Commercial Cultivation of Edible Halophytes: The Issue of Oxalates and Potential Mitigation Options
Abstract
:1. Introduction
2. Edible Halophytes: Costs and Emerging Market Demand
3. Anti-Nutrients and Consumer Acceptance
4. Processing as a Means to Reduce Oxalates
5. Agronomic Options for Minimising Anti-Nutrients in Commercial Productions Systems
6. Genetic Engineering to Reduce Oxalates
7. Conclusions
Funding
Conflicts of Interest
References
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022. Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Duarte, B.; Feijão, E.; Pinto, M.V.; Matos, A.R.; Silva, A.; Figueiredo, A.; Fonseca, V.F.; Reis-Santos, P.; Caçador, I. Nutritional valuation and food safety of endemic Mediterranean halophyte species cultivated in abandoned salt pans under a natural irrigation scheme. Estuar. Coast. Shelf Sci. 2022, 265, 107733. [Google Scholar] [CrossRef]
- Rozema, J.; Flowers, T. Crops for a salinized world. Science 2008, 322, 1478–1480. [Google Scholar] [CrossRef]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef] [PubMed]
- FAO; IFAD; WFP. The State of Food Insecurity in the World 2015. Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress; FAO: Rome, Italy, 2015. [Google Scholar]
- Qadir, E.; Quillérou, V.; Nangia, G.; Murtaza, M.; Singh, R.J.; Thomas, P.; Drechsel, N.A.D. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum 2014, 38, 282–295. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Q.; Huang, H. Current states and challenges of salt-affected soil remediation by cyanobacteria. Sci. Total Environ. 2019, 669, 258–272. [Google Scholar] [CrossRef] [PubMed]
- Shaygan, M.; Baumgartl, T. Reclamation of salt-affected land: A review. Soil Syst. 2022, 6, 61. [Google Scholar] [CrossRef]
- Colmer, T.D.; Flowers, T.J.; Munns, R. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 2006, 57, 1059–1078. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Blumwald, E. Developing salt-tolerant crop plants: Challenges and opportunities. Trends Plant Sci. 2005, 10, 615–620. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Salinity Tolerance in Halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef]
- Santos, J.; Al-Azzawi, M.; Aronson, J.; Flowers, T.J. eHALOPH a database of salt-tolerant plants: Helping put halophytes to work. Plant Cell Physiol. 2016, 57, e10. [Google Scholar] [CrossRef]
- Panta, S.; Flowers, T.; Lane, P.; Doyle, R.; Haros, G.; Shabala, S. Halophyte agriculture: Success stories. Environ. Exp. Bot. 2014, 107, 71–83. [Google Scholar] [CrossRef]
- Ventura, Y.; Eshel, A.; Pasternak, D.; Sagi, M. The development of halophyte-based agriculture: Past and present. Ann. Bot. 2015, 115, 529–540. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef]
- Herppich, W.B.; Huyskens-Keil, S.; Schreiner, M. Effects of saline irrigation on growth, physiology and quality of Mesembryanthemum crystallinum L., a rare vegetable crop. J. Appl. Bot. Food Qual. 2008, 82, 47–54. [Google Scholar]
- Ksouri, R.; Ksouri, W.M.; Jallali, I.; Debez, A.; Magné, C.; Hiroko, I.; Abdelly, C. Medicinal halophytes: Potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit. Rev. Biotechnol. 2012, 32, 289–326. [Google Scholar] [CrossRef]
- Morales, P.; Ferreira, I.C.F.R.; Carvalho, A.M.; Sánchez-Mata, M.C.; Cámara, M.; Fernández-Ruiz, V.; Pardo-de-Santayana, M.; Tardio, J. Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. LWT Food Sci. Technol. 2014, 55, 389–396. [Google Scholar] [CrossRef]
- Negacz, K.; Vellinga, P. The emergence of a governance landscape for saline agriculture. In Halt soil salinization, boost soil productivity. In Proceedings of the Global Symposium on Salt-affected Soils, Rome, Italy, 20–22 October 2022; pp. 284–285. [Google Scholar]
- Ghassemi, F.; Jakeman, A.J.; Nix, H.A. Salinisation of Land and Water Resources: Human Causes, Extent, Management and Case Studies; NSW University Press: Sydney, Australia, 1995. [Google Scholar]
- Gago, C.; Sousa, A.R.; Juliao, M.; Miguel, G.; Antunes, D.C.; Panagopoulos, T. Sustainable use of energy in the storage of halophytes used for food. Int. J. Energy Environ. 2011, 4, 592–599. [Google Scholar]
- Amoruso, F.; Signore, A.; Gómez, P.A.; Martínez-Ballesta, M.D.C.; Giménez, A.; Franco, J.A.; Fernández, J.A.; Egea-Gilabert, C. Effect of saline-nutrient solution on yield, quality, and shelf-life of sea fennel (Crithmum maritimum L.) plants. Horticulturae 2022, 8, 127. [Google Scholar] [CrossRef]
- Antunes, M.D.; Gago, C.; Guerreiro, A.; Sousa, A.R.; Julião, M.; Miguel, M.G.; Faleiro, M.L.; Panagopoulos, T. Nutritional Characterization and Storage Ability of Salicornia ramosissima and Sarcocornia perennis for Fresh Vegetable Salads. Horticulturae 2021, 7, 6. [Google Scholar] [CrossRef]
- Böer, B. Halophyte research and development: What needs to be done next? In Ecophysiology of High Salinity Tolerant Plants; Khan, M.A., Weber, D.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 397–399. [Google Scholar]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Ahmed, A.K.; Johnson, K.A. The effect of the ammonium: Nitrate nitrogen ratio, total nitrogen, salinity (NaCl) and calcium on the oxalate levels of Tetragonia tetragonioides Pallas. Kunz. J. Hortic. Sci. Biotechnol. 2000, 75, 533–538. [Google Scholar] [CrossRef]
- Al Daini, H.; Norman, H.C.; Young, P.; Barrett-Lennard, E.G. The source of nitrogen (NH4+ or NO3–) affects the concentration of oxalate in the shoots and the growth of Atriplex nummularia (Oldman saltbush). Funct. Plant Biol. 2013, 40, 1057–1064. [Google Scholar] [CrossRef]
- Palaniswamy, U.R.; Bible, B.B.; Mc Avoy, R.J. Effect of nitrate:ammonium nitrogen ratio on oxalate levels of Purslane. In Trends in New Crops and New Uses; Janick, J., Ed.; ASHS Press: Alexandria, Egypt, 2002; pp. 453–455. [Google Scholar]
- Carlsson, R.; Clarke, E.M.W. Atriplex hortensis L. as a leafy vegetable, and as a leaf protein concentrate plant. Plant Food Hum. Nutr. 1983, 33, 127–133. [Google Scholar] [CrossRef]
- Ventura, Y.; Sagi, M. Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environ. Exp. Bot. 2013, 92, 144–153. [Google Scholar] [CrossRef]
- Kumar, V.; Irfan, M.; Datta, A. Manipulation of oxalate metabolism in plants for improving food quality and productivity. Phytochemistry 2019, 158, 103–109. [Google Scholar] [CrossRef]
- Franceschi, V.R.; Nakata, P.A. Calcium oxalate in plants: Formation and function. Annu. Rev. Plant Biol. 2005, 56, 41. [Google Scholar] [CrossRef]
- Tooulakou, G.; Giannopoulos, A.; Nikolopoulos, D.; Bresta, P.; Dotsika, E.; Orkoula, M.G.; Kontoyannis, C.G.; Fasseas, C.; Liakopoulos, G.; Klapa, M.I.; et al. Alarm photosynthesis: Calcium oxalate crystals as an internal CO2 source in plants. Plant Physiol. 2016, 171, 2577–2585. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- Noonan, S.C.; Savage, G.P. Oxalate content of foods and its effect on humans. Asia Pac. J. Clin Nutr. 1999, 8, 64–74. [Google Scholar]
- Srivarathan, S.; Phan, A.D.T.; Hong, H.T.; Netzel, G.; Wright, O.R.L.; Sultanbawa, Y.; Netzel, M.E. Nutritional composition and antinutrients of underutilized Australian edible halophytes—Saltbush, Seablite and Seapurslane. J. Food Compos. Anal. 2023, 115, 104876. [Google Scholar] [CrossRef]
- Farzana, T.; Guo, Q.; Rahman, M.S.; Rose, T.J.; Barkla, B.J. Salinity and nitrogen source affect productivity and nutritional value of edible halophytes. PLoS ONE 2023, 18, e0288547. [Google Scholar] [CrossRef]
- Siener, R.; Hönow, R.; Seidler, A.; Voss, S.; Hesse, A. Oxalate contents of species of the Polygonaceae, Amaranthaceae and Chenopodiaceae families. Food Chem. 2006, 98, 220–224. [Google Scholar] [CrossRef]
- Bataille, P.; Fournier, A. Calcium supply in calcium lithiasis. J. Med. Nutr. 2001, 37, 9–12. [Google Scholar]
- Fontana, E.; Hoeberechts, J.; Silvana, N.; Cros, V.; Palmegiano, G.B.; Peiretti, P.G. Nitrogen concentration and nitrate/ammonium ratio affect yield and change the oxalic acid concentration and fatty acid profile of purslane (Portulaca oleracea L.) grown in a soilless culture system. J. Sci. Food Agric. 2006, 86, 2417–2424. [Google Scholar] [CrossRef]
- Natesh, H.N.; Abbey, L.; Asiedu, S.K. An overview of nutritional and antinutritional factors in green leafy vegetables. Horticult. Int. J. 2017, 1, 00011. [Google Scholar] [CrossRef]
- Hill, M.J. Nitrate toxicity: Myth or reality? Br. J. Nutr. 1999, 81, 343–344. [Google Scholar] [CrossRef]
- Gomez-Caravaca, A.M.; Lafelice, G.; Lavini, A.; Pulvento, C.; Caboni, M.F.; Marconi, E. Phenolic compounds and saponins in Quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimes. J. Agric. Food Chem. 2012, 60, 4620–4627. [Google Scholar] [CrossRef]
- Sharma, K.; Kaur, R.; Kumar, S.; Saini, R.K.; Sharma, S.; Pawde, S.V.; Kumar, V. Saponins: A concise review on food related aspects, applications and health implications. Food Chem. Adv. 2023, 2, 100191. [Google Scholar] [CrossRef]
- Lopes, M.; Sanches-Silva, A.; Castilho, M.; Cavaleiro, C.; Ramos, F. Halophytes as source of bioactive phenolic compounds and their potential applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 1078–1101. [Google Scholar] [CrossRef]
- Bhuyan, D.J.; Basu, A. Phenolic compounds: Potential health benefits and toxicity. In Utilisation of Bioactive Compounds from Agricultural and Food Waste; Vuong, Q.V., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 27–59. [Google Scholar]
- Boestfleisch, C.; Wagenseil, N.B.; Buhmann, A.K.; Seal, C.E.; Wade, E.M.; Muscolo, A.; Papenbrock, J. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation. AoB Plants 2014, 6, plu046. [Google Scholar] [CrossRef]
- Pires, S.M.G.; Reis, R.S.; Cardoso, S.M.; Pezzani, R.; Paredes-Osses, E.; Seilkhan, A.; Ydyrys, A.; Martorell, M.; Sönmez Gürer, E.; Setzer, W.N.; et al. Phytates as a natural source for health promotion: A critical evaluation of clinical trials. Front. Chem. 2023, 11, 1174109. [Google Scholar] [CrossRef]
- Mosha, T.C.; Gaga, H.E.; Pace, R.D.; Laswai, H.S.; Mtebe, K. Effect of blanching on the content of antinutritional factors in selected vegetables. Plant Foods Hum. Nutr. 1995, 47, 361–367. [Google Scholar] [CrossRef]
- Poeydomenge, G.Y.; Savage, G.P. Oxalate content of raw and cooked purslane. J. Food Agric. Environ. 2007, 5, 124–128. [Google Scholar]
- Badawy, W.Z.; Arafa, S.G.; Mihály, C. Optimization of purslane plant using cooking and pickling process for reducing oxalate content. J. Adv. Agric. 2018, 8, 1. [Google Scholar]
- Savage, G.P.; Vanhanen, L.; Mason, S.M.; Ross, A.B. Effect of cooking on the soluble and insoluble oxalate content of some New Zealand foods. J. Food Comp. Anal. 2000, 13, 201–206. [Google Scholar] [CrossRef]
- Lee, S.; Choi, Y.; Jeong, H.S.; Lee, J.; Sung, J. Effect of different cooking methods on the content of vitamins and true retention in selected vegetables. Food Sci. Biotechnol. 2018, 27, 333–342. [Google Scholar]
- Accogli, R.; Tomaselli, V.; Direnzo, P.; Perrino, E.V.; Albanese, G.; Urbano, M.; Laghetti, G. Edible halophytes and halo-tolerant species in Apulia region (Southeastern Italy): Biogeography, traditional food use and potential sustainable crops. Plants 2023, 12, 549. [Google Scholar] [CrossRef]
- Shabala, S. Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Ann. Bot. 2013, 112, 1209–1221. [Google Scholar] [CrossRef]
- Beeckman, F.; Motte, H.; Beeckman, T. Nitrification in agricultural soils: Impact, actors and mitigation. Curr. Opin. Biotechnol. 2018, 50, 166–173. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, Z.; Tian, D. Global patterns and controlling factors of soil nitrification rate. Glob. Chang. Biol. 2020, 26, 4147–4157. [Google Scholar] [CrossRef]
- Rose, T.J.; Kearney, L.J.; Zend, Y.; Van Zwieten, L.; Rose, M.T. DMPP-urea restricts nitrification in the first month without improving agronomic N use efficiency. Nutr. Cycl. Agroecosyst. 2023, 126, 115–125. [Google Scholar] [CrossRef]
- Rose, T.J.; Kearney, L.J.; Van Zwieten, L.; Rose, M.T. Low pH of a high carbon gleysol contributes to nitrification inhibition resulting in low N2O soil emissions and limited effectiveness of nitrification inhibitors. Soil Syst. 2020, 4, 75. [Google Scholar] [CrossRef]
- Camalle, M.; Standing, D.; Jitan, M.; Muhaisen, R.; Bader, N.; Bsoul, M.; Ventura, Y.; Soltabayeva, A.; Sagi, M. Effect of Salinity and Nitrogen Sources on the Leaf Quality, Biomass, and Metabolic Responses of Two Ecotypes of Portulaca oleracea. Agronomy 2020, 10, 656. [Google Scholar] [CrossRef]
- Szalai, G.; Dai, N.; Danin, A.; Dudai, N.; Barazani, O. Effect of nitrogen source in the fertilizing solution on nutritional quality of three members of the Portulaca oleracea aggregate. J. Sci. Food Agric. 2010, 90, 2039–2045. [Google Scholar] [CrossRef]
- Carvalho, I.S.; Teixeira, M.; Brodelius, M. Effect of salt stress on purslane and potential health benefits: Oxalic acid and fatty acids profile. In Proceedings of the International Plant Nutrition Colloquium XVI; UC Davis: Davis, CA, USA, 2009; Available online: https://escholarship.org/uc/item/4cc78714 (accessed on 7 November 2023).
- Kaşkar, Ç.; Fernándeza, J.A.; Ochoa, J.; Niñirola, D.; Conesa, E.; Tüzel, Y. Agronomic behaviour and oxalate and nitrate content of different purslane cultivars (Portulaca oleracea) grown in a hydroponic floating system. Acta Hortic. 2009, 807, 521–526. [Google Scholar] [CrossRef]
- Egea-Gilabert, C.; Niñirola, D.; Conesa, E.; Candela, M.E.; Fernández, J.A. Agronomical use as baby leaf salad of Silene vulgaris based on morphological, biochemical and molecular traits. Sci. Hortic. 2013, 152, 35–43. [Google Scholar] [CrossRef]
- Duraiswamy, A.; Sneha, A.N.M.; Jebakani, K.S.; Selvaraj, S.; Pramitha, J.L.; Selvaraj, R.; Petchiammal, K.I.; Kather Sheriff, S.; Thinakaran, J.; Rathinamoorthy, S.; et al. Genetic manipulation of antinutritional factors in major crops for a sustainable diet in future. Front. Plant Sci. 2023, 13, 1070398. [Google Scholar] [CrossRef]
- Chakraborty, N.; Ghosh, R.; Ghosh, S.; Narula, K.; Tayal, R.; Datta, A.; Chakraborty, S. Reduction of oxalate levels in tomato fruit and consequent metabolic remodeling following overexpression of a fungal oxalate decarboxylase. Plant Physiol. 2013, 162, 364–378. [Google Scholar] [CrossRef]
- Kumar, V.; Chattopadhyay, A.; Ghosh, S.; Irfan, M.; Chakraborty, N.; Chakraborty, S.; Datta, A. Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase. Plant Biotechnol. J. 2016, 14, 1394–1405. [Google Scholar] [CrossRef]
- Shamsutdinova, E.Z.; Kosolapov, V.M.; Kenzhegaliev, G.K.; Starshinova, O.A.; Shamsutdinov, N.Z.; Shamsutdinov, Z.S. Breeding salt-tolerant cultivar of a halophytic annual Suaeda altissima L. in the Caspian semidesert. Russ. Agricult. Sci. 2017, 43, 478–481. [Google Scholar] [CrossRef]
Halophyte Species | Oxalate (mg/100 gFW or mg/100 gDW *) Range or Mean | Reference | |
---|---|---|---|
Common Name | Scientific Name | ||
Pig Spinach | Chenopodium spp. | 1100 † | [35] |
Purslane | Portulaca oleracea | 910–1679 † | [35] |
Warragal Greens | Tetragonia expansa | 890 † | [35] |
Seapurslane | Sesuvium portulacastrum | 385 * ± 35 | [36] |
Seablite | Suaeda arbusculoides | 280 * ± 20 | [36] |
Saltbush | Atriplex nummularia | 215 * ± 49 | [36] |
Saltbush | Atripex nummularia | 120 ± 4–5014 ± 42 *a | [37] |
Ice plant | Mesembryanthemum crystallinum L. | 288 ± 27.5–8141 ± 86 *a | [37] |
Quinoa | Chenopodium quinoa | 184 † | [38] |
Spinach | Spinacia oleracea | 404 ± 75 * | [36] |
Spinach | Spinacia oleracea | 320–1260 † | [35] |
Species | NH4+:NO3− | Salinity Level | Dry Matter Yield | % Reduction in Yield (Compared to 100% NO3−) | Oxalate | % Reduction in Oxalate (Compared to 100% NO3−) | Reference |
---|---|---|---|---|---|---|---|
Tetragonia tetragonoides | g/plant | % | [26] | ||||
100:0 | 180 mS | 8.15 ± 1.1 | 7.8 ± 0.7 | ||||
97:3 | 180 mS | 9.38 ± 1.0 | no reduction | 7.1 ± 0.7 | 9.0 | ||
80:20 | 180 mS | 8.01 ± 0.8 | 1.7 | 6.7 ± 0.9 | 14.1 | ||
50:50 | 180 mS | 8.09 ± 0.8 | 0.7 | 4.9 ± 0.9 | 37.2 | ||
0:100 | 180 mS | 7.09 ± 9 | 13.3 | 0.5 ± 0.1 | 93.6 | ||
Atriplex nummularia | g/plant | % | [27] | ||||
100:0 | 50 mM | 5.6 ± 0.8 | 7.8 ± 0.5 | ||||
0:100 | 50 mM | 2.5 ± 0.5 | 55.4 | 1.9 ± 0.2 | 75.6 | ||
100:0 | 200 mM | 5.9 ± 0.3 | 10 ± 0.5 | ||||
0:100 | 200 mM | 1.8 ± 0.1 | 69.5 | 2.9 ± 0.05 | 71.3 | ||
100:0 | 500 mM | 3.1 ± 0.5 | 10 ± 0.4 | ||||
0:100 | 500 mM | 1.8 ± 0.1 | 41.9 | 2.3 ± 0.2 | 77.9 | ||
Portulaca oleracea | g/pot | mmol/g leaf DW | [28] | ||||
100:0 | 1.1 | 1.0 | |||||
75:25 | 1.2 | no reduction | 0.9 | 10 | |||
50:50 | 1.1 | no reduction | 0.7 | 30 | |||
25:75 | 0.9 | 18.2 | 0.6 | 40 | |||
Portulaca oleracea | g/plant | mmol/g DW | [40] | ||||
60:40 | 72 | 0.77 | |||||
40:60 | 80 | no reduction | 0.67 | 13 | |||
0:100 | 48 | 33 | 0.61 | 21 | |||
Portulaca oleracea | g/plant | mg/100 g FW | [28] | ||||
100:0 | 2.2 | 397 | |||||
75:25 | 2.2 | no reduction | 297 | 25 | |||
50:50 | 2.1 | 5 | 248 | 38 | |||
25:75 | 1.9 | 14 | 239 | 40 | |||
Portulaca oleracea | mg/plant | mg/g DW | [60] | ||||
Ecotype ET | 100:0 | 0 mM | 95 ± 3 | 109 ± 22 | |||
66:33 | 0 mM | 76 ± 3 | 20 | 55 ± 8 | 49.5 | ||
25:75 | 0 mM | 62 ± 5 | 34.7 | 18 ± 3 | 83.5 | ||
100:0 | 50 mM | 100 ± 2 | 170 ± 25 | ||||
66:33 | 50 mM | 81 ± 3 | 19.0 | 106 ± 11 | 37.6 | ||
25:75 | 50 mM | 63 ± 3 | 37.0 | 23 ± 3 | 86.5 | ||
Ecotype RN | 100:0 | 0 mM | 79 ± 6 | 82 ± 7 | |||
66:33 | 0 mM | 84 ± 4 | no reduction | 25 ± 4 | 69.5 | ||
25:75 | 0 mM | 60 ± 3 | 24.1 | 17 ± 1 | 79.3 | ||
100:0 | 50 mM | 73 ± 2 | 82 ± 7 | ||||
66:33 | 50 mM | 77 ± 3 | no reduction | 35 ± 4 | 57.3 | ||
25:75 | 50 mM | 63 ± 3 | 13.7 | 19 ± 1 | 76.8 | ||
Portulaca sp. | mg/plant | mg/g DW | [61] | ||||
P. sativa | 100:0 | 140 ± 5 | 2.62 ± 0.2 | ||||
75:25 | 105 ± 10 | 25 | 2.46 ± 0.3 | 6 | |||
50:50 | 101 ± 5 | 28 | 1.52 ± 0.3 | 42 | |||
25:75 | 112 ± 15 | 20 | 1.05 ± 0.1 | 60 | |||
P. nitida | 100:0 | 215 ± 18 | 3.15 ± 0.3 | ||||
75:25 | 155 ± 18 | 28 | 2.41 ± 0.2 | 23 | |||
50:50 | 131 ± 15 | 39 | 1.85 ± 0.2 | 41 | |||
25:75 | 128 ± 17 | 40 | 0.42 ± 0.1 | 87 | |||
P. papillato-stellulata | 100:0 | 195 ± 21 | 2.48 ± 0.2 | ||||
75:25 | 166 ± 21 | 15 | 1.83 ± 0.2 | 20 | |||
50:50 | 129 ± 8 | 34 | 2.77 ± 0.3 | no reduction | |||
25:75 | 133 ± 19 | 32 | 1.45 ± 0.1 | 41 | |||
Enchylaena tomentosa | mg/pot | mg/g DW | [51] | ||||
100:0 | 0 mM | 8.0 ± 0.4 | 33 ± 6.5 | ||||
75:25 | 0 mM | 7.4 ± 0.4 | 7.5 | 22 ± 3.9 | 33 | ||
50:50 | 0 mM | 6.8 ± 0.7 | 15 | 11 ± 3.2 | 67 | ||
25:75 | 0 mM | 6.4 ± 0.7 | 20 | 5.7 ± 1.0 | 83 | ||
0:100 | 0 mM | 3.8 ± 0.4 | 53 | 2.9 ± 0.2 | 91 | ||
100:0 | 200 mM | 8.4 ± 0.5 | 32 ± 5.3 | ||||
75:25 | 200 mM | 8.6 ± 0.4 | no reduction | 27 ± 5.8 | 16 | ||
50:50 | 200 mM | 7.6 ± 0.9 | 10 | 20 ± 4.3 | 38 | ||
25:75 | 200 mM | 6.4 ± 0.3 | 24 | 9.6 ± 1.6 | 70 | ||
0:100 | 200 mM | 3.6 ± 0.2 | 57 | 2.6 ± 0.2 | 92 | ||
100:0 | 400 mM | 6.1 ± 0.3 | 50 ± 4.2 | ||||
75:25 | 400 mM | 5.7 ± 0.2 | 7 | 38 ± 4.1 | 24 | ||
50:50 | 400 mM | 5.9 ± 0.9 | 3 | 20 ± 3.2 | 60 | ||
25:75 | 400 mM | 5.5 ± 0.8 | 10 | 7.2 ± 1.9 | 86 | ||
0:100 | 400 mM | 3.0 ± 0.3 | 51 | 1.2 ± 0.0 | 98 | ||
Mesembryanthemum crystallinum | mg/pot | mg/g DW | [51] | ||||
100:0 | 0 mM | 1.9 ± 0.4 | 80 ± 7.9 | ||||
75:25 | 0 mM | 1.6 ± 0.3 | 16 | 62 ± 8.5 | 23 | ||
50:50 | 0 mM | 1.3 ± 0.2 | 32 | 55 ± 9.9 | 31 | ||
25:75 | 0 mM | 1.4 ± 0.3 | 26 | 50 ± 5.6 | 38 | ||
0:100 | 0 mM | 0.8 ± 0.2 | 58 | 29 ± 2.8 | 64 | ||
100:0 | 200 mM | 2.3 ± 0.2 | 81 ± 8.6 | ||||
75:25 | 200 mM | 2.3 ± 0.3 | no reduction | 70 ± 12 | 14 | ||
50:50 | 200 mM | 2.0 ± 0.3 | 13 | 63 ± 8.7 | 22 | ||
25:75 | 200 mM | 1.8 ± 0.2 | 22 | 56 ± 4.8 | 31 | ||
0:100 | 200 mM | 1.3 ± 0.2 | 43 | 40 ± 7.4 | 51 | ||
100:0 | 400 mM | 1.3 ± 0.2 | 64 ± 6.2 | ||||
75:25 | 400 mM | 1.5 ± 0.2 | no reduction | 51 ± 3.3 | 20 | ||
50:50 | 400 mM | 1.2 ± 0.2 | 8 | 48 ± 0.8 | 25 | ||
25:75 | 400 mM | 1.1 ± 0.3 | 15 | 45 ± 3.1 | 30 | ||
0:100 | 400 mM | 0.7 ± 0.1 | 46 | 41 ± 8.6 | 36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barkla, B.J.; Farzana, T.; Rose, T.J. Commercial Cultivation of Edible Halophytes: The Issue of Oxalates and Potential Mitigation Options. Agronomy 2024, 14, 242. https://doi.org/10.3390/agronomy14020242
Barkla BJ, Farzana T, Rose TJ. Commercial Cultivation of Edible Halophytes: The Issue of Oxalates and Potential Mitigation Options. Agronomy. 2024; 14(2):242. https://doi.org/10.3390/agronomy14020242
Chicago/Turabian StyleBarkla, Bronwyn J., Tania Farzana, and Terry J. Rose. 2024. "Commercial Cultivation of Edible Halophytes: The Issue of Oxalates and Potential Mitigation Options" Agronomy 14, no. 2: 242. https://doi.org/10.3390/agronomy14020242
APA StyleBarkla, B. J., Farzana, T., & Rose, T. J. (2024). Commercial Cultivation of Edible Halophytes: The Issue of Oxalates and Potential Mitigation Options. Agronomy, 14(2), 242. https://doi.org/10.3390/agronomy14020242