Impact of No Tillage and Low Emission N Fertilization on Durum Wheat Sustainability, Profitability and Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Site
2.2. Experimental Design, Soil Sampling
2.3. Land Preparation, Fertilization, Sowing, Weeding, and Disease Control
2.4. Crop Physiological Measurements
2.5. Analysis of Durum Wheat Storage Protein Composition
2.6. Antioxidant Capacity
2.7. Mineral Analysis
2.8. Economic Analysis
2.9. Statistical Analysis
3. Results
3.1. Effect of Weather Conditions and Agronomic Management on Crop Performances
3.2. Effects on Durum Wheat Technological and Health Quality
3.3. Multiple Regression Analysis
3.4. Economic Profitability
4. Discussion
4.1. The Influence of Agronomic Practices on Yield and Environmental Sustainability
4.2. The Influence of Agronomic Practices on Quality and Economic Profitability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Month | 10-Day | Phenology | GDD | P | PET | P-PET | ||||
---|---|---|---|---|---|---|---|---|---|---|
°C d | mm | mm | mm | |||||||
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |||
January | I | 175 | 190 | 77 | 37 | 18 | 20 | 59 | 18 | |
II | 220 | 259 | 78 | 37 | 26 | 30 | 52 | 7 | ||
III | 315 | 313 | 93 | 46 | 39 | 43 | 54 | 4 | ||
February | I | tillering | 424 | 394 | 101 | 62 | 54 | 57 | 47 | 4 |
II | 485 | 498 | 120 | 63 | 68 | 75 | 52 | −12 | ||
III | 567 | 559 | 120 | 153 | 85 | 87 | 35 | 66 | ||
March | I | 655 | 606 | 158 | 192 | 104 | 101 | 54 | 90 | |
II | stem elongation | 731 | 674 | 181 | 192 | 124 | 124 | 57 | 68 | |
III | 837 | 792 | 181 | 200 | 152 | 154 | 29 | 46 | ||
April | I | 941 | 892 | 181 | 214 | 182 | 180 | −1 | 34 | |
II | 998 | 1005 | 202 | 214 | 201 | 214 | 2 | 0 | ||
III | heading | 1137 | 1152 | 215 | 215 | 240 | 253 | −25 | −38 | |
May | I | 1305 | 1300 | 217 | 246 | 286 | 292 | −68 | −46 | |
II | grain filling | 1475 | 1503 | 225 | 246 | 331 | 348 | −106 | −102 | |
III | 1680 | 1763 | 227 | 246 | 391 | 416 | −165 | −170 | ||
June | I | 1882 | 2010 | 231 | 304 | 449 | 483 | −218 | −179 | |
II | maturity | 2110 | 2244 | 231 | 304 | 515 | 545 | −284 | −241 | |
III | 2396 | 2527 | 231 | 304 | 587 | 616 | −357 | −312 |
References
- Grosse-Heilmann, M.; Cristiano, E.; Deidda, R.; Viola, F. Durum Wheat Productivity Today and Tomorrow: A Review of Influencing Factors and Climate Change Effects. Resour. Environ. Sustain. 2024, 17, 100170. [Google Scholar] [CrossRef]
- Flagella, Z.; Giuliani, M.M.; Giuzio, L.; Volpi, C.; Masci, S. Influence of Water Deficit on Durum Wheat Storage Protein Composition and Technological Quality. Eur. J. Agron. 2010, 33, 197–207. [Google Scholar] [CrossRef]
- De Santis, M.A.; Soccio, M.; Laus, M.N.; Flagella, Z. Influence of Drought and Salt Stress on Durum Wheat Grain Quality and Composition: A Review. Plants 2021, 10, 2599. [Google Scholar] [CrossRef] [PubMed]
- Cossani, C.M.; Slafer, G.A.; Savin, R. Nitrogen and Water Use Efficiencies of Wheat and Barley under a Mediterranean Environment in Catalonia. Field Crops Res. 2012, 128, 109–118. [Google Scholar] [CrossRef]
- Ceglar, A.; Toreti, A.; Zampieri, M.; Royo, C. Global Loss of Climatically Suitable Areas for Durum Wheat Growth in the Future. Environ. Res. Lett. 2021, 16, 104049. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Siddique, K.H.M. Drought Stress in Wheat during Flowering and Grain-Filling Periods. Crit. Rev. Plant Sci. 2014, 33, 331–349. [Google Scholar] [CrossRef]
- Araus, J.L.; Slafer, G.A.; Royo, C.; Serret, M.D. Breeding for Yield Potential and Stress Adaptation in Cereals. Crit. Rev. Plant Sci. 2008, 27, 377–412. [Google Scholar] [CrossRef]
- Raimondi, G.; Maucieri, C.; Toffanin, A.; Renella, G.; Borin, M. Smart Fertilizers: What Should We Mean and Where Should We Go? Ital. J. Agron. 2021, 16. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, N.; Lü, J.; Wang, L.; Li, G.; Ning, T. Climate-Smart Tillage Practices with Straw Return to Sustain Crop Productivity. Agronomy 2022, 12, 2452. [Google Scholar] [CrossRef]
- Alhajj Ali, S.; Tedone, L.; Verdini, L.; De Mastro, G. Effect of Different Crop Management Systems on Rainfed Durum Wheat Greenhouse Gas Emissions and Carbon Footprint under Mediterranean Conditions. J. Clean. Prod. 2017, 140, 608–621. [Google Scholar] [CrossRef]
- Seddaiu, G.; Iocola, I.; Farina, R.; Orsini, R.; Iezzi, G.; Roggero, P.P. Long Term Effects of Tillage Practices and N Fertilization in Rainfed Mediterranean Cropping Systems: Durum Wheat, Sunflower and Maize Grain Yield. Eur. J. Agron. 2016, 77, 166–178. [Google Scholar] [CrossRef]
- Giambalvo, D.; Amato, G.; Badagliacca, G.; Ingraffia, R.; Di Miceli, G.; Frenda, A.S.; Plaia, A.; Venezia, G.; Ruisi, P. Switching from Conventional Tillage to No-Tillage: Soil N Availability, N Uptake, 15N Fertilizer Recovery, and Grain Yield of Durum Wheat. Field Crops Res. 2018, 218, 171–181. [Google Scholar] [CrossRef]
- Castellini, M.; Fornaro, F.; Garofalo, P.; Giglio, L.; Rinaldi, M.; Ventrella, D.; Vitti, C.; Vonella, A.V. Effects of No-Tillage and Conventional Tillage on Physical and Hydraulic Properties of Fine Textured Soils under Winter Wheat. Water 2019, 11, 484. [Google Scholar] [CrossRef]
- Puig-Sirera, À.; Acutis, M.; Bancheri, M.; Bonfante, A.; Botta, M.; De Mascellis, R.; Orefice, N.; Perego, A.; Russo, M.; Tedeschi, A.; et al. Zero-Tillage Effects on Durum Wheat Productivity and Soil-Related Variables in Future Climate Scenarios: A Modeling Analysis. Agronomy 2022, 12, 331. [Google Scholar] [CrossRef]
- Meng, X.; Meng, F.; Chen, P.; Hou, D.; Zheng, E.; Xu, T. A Meta-Analysis of Conservation Tillage Management Effects on Soil Organic Carbon Sequestration and Soil Greenhouse Gas Flux. Sci. Total Environ. 2024, 954, 176315. [Google Scholar] [CrossRef]
- Dong, W.; Liu, E.; Yan, C.; Tian, J.; Zhang, H.; Zhang, Y. Impact of No Tillage vs. Conventional Tillage on the Soil Bacterial Community Structure in a Winter Wheat Cropping Succession in Northern China. Eur. J. Soil Biol. 2017, 80, 35–42. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; van Groenigen, K.J.; Lee, J.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. When Does No-till Yield More? A Global Meta-Analysis. Field Crops Res. 2015, 183, 156–168. [Google Scholar] [CrossRef]
- Casolani, N.; Pattara, C.; Liberatore, L. Water and Carbon Footprint Perspective in Italian Durum Wheat Production. Land Use Policy 2016, 58, 394–402. [Google Scholar] [CrossRef]
- Volpi, I.; Laville, P.; Bonari, E.; di Nasso, N.N.O.; Bosco, S. Improving the Management of Mineral Fertilizers for Nitrous Oxide Mitigation: The Effect of Nitrogen Fertilizer Type, Urease and Nitrification Inhibitors in Two Different Textured Soils. Geoderma 2017, 307, 181–188. [Google Scholar] [CrossRef]
- De Santis, M.A.; Cammarano, D. Agronomic Management Factors Impacting Yield, Quality Stability, and Environmental Footprints of Barley in a Mediterranean Environment. Field Crops Res. 2024, 309, 109334. [Google Scholar] [CrossRef]
- Tamagno, S.; Maaz, T.M.; van Kessel, C.; Linquist, B.A.; Ladha, J.K.; Lundy, M.E.; Maureira, F.; Pittelkow, C.M. Critical Assessment of Nitrogen Use Efficiency Indicators: Bridging New and Old Paradigms to Improve Sustainable Nitrogen Management. Eur. J. Agron. 2024, 159, 127231. [Google Scholar] [CrossRef]
- EU Nitrogen Expert Panel. Nitrogen Use Efficiency (NUE): An Indicator for the Utilization of Nitrogen in Agriculture and Food Systems; Wageningen University: Wageningen, The Netherlands, 2015; pp. 1–47. [Google Scholar]
- Lafiandra, D.; Shewry, P.R. Wheat Glutenin Polymers 2. The Role of Wheat Glutenin Subunits in Polymer Formation and Dough Quality. J. Cereal Sci. 2022, 106, 103487. [Google Scholar] [CrossRef]
- Velu, G.; Singh, R.P.; Huerta, J.; Guzmán, C. Genetic Impact of Rht Dwarfing Genes on Grain Micronutrients Concentration in Wheat. Field Crops Res. 2017, 214, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.X.; Chiremba, C.; Pozniak, C.J.; Wang, K.; Nam, S. Total Phenolic and Yellow Pigment Contents and Antioxidant Activities of Durum Wheat Milling Fractions. Antioxidants 2017, 6, 78. [Google Scholar] [CrossRef] [PubMed]
- Laus, M.N.; Di Benedetto, N.A.; Caporizzi, R.; Tozzi, D.; Soccio, M.; Giuzio, L.; De Vita, P.; Flagella, Z.; Pastore, D. Evaluation of Phenolic Antioxidant Capacity in Grains of Modern and Old Durum Wheat Genotypes by the Novel QUENCHERABTS Approach. Plant Foods Hum. Nutr. 2015, 70, 207–214. [Google Scholar] [CrossRef]
- Pagnani, G.; Galieni, A.; D’Egidio, S.; Visioli, G.; Stagnari, F.; Pisante, M. Effect of Soil Tillage and Crop Sequence on Grain Yield and Quality of Durum Wheat in Mediterranean Areas. Agronomy 2019, 9, 488. [Google Scholar] [CrossRef]
- Li, P.; Yin, W.; Fan, Z.; Hu, F.; Zhao, L.; Fan, H.; He, W.; Chai, Q. Improving Crop Productivity by Optimizing Straw Returning Patterns to Delay Senescence of Wheat Leaves. Eur. J. Agron. 2024, 159, 127274. [Google Scholar] [CrossRef]
- Hargreaves George, H.; Samani Zohrab, A. Estimating Potential Evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 225–230. [Google Scholar] [CrossRef]
- Galieni, A.; Stagnari, F.; Visioli, G.; Marmiroli, N.; Speca, S.; Angelozzi, G.; D’Egidio, S.; Pisante, M. Nitrogen Fertilisation of Durum Wheat: A Case Study in Mediterranean Area during Transition to Conservation Agriculture. Ital. J. Agron. 2016, 10, 12. [Google Scholar] [CrossRef]
- De Santis, M.A.; Campaniello, D.; Tozzi, D.; Giuzio, L.; Corbo, M.R.; Bevilacqua, A.; Sinigaglia, M.; Flagella, Z. Agronomic Response to Irrigation and Biofertilizer of Peanut (Arachis hypogea L.) Grown under Mediterranean Environment. Agronomy 2023, 13, 1566. [Google Scholar] [CrossRef]
- Guarda, G.; Padovan, S.; Delogu, G. Grain Yield, Nitrogen-Use Efficiency and Baking Quality of Old and Modern Italian Bread-Wheat Cultivars Grown at Different Nitrogen Levels. Eur. J. Agron. 2004, 21, 181–192. [Google Scholar] [CrossRef]
- Lollato, R.P.; Figueiredo, B.M.; Dhillon, J.S.; Arnall, D.B.; Raun, W.R. Wheat Grain Yield and Grain-Nitrogen Relationships as Affected by N, P, and K Fertilization: A Synthesis of Long-Term Experiments. Field Crops Res. 2019, 236, 42–57. [Google Scholar] [CrossRef]
- De Santis, M.A.; Giuliani, M.M.; Giuzio, L.; De Vita, P.; Flagella, Z. Assessment of Grain Protein Composition in Old and Modern Italian Durum Wheat Genotypes. Ital. J. Agron. 2018, 11, 40–43. [Google Scholar] [CrossRef]
- De Santis, M.A.; Giuliani, M.M.; Flagella, Z.; Pellegrino, E.; Ercoli, L. Effect of Arbuscular Mycorrhizal Fungal Seed Coating on Grain Protein and Mineral Composition of Old and Modern Bread Wheat Genotypes. Agronomy 2022, 12, 2418. [Google Scholar] [CrossRef]
- Ciliberti, S.; Stanco, M.; Frascarelli, A.; Marotta, G.; Martino, G.; Nazzaro, C. Sustainability Strategies and Contractual Arrangements in the Italian Pasta Supply Chain: An Analysis under the Neo Institutional Economics Lens. Sustainability 2022, 14, 8542. [Google Scholar] [CrossRef]
- Guardia, G.; Aguilera, E.; Vallejo, A.; Sanz-Cobena, A.; Alonso-Ayuso, M.; Quemada, M. Effective Climate Change Mitigation through Cover Cropping and Integrated Fertilization: A Global Warming Potential Assessment from a 10-Year Field Experiment. J. Clean. Prod. 2019, 241, 118307. [Google Scholar] [CrossRef]
- Garrido-Lestache, E.; López-Bellido, R.J.; López-Bellido, L. Durum Wheat Quality under Mediterranean Conditions as Affected by N Rate, Timing and Splitting, N Form and S Fertilization. Eur. J. Agron. 2005, 23, 265–278. [Google Scholar] [CrossRef]
- De Vita, P.; Di Paolo, E.; Fecondo, G.; Di Fonzo, N.; Pisante, M. No-Tillage and Conventional Tillage Effects on Durum Wheat Yield, Grain Quality and Soil Moisture Content in Southern Italy. Soil Tillage Res. 2007, 92, 69–78. [Google Scholar] [CrossRef]
- Dang, H.; Sun, R.; She, W.; Hou, S.; Li, X.; Chu, H.; Wang, T.; Huang, T.; Huang, Q.; Siddique, K.H.M.; et al. Updating Soil Organic Carbon for Wheat Production with High Yield and Grain Protein. Field Crops Res. 2024, 317, 109549. [Google Scholar] [CrossRef]
- Baiamonte, G.; Novara, A.; Gristina, L.; D’Asaro, F. Durum Wheat Yield Uncertainty under Different Tillage Management Practices and Climatic Conditions. Soil Tillage Res. 2019, 194, 104346. [Google Scholar] [CrossRef]
- Djouadi, K.; Mekliche, A.; Dahmani, S.; Ladjiar, N.I.; Abid, Y.; Silarbi, Z.; Hamadache, A.; Pisante, M. Durum Wheat Yield and Grain Quality in Early Transition from Conventional to Conservation Tillage in Semi-Arid Mediterranean Conditions. Agriculture 2021, 11, 711. [Google Scholar] [CrossRef]
- Gandía, M.L.; Del Monte, J.P.; Tenorio, J.L.; Santín-Montanyá, M.I. The Influence of Rainfall and Tillage on Wheat Yield Parameters and Weed Population in Monoculture versus Rotation Systems. Sci. Rep. 2021, 11, 22138. [Google Scholar] [CrossRef] [PubMed]
- Abalos, D.; Jeffery, S.; Sanz-Cobena, A.; Guardia, G.; Vallejo, A. Meta-Analysis of the Effect of Urease and Nitrification Inhibitors on Crop Productivity and Nitrogen Use Efficiency. Agric. Ecosyst. Environ. 2014, 189, 136–144. [Google Scholar] [CrossRef]
- Rose, T.J.; Wood, R.H.; Rose, M.T.; Van Zwieten, L. A Re-Evaluation of the Agronomic Effectiveness of the Nitrification Inhibitors DCD and DMPP and the Urease Inhibitor NBPT. Agric. Ecosyst. Environ. 2018, 252, 69–73. [Google Scholar] [CrossRef]
- De Santis, M.A.; Giuliani, M.M.; Flagella, Z.; Reyneri, A.; Blandino, M. Impact of Nitrogen Fertilisation Strategies on the Protein Content, Gluten Composition and Rheological Properties of Wheat for Biscuit Production. Field Crops Res. 2020, 254, 107829. [Google Scholar] [CrossRef]
- Abalos, D.; Sanz-Cobena, A.; Andreu, G.; Vallejo, A. Rainfall Amount and Distribution Regulate DMPP Effects on Nitrous Oxide Emissions under Semiarid Mediterranean Conditions. Agric. Ecosyst. Environ. 2017, 238, 36–45. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Álvaro-Fuentes, J.; Arrúe, J.L.; Cantero-Martínez, C. Tillage and Nitrogen Fertilization Effects on Nitrous Oxide Yield-Scaled Emissions in a Rainfed Mediterranean Area. Agric. Ecosyst. Environ. 2014, 189, 43–52. [Google Scholar] [CrossRef]
- Ingraffia, R.; Lo Porto, A.; Ruisi, P.; Amato, G.; Giambalvo, D.; Frenda, A.S. Conventional Tillage versus No-Tillage: Nitrogen Use Efficiency Component Analysis of Contrasting Durum Wheat Genotypes Grown in a Mediterranean Environment. Field Crops Res. 2023, 296, 108904. [Google Scholar] [CrossRef]
- Honsdorf, N.; Mulvaney, M.J.; Singh, R.P.; Ammar, K.; Govaerts, B.; Verhulst, N. Dataset of Historic and Modern Bread and Durum Wheat Cultivar Performance under Conventional and Reduced Tillage with Full and Reduced Irrigation. Data Brief 2022, 43, 108439. [Google Scholar] [CrossRef]
- De Santis, M.A.; Giuliani, M.M.; Giuzio, L.; De Vita, P.; Lovegrove, A.; Shewry, P.R.; Flagella, Z. Differences in Gluten Protein Composition between Old and Modern Durum Wheat Genotypes in Relation to 20th Century Breeding in Italy. Eur. J. Agron. 2017, 87, 19–29. [Google Scholar] [CrossRef]
- Ferrise, R.; Bindi, M.; Martre, P. Grain Filling Duration and Glutenin Polymerization under Variable Nitrogen Supply and Environmental Conditions for Durum Wheat. Field Crops Res. 2015, 171, 23–31. [Google Scholar] [CrossRef]
- Rekowski, A.; Wimmer, M.A.; Hitzmann, B.; Hermannseder, B.; Hahn, H.; Zörb, C. Application of Urease Inhibitor Improves Protein Composition and Bread-Baking Quality of Urea Fertilized Winter Wheat. J. Plant Nutr. Soil Sci. 2020, 183, 260–270. [Google Scholar] [CrossRef]
- Ficco, D.B.M.; Riefolo, C.; Nicastro, G.; De Simone, V.; Di Gesù, A.M.; Beleggia, R.; Platani, C.; Cattivelli, L.; De Vita, P. Phytate and Mineral Elements Concentration in a Collection of Italian Durum Wheat Cultivars. Field Crops Res. 2009, 111, 235–242. [Google Scholar] [CrossRef]
- Magallanes-López, A.M.; Ammar, K.; Morales-Dorantes, A.; González-Santoyo, H.; Crossa, J.; Guzmán, C. Grain Quality Traits of Commercial Durum Wheat Varieties and Their Relationships with Drought Stress and Glutenins Composition. J. Cereal Sci. 2017, 75, 1–9. [Google Scholar] [CrossRef]
- Martini, D.; Taddei, F.; Ciccoritti, R.; Pasquini, M.; Nicoletti, I.; Corradini, D.; D’Egidio, M.G. Variation of Total Antioxidant Activity and of Phenolic Acid, Total Phenolics and Yellow Coloured Pigments in Durum Wheat (Triticum turgidum L. Var. durum) as a Function of Genotype, Crop Year and Growing Area. J. Cereal Sci. 2015, 65, 175–185. [Google Scholar] [CrossRef]
- Li, Y.; Hou, R.; Tao, F. Interactive Effects of Different Warming Levels and Tillage Managements on Winter Wheat Growth, Physiological Processes, Grain Yield and Quality in the North China Plain. Agric. Ecosyst. Environ. 2020, 295, 106923. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, J.; Dong, J.; Wu, Y.; Li, C.; Ye, Y.; Tian, X.; Wang, Y. Synergistic Improvement of Soil Organic Carbon Storage and Wheat Grain Zinc Bioavailability by Straw Return in Combination with Zn Application on the Loess Plateau of China. Catena 2021, 197, 104920. [Google Scholar] [CrossRef]
- Adesanya, T.; Zvomuya, F.; Fernandez, M.R.; Luce, M.S. Crop Rotation Diversity and Tillage Effects on Soil and Wheat Grain Nutrient Concentration in an Organically-Managed System. J. Agric. Food Res. 2024, 18, 101411. [Google Scholar] [CrossRef]
- Carrara, J.E.; Beelman, R.B.; Duiker, S.W.; Heller, W.P. Reduced Tillage Agriculture May Improve Plant Nutritional Quality through Increased Mycorrhizal Colonization and Uptake of the Antioxidant Ergothioneine. Soil Tillage Res. 2024, 244, 106283. [Google Scholar] [CrossRef]
- Öztürk, F.; Ortaş, I. The Impact of Long-Term Tillage Systems on Soil Carbon and Nitrogen Dynamics and Other Nutrient Contents. Int. J. Agron. 2024, 2024, 8037593. [Google Scholar] [CrossRef]
- Kerbouai, I.; M’hamed, H.C.; Jenfaoui, H.; Riahi, J.; Mokrani, K.; Jribi, S.; Arfaoui, S.; Sassi, K.; Ben Ismail, H. Long-Term Effect of Conservation Agriculture on the Composition and Nutritional Value of Durum Wheat Grains Grown over 2 Years in a Mediterranean Environment. J. Sci. Food Agric. 2022, 102, 7379–7386. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Sun, D.; Li, Y.; Wang, C.; Xie, Y.; Guo, T. Effect of Nitrogen Fertilisation and Irrigation on Phenolic Content, Phenolic Acid Composition, and Antioxidant Activity of Winter Wheat Grain. J. Sci. Food Agric. 2015, 95, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Colecchia, S.A.; De Vita, P.; Rinaldi, M. Effects of Tillage Systems in Durum Wheat under Rainfed Mediterranean Conditions. Cereal Res. Commun. 2015, 43, 704–716. [Google Scholar] [CrossRef]
- Souissi, A.; Bahri, H.; Cheikh M’hamed, H.; Chakroun, M.; Benyoussef, S.; Frija, A.; Annabi, M. Effect of Tillage, Previous Crop, and N Fertilization on Agronomic and Economic Performances of Durum Wheat (Triticum durum Desf.) under Rainfed Semi-Arid Environment. Agronomy 2020, 10, 1161. [Google Scholar] [CrossRef]
- Keil, A.; Mitra, A.; McDonald, A.; Malik, R.K. Zero-Tillage Wheat Provides Stable Yield and Economic Benefits under Diverse Growing Season Climates in the Eastern Indo-Gangetic Plains. Int. J. Agric. Sustain. 2020, 18, 567–593. [Google Scholar] [CrossRef]
- Bimbo, F.; De Meo, E.; Carlucci, D. Hedonic Analysis of Dried Pasta Prices Using E-Commerce Data—An Explorative Study. Foods 2024, 13, 903. [Google Scholar] [CrossRef]
Code | GS 23 | GS 31 | |||
---|---|---|---|---|---|
N (kg/ha) | N Source | N (kg/ha) | N Source | ||
T0 | unfertilized | 0 | - | 0 | - |
T1 | standard | 90 | U | 50 | AN |
T2 | low emission | 80 | UAS + NBPT | 40 | ASN + DMPP |
Year | Source of Variation | NDVI | PH | HI | GW | GY | PNB | NAE | ARE |
---|---|---|---|---|---|---|---|---|---|
GS 55 | cm | % | mg | t/ha | kg/kg | kg/kg | kg/kg | ||
2021 | CT | 0.70 a | 69.1 a | 27.7 b | 32.9 b | 2.0 b | 0.49 a | 6.0 a | 25.2 a |
NT | 0.65 b | 71.2 a | 29.7 a | 36.1 a | 2.3 a | 0.55 a | 5.9 a | 23.5 a | |
Marco Aurelio | 0.67 a | 67.1 b | 25.8 b | 33.8 a | 1.6 b | 0.39 b | 3.6 b | 17.4 b | |
Saragolla | 0.68 a | 73.2 a | 31.6 a | 36.1 a | 2.7 a | 0.55 a | 8.3 a | 31.3 a | |
T0 | 0.47 b | 58.7 b | 28.3 a | 35.8 a | 1.4 b | - | - | - | |
T1 | 0.77 a | 75.1 a | 29.1 a | 33.8 a | 2.4 a | 0.46 b | 5.3 a | 20.7 b | |
T2 | 0.79 a | 76.7 a | 28.7 a | 33.8 a | 2.6 a | 0.55 a | 6.6 a | 28.0 a | |
TxG | ns | ns | ns | ns | ns | ns | * | * | |
TxN | ns | ns | ns | ns | ns | ns | ns | ns | |
GxN | ns | ns | * | ns | * | ns | ns | ns | |
TxGxN | ns | ns | * | * | * | * | ns | * | |
2022 | CT | 0.72 a | 67.0 a | 31.6 a | 44.0 a | 2.1 a | 0.51 a | 3.6 a | 20.2 a |
NT | 0.69 a | 58.7 b | 31.7 a | 42.9 a | 2.2 a | 0.51 a | 4.5 a | 16.9 a | |
Marco Aurelio | 0.70 a | 61.6 a | 29.4 b | 43.7 a | 1.9 b | 0.48 a | 3.2 a | 17.5 a | |
Saragolla | 0.72 a | 64.1 a | 34.0 a | 43.2 a | 2.4 a | 0.54 a | 4.9 a | 19.6 a | |
T0 | 0.60 b | 58.1 b | 33.5 a | 44.4 a | 1.6 b | - | - | - | |
T1 | 0.75 a | 66.8 a | 30.8 a | 43.4 a | 2.3 a | 0.49 a | 3.7 a | 19.2 a | |
T2 | 0.78 a | 63.6 a | 30.6 a | 42.7 a | 2.4 a | 0.53 a | 4.4 a | 17.9 a | |
TxG | ns | ns | ns | * | * | ns | * | ns | |
TxN | ns | ns | ns | * | ns | ns | ns | ns | |
GxN | ns | ns | ns | * | ns | ns | ns | ns | |
TxGxN | ns | ns | ns | ns | ns | ns | ns | ns |
Year | Factor | TW | GPC | SSV | glia/glut | H/L | AOX | Fe | Zn |
---|---|---|---|---|---|---|---|---|---|
kg/hl | % | Ml | - | - | mmol/kg | ppm | ppm | ||
2021 | CT | 74.5 b | 14.3 b | 33.9 a | 1.16 a | 0.22 b | 47.6 b | 53.9 b | 35.9 b |
NT | 75.6 a | 15.0 a | 33.4 a | 1.12 b | 0.30 a | 54.9 a | 59.0 a | 43.4 a | |
Marco Aurelio | 73.8 b | 15.0 a | 37.0 a | 1.13 a | 0.30 a | 51.5 a | 60.1 a | 44.9 a | |
Saragolla | 76.3 a | 14.4 b | 30.3 b | 1.15 a | 0.22 b | 50.9 a | 52.8 b | 34.5 b | |
T0 | 74.1 c | 12.8 b | 30.2 b | 1.07 b | 0.21 b | 30.4 b | 47.6 b | 34.7 c | |
T1 | 75.3 b | 15.5 a | 36.5 a | 1.16 a | 0.29 a | 62.4 a | 61.1 a | 40.8 b | |
T2 | 75.8 a | 15.7 a | 34.2 a | 1.19 a | 0.29 a | 61.0 a | 60.7 a | 43.5 a | |
TxG | * | ** | * | * | ns | ns | * | * | |
TxN | ns | *** | ns | ns | ns | ns | * | * | |
GxN | * | ** | * | *** | * | ns | * | * | |
TxGxN | ns | * | ns | ns | ns | ns | * | * | |
2022 | CT | 76.4 a | 15.2 a | 38.2 a | 1.26 a | 0.08 b | 33.6 a | 31.1 b | 25.4 b |
NT | 73.8 b | 15.5 a | 37.9 a | 1.19 b | 0.12 a | 32.5 a | 37.1 a | 39.8 a | |
Marco Aurelio | 75.1 a | 16.2 a | 38.3 a | 1.16 b | 0.10 a | 35.7 a | 27.7 b | 27.1 b | |
Saragolla | 75.1 a | 14.5 b | 37.8 a | 1.30 a | 0.10 a | 30.4 b | 40.5 a | 38.0 a | |
T0 | 75.2 a | 12.7 c | 31.9 b | 1.05 c | 0.15 a | 29.2 c | 25.1 c | 22.9 b | |
T1 | 74.2 a | 17.4 a | 40.9 a | 1.23 b | 0.09 b | 36.5 a | 43.4 a | 47.5 a | |
T2 | 75.8 a | 16.0 b | 41.3 a | 1.40 a | 0.07 b | 33.4 b | 33.9 b | 27.3 ab | |
TxG | ns | * | ns | ns | * | ns | ns | ns | |
TxN | ns | *** | ns | * | ns | ns | ns | ns | |
GxN | ns | ns | ns | * | * | * | * | * | |
TxGxN | ns | * | ns | * | * | ns | * | ns |
Source of Variation | Factor | 2021 | 2022 | ||||
---|---|---|---|---|---|---|---|
300 EUR/t | 400 EUR/t | 500 EUR/t | 300 EUR/t | 400 EUR/t | 500 EUR/t | ||
tillage | CT | −191 | 7 | 206 | −159 | 51 | 260 |
NT | −80 | 151 | 382 | −123 | 93 | 310 | |
genotype | Marco Aurelio | −296 | −134 | 27 | −215 | −27 | 161 |
Saragolla | 24 | 292 | 560 | −67 | 171 | 409 | |
N fertilization | T0 | −240 | −96 | 49 | −140 | 38 | 216 |
T1 | −102 | 140 | 382 | −138 | 92 | 322 | |
T2 | −65 | 193 | 450 | −65 | 85 | 316 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Santis, M.A.; Giuzio, L.; Tozzi, D.; Soccio, M.; Flagella, Z. Impact of No Tillage and Low Emission N Fertilization on Durum Wheat Sustainability, Profitability and Quality. Agronomy 2024, 14, 2794. https://doi.org/10.3390/agronomy14122794
De Santis MA, Giuzio L, Tozzi D, Soccio M, Flagella Z. Impact of No Tillage and Low Emission N Fertilization on Durum Wheat Sustainability, Profitability and Quality. Agronomy. 2024; 14(12):2794. https://doi.org/10.3390/agronomy14122794
Chicago/Turabian StyleDe Santis, Michele Andrea, Luigia Giuzio, Damiana Tozzi, Mario Soccio, and Zina Flagella. 2024. "Impact of No Tillage and Low Emission N Fertilization on Durum Wheat Sustainability, Profitability and Quality" Agronomy 14, no. 12: 2794. https://doi.org/10.3390/agronomy14122794
APA StyleDe Santis, M. A., Giuzio, L., Tozzi, D., Soccio, M., & Flagella, Z. (2024). Impact of No Tillage and Low Emission N Fertilization on Durum Wheat Sustainability, Profitability and Quality. Agronomy, 14(12), 2794. https://doi.org/10.3390/agronomy14122794