coronado, A., Gómez-López, M. D., Meno, L., Fernández-Calviño, D., Wustenberghs, H., Schrader, S., Bind, D. -A., Põder, A., Shanskiy, M., Pouta, E., Tienhaara, A., & Calatrava, J. (2024). Fostering Sustainable Potato Production: A Collaborative European Approach. Agronomy, 14(12), 2762. https://doi.org/10.3390/agronomy14122762