Effective Control of Neofusicoccum parvum in Grapevines: Combining Trichoderma spp. with Chemical Fungicides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Collection and Culture Conditions
2.2. Species Identification and Strain Differentiation by Nuclear Ribosomal Internal Tran-Scribed Spacer (ITS) Region
2.3. In Vitro Growth Rates
2.4. Antagonism Assays on PDA Plates
2.5. Inhibitory Effects of Volatile Compounds Produced by Trichoderma spp. on N. Parvum
2.6. Compatibility Estimation of Trichoderma spp. with Fungicides
2.7. Plant Material and Experimental Design
2.7.1. Cutting Bioassay
2.7.2. Evaluation of Stem Necrosis
2.8. Statistical Analysis
3. Results
3.1. Antagonistic and Pathogenic Fungi: Species Identification and Strain Differentiation by Nuclear Ribosomal Internal Transcribed Spacer (ITS) Region
3.2. In Vitro Growth Rates
3.3. Antagonism Assay: Dual Plate Assay Results
3.4. Inhibitory Effects of Volatile Compounds Produced by Trichoderma spp.
3.5. Compatibility of Trichoderma Strains with Chemical Fungicides
3.6. Stem Disease Bioassay
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bertsch, C.; Ramírez-Suero, M.; Magnin-Robert, M.; Larignon, P.; Chong, J.; Abou-Mansour, E.; Fontaine, F. Grapevine trunk diseases: Complex and still poorly understood. Plant Pathol. 2013, 62, 243–265. [Google Scholar] [CrossRef]
- Khattab, I.M.; Fischer, J.; Kaźmierczak, A.; Thines, E.; Nick, P. Ferulic acid is a putative surrender signal to stimulate programmed cell death in grapevines after infection with Neofusicoccum parvum. Plant Cell Environ. 2023, 46, 339–358. [Google Scholar] [CrossRef] [PubMed]
- Gramaje, D.; Úrbez-Torres, J.R.; Sosnowski, M.R. Managing Grapevine Trunk Diseases with Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. Plant Dis. 2018, 102, 12–39. [Google Scholar] [CrossRef] [PubMed]
- Úrbez-Torres, J.R.; Leavitt, G.M.; Guerrero, J.C.; Guevara, J.; Gubler, W.D. Identification and pathogenicity of Lasiodiplodia theobromae and Diplodia seriata, the causal agents of bot canker disease of grapevines in Mexico. Plant Dis. 2008, 92, 519–529. [Google Scholar] [CrossRef] [PubMed]
- van Niekerk, J.M.; Crous, P.W.; Groenewald, J.Z.; Fourie, P.H.; Halleen, F. DNA phylogeny, morphology and pathogenicity of Botryosphaeria species on grapevines. Mycologia 2004, 96, 781–798. [Google Scholar] [CrossRef]
- Serra, E. Grapevine Trunk Disease in Missouri Vineyards: Prevalence and Causality of Fungal Species by Cultivar; University of Missouri-Columbia: Columbia, MO, USA, 2020. [Google Scholar]
- Martos, S.; Andolfi, A.; Luque, J.; Mugnai, L.; Surico, G.; Evidente, A. Production of phytotoxic metabolites by five species of Botryosphaeriaceae causing decline on grapevines, with special interest in the species Neofusicoccum luteum and N. Parvum. Eur. J. Plant Pathol. 2008, 121, 451–461. [Google Scholar] [CrossRef]
- Úrbez-Torres, J.R.; Gubler, W.D. Pathogenicity of Botryosphaeriaceae species straind from grapevine cankers in California. Plant Dis. 2009, 93, 584–592. [Google Scholar] [CrossRef]
- Guan, X.; Essakhi, S.; Laloue, H.; Nick, P.; Bertsch, C.; Chong, J. Mining new resources for grape resistance against Botryosphaeriaceae: A focus on Vitis vinifera subsp. sylvestris. Plant Pathol. 2016, 65, 273–284. [Google Scholar] [CrossRef]
- Díaz, G.A.; Prehn, D.; Besoain, X.; Chávez, E.R.; Latorre, B.A. Neofusicoccum parvum associated with grapevine trunk diseases in Chile. Plant Dis. 2011, 95, 1032. [Google Scholar] [CrossRef]
- Kaliternam, J.; Milicevic, T.; Bencic, D.; Duralija, B. First report of Neofusicoccum parvum associated with grapevine trunk diseases in Croatia. Plant Dis. 2013, 97, 1656. [Google Scholar] [CrossRef]
- Otoya-Martinez, N.; Leite, L.G.; Harakava, R.; Touray, M.; Hazir, S.; Chacon-Orozco, J.; Bueno, C.J. Disease caused by Neofusicoccum parvum in pruning wounds of grapevine shoots and its control by Trichoderma spp. and Xenorhabdus szentirmaii. Fungal Biol. 2023, 127, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Gramaje, D.; Armengol, J. Fungal trunk pathogens in the grapevine propagation process: Potential inoculum sources, detection, identification, and management strategies. Plant Dis. 2011, 95, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Halleen, F.; Fourie, P.H. An integrated strategy for the proactive management of grapevine trunk disease pathogen infections in grapevine nurseries. South Afr. J. Enol. Vitic. 2016, 37, 104–114. [Google Scholar] [CrossRef]
- Suprapta, D.N. Potential of microbial antagonists as biocontrol agents against plant fungal pathogens. J. ISSAAS 2012, 18, 1–8. [Google Scholar]
- Mesguida, O.; Haidar, R.; Yacoub, A.; Dreux-Zigha, A.; Berthon, J.-Y.; Guyoneaud, R.; Attard, E.; Rey, P. Microbial biological control of fungi associated with grapevine trunk diseases: A review of strain diversity, modes of action, and advantages and limits of current strategies. J. Fungi 2023, 9, 638. [Google Scholar] [CrossRef]
- Marais, A.; Faure, C.; Comont, G.; Candresse, T.; Stempien, E.; Corio-Costet, M.F. Characterization of the mycovirome of the phytopathogenic fungus, Neofusicoccum parvum. Viruses 2021, 13, 375. [Google Scholar] [CrossRef]
- Reis, P.; Magnin-Robert, M.; Nascimento, T.; Spagnolo, A.; Abou-Mansour, E.; Fioretti, C.; Clément, C.; Rego, C.; Fontaine, F. Reproducing Botryosphaeria dieback foliar symptoms in a simple model system. Plant Dis. 2016, 100, 1071–1079. [Google Scholar] [CrossRef]
- Martos Arias, S. El Decaimiento de la Vid: Enfermedades de la Madera Relacionadas con Hongos de la Familia Botryosphaeriaceae; Universitat Autònoma de Barcelona: Barcelona, Spain, 2008. [Google Scholar]
- Zhang, S.; Gan, Y.; Xu, B. Biocontrol potential of a native species of Trichoderma longibrachiatum against Meloidogyne incognita. Appl. Soil Ecol. 2015, 94, 21–29. [Google Scholar] [CrossRef]
- Montesinos, E. Development, registration and commercialization of microbial pesticides for plant protection. Int. Microbiol. 2003, 6, 245–252. [Google Scholar] [CrossRef]
- Latorre, B.A.; Torres, R.; Silva, T.; Elfar, K. Evaluation of the use of wound-protectant fungicides and biological control agents against stem canker (Neofusicoccum parvum) of blueberry. Crop Prot. 2013, 40, 537–545. [Google Scholar] [CrossRef]
- Blundell, R.; Eskalen, A. Evaluation of biological and chemical pruning wound protectants to control grapevine trunk disease pathogens Eutypa lata and Neofusicoccum parvum. Plant Health Prog. 2022, 23, 197–205. [Google Scholar] [CrossRef]
- Benítez, T.; Rincón, A.M.; Limón, M.C.; Codon, A.C. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 2004, 7, 249–260. [Google Scholar] [PubMed]
- Infante, D.; Martínez, B.; Peteira, B.; Reyes, Y.; Herrera, A. Identificación molecular y evaluación patogénica de trece aislamientos de Trichoderma spp. frente a Rhizoctonia solani Kühn. Biotecnol. Apl. 2013, 30, 17–22. [Google Scholar]
- Vivek Singh, V.S.; Shatrupa Ray, S.R.; Kartikay Bisen, K.B.; Chetan Keswani, C.K.; Upadhyay, R.S.; Sarma, B.K.; Singh, H.B. Unravelling the dual applications of applications of Trichoderma spp. as biopesticide and biofertilizer. In Advances in PGPR Research; CABI: Wallingford, UK, 2017; pp. 364–374. [Google Scholar]
- Joo, J.H.; Hussein, K.A. Biological control and plant growth promotion properties of volatile organic compound-producing antagonistic Trichoderma spp. Front. Plant Sci. 2022, 13, 897668. [Google Scholar] [CrossRef]
- Grahovac, J.; Pajčin, I.; Vlajkov, V. Bacillus VOCs in the context of biological control. Antibiotics 2023, 12, 581. [Google Scholar] [CrossRef]
- Razo-Belman, R.; Ozuna, C. Volatile organic compounds: A review of their current applications as pest biocontrol and disease management. Horticulturae 2023, 9, 441. [Google Scholar] [CrossRef]
- Di Marco, S.; Osti, F.; Cesari, A. Experiments on the Control of Esca by Thricoderma. Phytopathol. Mediterr. 2004, 43, 108–115. [Google Scholar] [CrossRef]
- Fourie, P.H.; Halleen, F. Proactive control of Petri disease of grapevine through treatment of propagation material. Plant Dis. 2004, 88, 1241–1245. [Google Scholar] [CrossRef]
- Mounier, E.; Heysch, P.; Cortes, F.; Cadiou, M.; Pajot, E. Trichoderma atroviride, strain I-1237, reduces the impact of Pythium spp. in carrot crop production. In International Symposium on Carrot and Other Apiaceae 1153; International Society for Horticultural Science: Leuven, Belgium, 2014; pp. 169–174. [Google Scholar]
- Carro-Huerga, G.; Compant, S.; Gorfer, M.; Cardoza, R.E.; Schmoll, M.; Gutiérrez, S.; Casquero, P.A. Colonization of Vitis vinifera L. by the endophyte Trichoderma sp. strain T154: Biocontrol activity against Phaeoacremonium minimum. Front. Plant Sci. 2020, 11, 1170. [Google Scholar] [CrossRef]
- Úrbez-Torres, J.R.; Tomaselli, E.; Pollard-Flamand, J.; Boule, J.; Gerin, D.; Pollastro, S. Characterization of Trichoderma strains from southern Italy, and their potential biocontrol activity against grapevine trunk disease fungi. Phytopathol. Mediterr. 2020, 59, 425–440. [Google Scholar]
- Kiran GV, M.; Thara, S.S.; Jyothi, K.R. Studies on compatibility of biocontrol agents with chemical fungicides for integrated management of Alternaria leaf spot of cabbage. J. Pharmacogn. Phytochem. 2018, 7, 2974–2977. [Google Scholar]
- Maheshwary, N.; Gangadhara Naik, B.; Amoghavarsha Chittaragi, M.; Naik, S.K.; Nandish, M. Compatibility of Trichoderma asperellum with fungicides. Pharma Innov. J. 2020, 9, 136–140. [Google Scholar]
- Rajesh, K.; Ramya, V.; Basha, S.A.; Pushpavalli, S.N.C.V.L.; Aravind, K. In vitro Compatibility of Trichoderma and Bacillus biocontrol agents with Different Fungicides. Int. J. Environ. Clim. Chang. 2023, 13, 3340–3353. [Google Scholar] [CrossRef]
- Ons, L.; Bylemans, D.; Thevissen, K.; Cammue, B.P. Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms 2020, 8, 1930. [Google Scholar] [CrossRef] [PubMed]
- Cenis, J.L. Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res. 1992, 20, 2380. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.J.W.T.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Academic Press: Cambridge, MA, USA, 1990; Volume 18, pp. 315–322. [Google Scholar]
- Taylor, D.L.; Houston, S. A bioinformatics pipeline for sequence-based analyses of fungal biodiversity. In Fungal Genomics: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2011; pp. 141–155. [Google Scholar]
- Ezziyyani, M.; Sánchez, C.P.; Ahmed, A.S.; Requena, M.E.; Castillo, M.E.C. Trichoderma harzianum como biofungicida para el biocontrol de Phytophthora capsici en plantas de pimiento (Capsicum annuum L.). In Anales de Biología; Servicio de Publicaciones de la Universidad de Murcia: Murcia, Spain, 2004; pp. 35–45. [Google Scholar]
- Schubert, M.; Fink, S.; Schwarze, F.W. In vitro screening of an antagonistic Trichoderma strain against wood decay fungi. Arboric. J. 2008, 31, 227–248. [Google Scholar] [CrossRef]
- Amponsah, N.T.; Jones, E.E.; Ridgway, H.J.; Jaspers, M.V. Identification, potential inoculum sources and pathogenicity of botryosphaeriaceous species associated with grapevine dieback disease in New Zealand. Eur. J. Plant Pathol. 2011, 131, 467–482. [Google Scholar] [CrossRef]
- Badotti, F.; Fonseca, P.L.C.; Tomé, L.M.R.; Nunes, D.T.; Goes-Neto, A. ITS and secondary biomarkers in fungi: Review on the evolution of their use based on scientific publications. Braz. J. Bot. 2018, 41, 471–479. [Google Scholar] [CrossRef]
- Fajarningsih, N.D. Internal Transcribed Spacer (ITS) as DNA barcoding to identify fungal species: A review. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 2016, 11, 37–44. [Google Scholar] [CrossRef]
- Kauserud, H. ITS alchemy: On the use of ITS as a DNA marker in fungal ecology. Fungal Ecol. 2023, 65, 101274. [Google Scholar] [CrossRef]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species—Opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, R.H.; Kristiansson, E.; Ryberg, M.; Hallenberg, N.; Larsson, K.H. Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol. Bioinform. Online 2008, 4, 193. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, J.G.; Briceño, E.X.; Chávez, E.R.; Úrbez-Torres, J.R.; Latorre, B.A. Neofusicoccum spp. associated with stem canker and dieback of blueberry in Chile. Plant Dis. 2009, 93, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.D.S.; Mayorga, L.F.M.; Aguilera, L.A.P. Identificación morfológica y molecular de especies autóctonas Trichoderma spp., aisladas de suelos de importancia agrícola. Rev. Científica Cienc. Tecnol. Higo 2021, 11, 26–42. [Google Scholar]
- Rivero, M.V.; Maniscalco, D.P. Identificación de cepas del hongo Trichoderma spp. por métodos moleculares. Faraute 2016, 8, 3–10. [Google Scholar]
- Sánchez-García, B.M.; Espinosa-Huerta, E.; Villordo-Pineda, E.; Rodríguez-Guerra, R.; Mora-Avilés, M.A. Identificación molecular y evaluación antagónica in vitro de cepas nativas de Trichoderma spp. sobre hongos fitopatógenos de raíz en frijol (Phaseolus vulgaris L.) cv. Montcalm. Agrociencia 2017, 51, 63–79. [Google Scholar]
- Filizola PR, B.; Luna MA, C.; de Souza, A.F.; Coelho, I.L.; Laranjeira, D.; Campos-Takaki, G.M. Biodiversity and phylogeny of novel Trichoderma isolates from mangrove sediments and potential of biocontrol against Fusarium strains. Microb. Cell Factories 2019, 18, 1–14. [Google Scholar] [CrossRef]
- Andrés, P.A.; Alejandra, P.M.; Benedicto, M.C.; Nahuel, R.I.; Clara, B.M. A Comparative Study of Different Strains of Trichoderma under Different Conditions of Temperature and pH for the Control of Rhizoctonia solani. Agric. Sci. 2022, 13, 702–714. [Google Scholar]
- Harman, G.E. Overview of Mechanisms and Uses of Trichoderma spp. Phytopathology 2006, 96, 190–194. [Google Scholar] [CrossRef]
- Yadav, L.S. Antagonistic activity of Trichoderma sp. and evaluation of various agro wastes for mass production. Indian J. Plant Sci. 2012, 1, 109–112. [Google Scholar]
- Panahian, G.R.; Rahnama, K.; Jafari, M. Mass production of Trichoderma spp. and application. Int. Res. J. Appl. Basic Sci. 2012, 3, 292–298. [Google Scholar]
- Said, S.D. Spore production of biocontrol agent Trichoderma harzianum: Effect of C/N ratio and glucose concentration. J. Rekayasa Kim. Lingkung. 2007, 6, 35–40. [Google Scholar]
- Ezziyyani, M.; Sid, A.A.; Pérez, S.C.; Requena, M.E.; Candela, M.E. Control biológico por microorganismos antagonistas. Rev. Hortic. 2006, 191, 8–15. [Google Scholar]
- Garnica-Vergara, A.; Barrera-Ortiz, S.; Muñoz-Parra, E.; Raya-González, J.; Méndez-Bravo, A.; Macías-Rodríguez, L.; López-Bucio, J. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol. 2016, 209, 1496–1512. [Google Scholar] [CrossRef]
- Pascale, A.; Vinale, F.; Manganiello, G.; Nigro, M.; Lanzuise, S.; Ruocco, M.; Lorito, M. Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Prot. 2017, 92, 176–181. [Google Scholar] [CrossRef]
- Guzmán-Guzmán, P.; Kumar, A.; de Los Santos-Villalobos, S.; Parra-Cota, F.I.; Orozco-Mosqueda, M.D.C.; Fadiji, A.E.; Santoyo, G. Trichoderma species: Our best fungal allies in the biocontrol of plant diseases—A review. Plants 2023, 12, 432. [Google Scholar] [CrossRef]
- Ling, L.; Feng, L.; Li, Y.; Yue, R.; Wang, Y.; Zhou, Y. Endophytic Fungi Volatile Organic Compounds as Crucial Biocontrol Agents Used for Controlling Fruit and Vegetable Postharvest Diseases. J. Fungi 2024, 10, 332. [Google Scholar] [CrossRef]
- Mutawila, C.; Vinale, F.; Halleen, F.; Lorito, M.; Mostert, L. Isolation, production and in vitro effects of the major secondary metabolite produced by Trichoderma species used for the control of grapevine trunk diseases. Plant Pathol. 2016, 65, 104–113. [Google Scholar] [CrossRef]
- Siddiquee, S.; Aishah, S.N.; Azad, S.A.; Shafawati, S.N.; Naher, L. Tolerance and biosorption capacity of Zn2+, Pb2+, Ni3+ and Cu2+ by filamentous fungi (Trichoderma harzianum, T. aureoviride and T. virens). Adv. Biosci. Biotechnol. 2013, 4, 570. [Google Scholar] [CrossRef]
- Ladi, E.; Shukla, N.; Bohra, Y.; Tiwari, A.K.; Kumar, J. Copper tolerant Trichoderma asperellum increases bio-efficacy of copper against Phytophthora infestans in dual combination. Phytoparasitica 2020, 48, 357–370. [Google Scholar] [CrossRef]
- Anwar, S.; Ali, A.; Ullah, Z.; Binjawhar, D.N.; Sher, H.; Ali, R.; Iqbal, R.; Ali, B.; Ali, I. The Impact of Trichoderma harzianum Together with Copper and Boron on Wheat Yield. ACS Agric. Sci. Technol. 2023, 3, 517–527. [Google Scholar] [CrossRef]
- Chaparro, A.P.; Carvajal, L.H.; Orduz, S. Fungicide tolerance of Trichoderma asperelloides and T. Harzianum Strains. Agric. Sci. 2011, 2, 301. [Google Scholar]
- Mayo-Prieto, S.; Squarzoni, A.; Carro-Huerga, G.; Porteous-Álvarez, A.J.; Gutiérrez, S.; Casquero, P.A. Organic and conventional bean pesticides in development of autochthonous Trichoderma strains. J. Fungi 2022, 8, 603. [Google Scholar] [CrossRef] [PubMed]
- Cid, R.A.H.; Núñez, D.; Romera, N.; Besoain, X.; Pérez, L.M.; Andrade, J.R.M. Sensitivity of wild-type and mutant Trichoderma harzianum strains tofungicides. Cienc. Investig. Agrar. Rev. Latinoam. Cienc. Agric. 2012, 39, 569–576. [Google Scholar]
- Escudero-Leyva, E.; Alfaro-Vargas, P.; Muñoz-Arrieta, R.; Charpentier-Alfaro, C.; Granados-Montero, M.d.M.; Valverde-Madrigal, K.S.; Pérez-Villanueva, M.; Méndez-Rivera, M.; Rodríguez-Rodríguez, C.E.; Chaverri, P.; et al. Tolerance and biological removal of fungicides by Trichoderma species isolated from the endosphere of wild Rubiaceae plants. Front. Agron. 2022, 3, 772170. [Google Scholar] [CrossRef]
- Blundell, R.; Eskalen, A. Biological and chemical pruning wound protectants reduce infection of grapevine trunk disease pathogens. Calif. Agric. 2021, 75, 128–134. [Google Scholar] [CrossRef]
- Langa-Lomba, N.; Martín-Ramos, P.; Casanova-Gascón, J.; Julián-Lagunas, C.; González-García, V. Potential of native Trichoderma strains as antagonists for the control of fungal wood pathologies in young grapevine plants. Agronomy 2022, 12, 336. [Google Scholar] [CrossRef]
- Pollard-Flamand, J.; Boulé, J.; Hart, M.; Úrbez-Torres, J.R. Biocontrol activity of Trichoderma species isolated from grapevines in British Columbia against Botryosphaeria dieback fungal pathogens. J. Fungi 2022, 8, 409. [Google Scholar] [CrossRef]
Trichoderma Strain | Control (Radial Growth; cm) | Agrochemical (Radial Growth; cm) | |||||||
---|---|---|---|---|---|---|---|---|---|
Sulfur R.D. | Copper Oxychloride R.D. | ||||||||
1/8 | 1/4 | 1/2 | 1 | 1/8 | 1/4 | 1/2 | 1 | ||
T1 | 3.7 ± 0.3 | 3.7 ± 0.1 | 3.7 ± 0 | 3.7 ± 0.1 | 3.6 ± 0.4 | 3.7 ± 0.1 | NG a | NG | NG |
T2 | 3.6 ± 0.5 | 3.6 ± 0.3 | 3.6 ± 0.4 | 3.5 ± 0.4 | 3.3 ± 0.5 | 3.7 ± 0.3 | 2.6 ± 0.2 | 2.2 ± 0.3 | 1.6 ± 0.2 * |
T3 | 3.9 ± 0.3 | 3.9 ± 0.3 | 3.9 ± 0.3 | 3.9 ± 0.1 | 3.8 ± 0.3 | 3.7 ± 0.1 | 1.8 ± 0.3 | 1.6 ± 0.2 | 0.4 ± 0.1 |
T4 | 3.8 ± 0.4 | 3.8 ± 0.1 | 3.8 ± 0.3 | 3.8 ± 0.3 | 3.7 ± 0.4 | 3.8 ± 0.2 | NG | NG | NG |
T5 | 3.9 ± 0.2 | 3.9 ± 0.1 | 3.9 ± 0.1 | 3.9 ± 0.1 | 3.9 ± 0.1 | 3.9 ± 0.2 | 3.8 ± 0.2 | 3.4 ± 0.2 | 3.2 ± 0.3 ** |
Trichoderma Species | Biocontrol Mechanisms | Compatibility with Fungicides | Effectiveness and Applicability Comments |
---|---|---|---|
T. harzianum (T3) | Highest VOCs effect, Nutrient and space competition, high pathogen growth inhibition | Sulfur compatible; Copper oxychloride limited compatibility | High efficacy in planta, compatible with fungicides; promising for integrated management |
T. viride | Moderate nutrient and space competition | Sulfur compatible; Copper oxychloride limited compatibility | High efficacy in planta, further studies are needed for integrated management |
T. asperellum | Nutrient and space competition, moderate VOCs effect | Sulfur compatible; Copper oxychloride incompatibility | No efficacy in planta, not suitable for further field trials |
T. virens | Highest Nutrient and space competition, moderate VOCs effects, high pathogen growth inhibition effect, high pathogen growth inhibition | Sulfur compatible; Copper oxychloride partially compatible | High in vitro inhibition, but phytotoxicity in planta limits field use |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez-Garay, A.; Astudillo Calderón, S.; Tello Mariscal, M.L.; López, B.P. Effective Control of Neofusicoccum parvum in Grapevines: Combining Trichoderma spp. with Chemical Fungicides. Agronomy 2024, 14, 2766. https://doi.org/10.3390/agronomy14122766
Gomez-Garay A, Astudillo Calderón S, Tello Mariscal ML, López BP. Effective Control of Neofusicoccum parvum in Grapevines: Combining Trichoderma spp. with Chemical Fungicides. Agronomy. 2024; 14(12):2766. https://doi.org/10.3390/agronomy14122766
Chicago/Turabian StyleGomez-Garay, Aranzazu, Sergio Astudillo Calderón, Mª Luisa Tello Mariscal, and Beatriz Pintos López. 2024. "Effective Control of Neofusicoccum parvum in Grapevines: Combining Trichoderma spp. with Chemical Fungicides" Agronomy 14, no. 12: 2766. https://doi.org/10.3390/agronomy14122766
APA StyleGomez-Garay, A., Astudillo Calderón, S., Tello Mariscal, M. L., & López, B. P. (2024). Effective Control of Neofusicoccum parvum in Grapevines: Combining Trichoderma spp. with Chemical Fungicides. Agronomy, 14(12), 2766. https://doi.org/10.3390/agronomy14122766