Research Needs and Pathways to Advance Hydrothermal Carbonization Technology
Abstract
:1. Introduction
2. HTC vs. Pyrolysis: Hydrochars vs. Pyrochars
2.1. Similarities and Differences between Both Processes
2.2. Surface Properties
2.3. Carbon Capture
2.4. Waste Disposal
2.5. Other Aspects
2.5.1. Potential Ash Tunning
2.5.2. Fate of Nitrogen
2.5.3. Fate of Chlorine
2.5.4. Process Improvement for HTC and Pyrolysis
3. HTC Process Modeling
3.1. Kinetic Models
3.2. CFD Models
- Uniform slurries. In scenarios where tiny solid particles are uniformly dispersed within a slurry and do not exhibit spontaneous separation from the water, the situation is somewhat simpler. Here, there is no imperative to treat water and solids as distinct phases; instead, a single slurry phase can be employed. This also allows the employing of relatively simpler multiphase models, such as the “volume-of-fluid” (VOF) [73]. The rheology of the slurry is, however, often non-ideal due to the cohesive forces, and slurries have often been described as non-Newtonian fluids [74]. This is not too problematic per se, as there are several approaches to calculate the viscosity of non-Newtonian fluids [75]. However, while the viscosity of nearly all fluids is known to decrease when they are heated, sludges also lose their non-Newtonian behavior when hydrothermally treated [76,77], due to the breaking of biomass molecules. This effect has been reported multiple times, but the resulting rheology was only assessed after the slurry had been taken out of the reactor and cooled at ambient temperature. As far as we are aware, there has been no description of slurries rheology during the HTC process itself. To obtain a tool that is suitable for CFD simulations, there should be a mathematical relation linking the fluid’s rheology with temperature and with its composition, which in turn changes when heated due to the degradation kinetics.
- Biomass particles distinct from water. The other case, with macroscopic biomass particles, is typical, for example, of agricultural residues and there are more possibilities for its reproduction. As a first simplification, especially if their concentration is low, solid reactants and products may be assumed to be chemical species, allowing the use of simpler multiphase models, such as the VOF. Another simplified approach could be to assume that biomass particles do not move, and define the area they occupy as a porous zone. Instead, to actually model real granular solids, several approaches are available in the literature, but ultimately, the most viable ones are the following two: the two-fluid method (TFM), and the coupling of CFD with the discrete element method (CFD-DEM). The TFM [78] follows a Eulerian–Eulerian framework where both the solid and fluid phases are treated as interpenetrating continua. The behavior of the solid is reproduced through the kinetic theory of granular flows (KTGT), which involves numerous closure equations [79]. This approach is generally considered less reliable and more dependent on the chosen sub-models and parameters, and provides less-detailed results. At the same time, it is computationally more efficient (especially at larger scales) and is less restrictive in the definition of the solids properties and the numerical grid. The CFD-DEM [53,80] follows instead a Eulerian–Lagrangian approach: the fluid is a continuum, but solid particles are treated as discrete elements, with their trajectories being predicted by solving their Newtonian equations of motion, in addition to the various closure equations for the forces that they experience. The approach clearly provides more detailed results as it can yield the trajectories of all the involved particles and was often deemed as more accurate [81,82], but is much more computationally complex and is unviable if there are more than a few hundred thousand particles, especially for long simulation time. In the case of HTC (or of treating biomass in general), it may also be complex to describe how the particle properties (size, density, composition) may change due to the involved reactions. Despite the difficulties in modeling reacting solids [83], both approaches have successfully been applied for other types of biomass conversion processes [84,85,86], but never for HTC.
3.3. Plant-Scale Models and LCA
4. Effect of Hydrochar Products in the Soil
4.1. Effects on Soil Parameters
- (a)
- Physicochemical parameters
- (b)
- Impact on soil organisms
4.2. Effects on Plant Growth
- (a)
- Effects on plant-available nutrients
- (b)
- Phytotoxic substances in hydrochar
- (c)
- Post-treatment options for hydrochar detoxification
4.3. Carbon Sequestration
4.4. Priming Effect
4.5. Contaminant Retention
4.6. Discussion and Future Research Points
- As primary and secondary char decompose at different rates, identifying spatial distribution (i.e., proportioning) of nutrients and heavy metals in hydrochar composite would provide fundamental knowledge that facilitates subsequent research streams in both hydrochar production and application. Finer tuning of hydrochar products could be a more tailor-made solution in a given context.
- The effects of hydrochar biodegradation on its adsorptive performance are not yet known. If the degradation of secondary char in the soil–hydrochar matrix occurs at a significantly higher rate than that of primary char, biodegradation would induce similar impacts as the chemical activation and provide a larger surface area. However, it has to be considered that the loss of rich surface functional groups (mainly O- and H-containing groups) would lead to an increase in hydrophobicity, resulting in a decrease in water holding capacity. Continuous monitoring of the hydrochar characteristics in the soil would provide crucial insights into long-term perspectives.
- The interaction between the soil–hydrochar matrix and other soil substances, such as chemical fertilizers and pesticides, would also change with the ageing of the soil–hydrochar matrix. This has to be examined in the long term. It might affect biogeochemical cycling and efficiency as well as the fate of pollutants.
5. Process Water Management and Valorization
5.1. Process Water Characteristics/Characterization
5.2. Management of Process Water through Recirculation
5.3. PW Valorization through Energy Recovery via Biogas Production
5.4. PW Valorization through Resource Recovery
5.5. PW Treatment
6. Strategic Feedstocks for Pyrolysis and Hydrothermal Carbonization
6.1. Animal Manure
6.1.1. Physico-Chemical Characteristics of Animal Manures
6.1.2. Carbonized Animal Manure Characteristics
6.1.3. Potential Applications for Animal Manure Hydrochar
6.2. Lignocellulosic (Plant) Biomass
6.2.1. Physico-Chemical Characteristics of Lignocellulosic Biomass
6.2.2. Properties of Carbonized Solids (from Pyrolysis and Hydrothermal Carbonization) Derived from Lignocellulosic Biomass
Lignocellulosic Biomass | P and HC | MC (%) | VM (%db) | FC (%db) | Ash (%db) | C (%db) | H (%db) | N (%db) | S (%db) | O (%db) | Refs |
---|---|---|---|---|---|---|---|---|---|---|---|
Wood chip | P250 | 3.96 | 59.1 | 38.3 | 2.6 | 62.8 | 7.41 | 25.8 | [184] | ||
P500 | 7.74 | 14.2 | 80.3 | 5.6 | 81.9 | 4.03 | 6.0 | ||||
Sugar beet pulp | s-H200 | 4.6 | 61.0 | 32.0 | 7.1 | 67.3 | 3.6 | 4.2 | 0.1 | 24.8 | [222] |
w-H200 | 4.1 | 66.2 | 21.2 | 12.6 | 61.3 | 5.4 | 5.3 | 0.1 | 27.8 | ||
w-H250 | 4.7 | 51.8 | 35.7 | 12.5 | 71.1 | 7.6 | 1.7 | 0.9 | 17.1 | ||
w-H250 | 3.9 | 50.0 | 38.1 | 12.0 | 72.2 | 7.1 | 2.7 | 1.2 | 18.0 | ||
Bark | s-H200 | 6.0 | 56.1 | 37.3 | 6.6 | 69.0 | 3.1 | 1.5 | 0.1 | 26.3 | [222] |
w-H200 | 10.0 | 56.1 | 35.1 | 4.7 | 64.4 | 3.1 | 1.5 | 0.1 | 27.5 | ||
w-H250 | 3.7 | 50.6 | 43.2 | 6.2 | 70.8 | 6.1 | 0.1 | 0.6 | 21.3 | ||
w-H250 | 4.4 | 45.2 | 46.9 | 7.9 | 72.2 | 6.0 | 0.4 | 0.7 | 17.7 | ||
Algae | H200 | n.a. | n.a. | n.a. | 0.3 | 66.3 | 7.9 | 7.3 | 18 | [230] | |
H250 | n.a. | n.a. | n.a. | 0.2 | 48.9 | 9.1 | 7.9 | 16.5 | |||
Corncob | P350 | n.a. | 32.2 | 65 | 2.8 | 76.5 | 4.2 | n.a. | 12.9 | [220] | |
P400 | n.a. | 24 | 72.3 | 3.7 | 80.1 | 3.7 | n.a. | 8.8 | [230] | ||
H230 | n.a. | 67.2 | 31.3 | 1.5 | n.a. | n.a. | n.a. | n.a. | |||
Coconut shell | P350 | n.a. | 28.6 | 49.9 | 21.5 | n.a. | n.a. | n.a. | n.a. | [190] | |
P500 | n.a. | 16.7 | 55.5 | 27.8 | n.a. | n.a. | n.a. | n.a. |
6.2.3. Potential Application of Carbonized Solid (Pyrochar and HC) Derived from Lignocellulosic Biomass
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Titirici, M.-M.; Antonietti, M.; Thomas, A. A Generalized Synthesis of Metal Oxide Hollow Spheres Using a Hydrothermal Approach. Chem. Mater. 2006, 18, 3808–3812. [Google Scholar] [CrossRef]
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Biorefining 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Román, S.; Libra, J.; Berge, N.; Sabio, E.; Ro, K.; Li, L.; Ledesma, B.; Álvarez, A.; Bae, S. Hydrothermal Carbonization: Modeling, Final Properties Design and Applications: A Review. Energies 2018, 11, 216. [Google Scholar] [CrossRef]
- Alvarez-Murillo, A.; Libra, J.A.; Ro, K.S. Theoretical framework for estimating design reactor pressure for water-based hydrothermal carbonization (HTC) systems. Therm. Sci. Eng. Prog. 2022, 30, 101241. [Google Scholar] [CrossRef]
- Cao, Y.; He, M.; Dutta, S.; Luo, G.; Zhang, S.; Tsang, D.C.W. Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics. Renew. Sustain. Energy Rev. 2021, 152, 111722. [Google Scholar] [CrossRef]
- Tkachenko, V.; Marzban, N.; Vogl, S.; Filonenko, S.; Antonietti, M. Chemical Insight into the Base-Tuned Hydrothermal Treatment of Side Stream Biomasses. Sustain. Energy Fuels 2023, 7, 769–777. [Google Scholar] [CrossRef]
- Qaramaleki, S.V.; Mohedano, Á.F.; Coronella, C.J. Phosphorus recovery from aqueous product of hydrothermal carbonization of cow manure. Waste Manag. 2023, 168, 301–310. [Google Scholar] [CrossRef]
- Cavali, M.; Libardi Junior, N.; de Sena, J.D.; Woiciechowski, A.L.; Soccol, C.R.; Belli Filho, P.; Bayard, R.; Benbelkacem, H.; de Castilhos Junior, A.B. A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process. Sci. Total Environ. 2023, 857, 159627. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Wang, J.; Zhao, X.; Zhao, Y.; Qian, J.; Wang, T. Pyrolysis and hydrothermal carbonization of biowaste: A comparative review on the conversion pathways and potential applications of char product. Sustain. Chem. Pharm. 2023, 33, 101106. [Google Scholar] [CrossRef]
- Falco, C.; Perez Caballero, F.; Babonneau, F.; Gervais, C.; Laurent, G.; Titirici, M.-M.; Baccile, N. Hydrothermal Carbon from Biomass: Structural Differences between Hydrothermal and Pyrolyzed Carbons via 13C Solid State NMR. Langmuir 2011, 27, 14460–14471. [Google Scholar] [CrossRef]
- Fuertes, A.B.; Arbestain, M.C.; Sevilla, M.; Maciá-Agulló, J.A.; Fiol, S.; López, R.; Smernik, R.J.; Aitkenhead, W.P.; Arce, F.; Macias, F. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Aust. J. Soil Res. 2010, 48, 618–626. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J. 2003, 91, 87–102. [Google Scholar] [CrossRef]
- Wang, L.; Barta-Rajnai, E.; Skreiberg, Ø.; Khalil, R.; Czégény, Z.; Jakab, E.; Barta, Z.; Grønli, M. Impact of Torrefaction on Woody Biomass Properties. Energy Procedia 2017, 105, 1149–1154. [Google Scholar] [CrossRef]
- Wang, H.; Baek, K.; Xue, J.; Li, Y.; Beiyuan, J. Preface—Biochar and agricultural sustainability. J. Soils Sediments 2020, 20, 3015–3016. [Google Scholar] [CrossRef]
- IUPAC. Glossary of Terms Used in Biochar Research. Available online: https://www.degruyter.com/document/doi/10.1515/ci-2018-0317/html (accessed on 17 December 2023).
- IBI. Biochar Standards Version 2.1. Available online: https://biochar-international.org/wp-content/uploads/2023/01/IBI_Biochar_Standards_V2.1_Final2.pdf (accessed on 17 December 2023).
- Reza, M.T.; Lynam, J.G.; Vasquez, V.R.; Coronella, C.J. Pelletization of biochar from hydrothermally carbonized wood. Environ. Prog. Sustain. Energy 2012, 31, 225–234. [Google Scholar] [CrossRef]
- Demirbas, A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrolysis 2004, 72, 243–248. [Google Scholar] [CrossRef]
- Newalkar, G.; Iisa, K.; D’Amico, A.D.; Sievers, C.; Agrawal, P. Effect of Temperature, Pressure, and Residence Time on Pyrolysis of Pine in an Entrained Flow Reactor. Energy Fuels 2014, 28, 5144–5157. [Google Scholar] [CrossRef]
- De Souza, R.L.; Yu, H.; Rataboul, F.; Essayem, N. 5-Hydroxymethylfurfural (5-HMF) Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System. Challenges 2012, 3, 212–232. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Z.; Chen, H.; Cai, T.; Liu, Z. Hydrochar and pyrochar for sorption of pollutants in wastewater and exhaust gas: A critical review. Environ. Pollut. 2021, 268, 115910. [Google Scholar] [CrossRef]
- Román, S.; Valente Nabais, J.M.; Ledesma, B.; González, J.F.; Laginhas, C.; Titirici, M.M. Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes. Microporous Mesoporous Mater. 2013, 165, 127–133. [Google Scholar] [CrossRef]
- Jung, D.; Zimmermann, M.; Kruse, A. Hydrothermal Carbonization of Fructose: Growth Mechanism and Kinetic Model. ACS Sustain. Chem. Eng. 2018, 6, 13877–13887. [Google Scholar] [CrossRef]
- Fan, J.; Li, F.; Fang, D.; Chen, Q.; Chen, Q.; Wang, H.; Pan, B. Effects of hydrophobic coating on properties of hydrochar produced at different temperatures: Specific surface area and oxygen-containing functional groups. Bioresour. Technol. 2022, 363, 127971. [Google Scholar] [CrossRef] [PubMed]
- Román, S.; Valente Nabais, J.M.; Ledesma, B.; Laginhas, C.; Titirici, M.-M. Surface Interactions during the Removal of Emerging Contaminants by Hydrochar-Based Adsorbents. Molecules 2020, 25, 2264. [Google Scholar] [CrossRef] [PubMed]
- Chegini, G.; Briens, C.; Pjontek, D. Production and characterization of adsorbents from a hydrothermal char by pyrolysis, carbon dioxide and steam activation. Biomass Convers. Biorefinery 2022, 13, 13163–13179. [Google Scholar] [CrossRef]
- Kammann, C.; Ratering, S.; Eckhardt, C.; Müller, C. Biochar and Hydrochar Effects on Greenhouse Gas (Carbon Dioxide, Nitrous Oxide, and Methane) Fluxes from Soils. J. Environ. Qual. 2012, 41, 1052–1066. [Google Scholar] [CrossRef]
- Miranda, R.; Pakdel, H.; Roy, C.; Vasile, C. Vacuum pyrolysis of commingled plastics containing PVC II. Product Analysis. Polym. Degrad. Stab. 2001, 73, 47–67. [Google Scholar] [CrossRef]
- Boutaieb, M.; Guiza, M.; Román Suero, S.; Nogales, S.; Ledesma, B.; Ouederni, A. Pine cone pyrolysis: Optimization of temperature for energy recovery. Environ. Prog. Sustain. Energy 2019, 39, 13272. [Google Scholar] [CrossRef]
- Kambo, H.S.; Dutta, A. Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel. Energy Convers. Manag. 2015, 105, 746–755. [Google Scholar] [CrossRef]
- Sarrion, A.; Medina-Martos, E.; Iribarren, D.; Diaz, E.; Mohedano, A.F.; Dufour, J. Life cycle assessment of a novel strategy based on hydrothermal carbonization for nutrient and energy recovery from food waste. Sci. Total Environ. 2023, 878, 163104. [Google Scholar] [CrossRef]
- Benavente, V.; Fullana, A. Low-cost additives to improve the fusion behaviour of hydrochar ash. Fuel 2021, 285, 119009. [Google Scholar] [CrossRef]
- Karlström, O.; Perander, M.; DeMartini, N.; Brink, A.; Hupa, M. Role of ash on the NO formation during char oxidation of biomass. Fuel 2017, 190, 274–280. [Google Scholar] [CrossRef]
- Kruse, A.; Koch, F.; Stelzl, K.; Wüst, D.; Zeller, M. Fate of nitrogen during hydrothermal carbonization. Energy Fuels 2016, 30, 8037–8042. [Google Scholar] [CrossRef]
- Chen, H.; Shan, R.; Zhao, F.; Gu, J.; Zhang, Y.; Yuan, H.; Chen, Y. A review on the NOx precursors release during biomass pyrolysis. Chem. Eng. J. 2023, 451, 138979. [Google Scholar] [CrossRef]
- Poerschmann, J.; Weiner, B.; Woszidlo, S.; Koehler, R.; Kopinke, F.-D. Hydrothermal carbonization of poly(vinyl chloride). Chemosphere 2015, 119, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Fakudze, S.; Zhang, Y.; Ma, R.; Shang, Q.; Chen, J.; Liu, C.; Chu, Q. Co-hydrothermal carbonization of pomelo peel and PVC for production of hydrochar pellets with enhanced fuel properties and dechlorination. Energy 2021, 239, 122350. [Google Scholar] [CrossRef]
- Meyer, S.; Glaser, B.; Quicker, P. Technical, Economical, and Climate-Related Aspects of Biochar Production Technologies: A Literature Review. Environ. Sci. Technol. 2011, 45, 9473–9483. [Google Scholar] [CrossRef] [PubMed]
- Pecchi, M.; Patuzzi, F.; Basso, D.; Baratieri, M. Enthalpy change during hydrothermal carbonization of biomass: A critical review. J. Therm. Anal. Calorim. 2020, 141, 1251–1262. [Google Scholar] [CrossRef]
- Köchermann, J.; Görsch, K.; Wirth, B.; Mühlenberg, J.; Klemm, M. Hydrothermal carbonization: Temperature influence on hydrochar and aqueous phase composition during process water recirculation. J. Environ. Chem. Eng. 2018, 6, 5481–5487. [Google Scholar] [CrossRef]
- Boutaieb, M.; Román, S.; Ledesma, B.; Sabio, E.; Guiza, M.; Ouederni, A. Towards a more efficient Hydrothermal Carbonization: Processing water recirculation under different conditions. Waste Manag. 2021, 132, 115–123. [Google Scholar] [CrossRef]
- Azuara, M.; Sáiz, E.; Manso, J.A.; García-Ramos, F.J.; Manyà, J.J. Study on the effects of using a carbon dioxide atmosphere on the properties of vine shoots-derived biochar. J. Anal. Appl. Pyrolysis 2017, 124, 719–725. [Google Scholar] [CrossRef]
- Tian, Y.; Demirel, S.E.; Hasan, M.; Pistikopoulos, E. An Overview of Process Systems Engineering Approaches for Process Intensification: State of the Art. Chem. Eng. Process. Process Intensif. 2018, 133, 160–210. [Google Scholar] [CrossRef]
- Ciesielski, P.N.; Pecha, M.B.; Lattanzi, A.M.; Bharadwaj, V.S.; Crowley, M.F.; Bu, L.; Vermaas, J.V.; Steirer, K.X.; Crowley, M.F. Advances in Multiscale Modeling of Lignocellulosic Biomass. ACS Sustain. Chem. Eng. 2020, 8, 3512–3531. [Google Scholar] [CrossRef]
- Wehinger, G.D.; Ambrosetti, M.; Cheula, R.; Ding, Z.-B.; Isoz, M.; Kreitz, B.; Kuhlmann, K.; Kutscherauer, M.; Niyogi, K.; Poissonnier, J.; et al. Quo vadis multiscale modeling in reaction engineering?—A perspective. Chem. Eng. Res. Des. 2022, 184, 39–58. [Google Scholar] [CrossRef]
- Bornmann, L.; Haunschild, R.; Mutz, R. Growth rates of modern science: A latent piecewise growth curve approach to model publication numbers from established and new literature databases. Humanit. Soc. Sci. Commun. 2021, 8, 224. [Google Scholar] [CrossRef]
- Ischia, G.; Fiori, L. Hydrothermal Carbonization of Organic Waste and Biomass: A Review on Process, Reactor, and Plant Modeling. Waste Biomass Valorization 2020, 12, 2797–2824. [Google Scholar] [CrossRef]
- Ubene, M.; Heidari, M.; Dutta, A. Computational Modeling Approaches of Hydrothermal Carbonization: A Critical Review. Energies 2022, 15, 2209. [Google Scholar] [CrossRef]
- Li, J.; Suvarna, M.; Li, L.; Pan, L.-J.; Pérez-Ramírez, J.; Ok, Y.S.; Wang, X. A review of computational modeling techniques for wet waste valorization: Research trends and future perspectives. J. Clean. Prod. 2022, 367, 133025. [Google Scholar] [CrossRef]
- Meuwly, M. Reactive molecular dynamics: From small molecules to proteins. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2019, 9, e1386. [Google Scholar] [CrossRef]
- Li, G.; Zheng, F.; Huang, Q.; Wang, J.; Niu, B.; Zhang, Y.; Long, D. Molecular insight into pyrolysis processes via reactive force field molecular dynamics: A state-of-the-art review. J. Anal. Appl. Pyrolysis 2022, 166, 105620. [Google Scholar] [CrossRef]
- Chacón-Parra, A.; van Eyk, P. Reaction kinetics for the hydrothermal carbonisation of cellulose in a two-phase pathway. Fuel 2022, 309, 122169. [Google Scholar] [CrossRef]
- Golshan, S.; Sotudeh-Gharebagh, R.; Zarghami, R.; Mostoufi, N.; Blais, B.; Kuipers, J.A.M. Review and implementation of CFD-DEM applied to chemical process systems. Chem. Eng. Sci. 2020, 221, 115646. [Google Scholar] [CrossRef]
- Sangare, D.; Bostyn, S.; Moscosa-Santillan, M.; Gökalp, I. Hydrodynamics, heat transfer and kinetics reaction of CFD modeling of a batch stirred reactor under hydrothermal carbonization conditions. Energy 2021, 219, 119635. [Google Scholar] [CrossRef]
- Vallejo, F.; Diaz-Robles, L.A.; Poblete, J.; Cubillos, F. Experimental study and validation of a kinetic scheme for hydrothermal carbonization reactions. Biofuels 2022, 13, 461–466. [Google Scholar] [CrossRef]
- Yang, G.; Liu, H.; Li, Y.; Zhou, Q.; Jin, M.; Xiao, H.; Yao, H. Kinetics of hydrothermal carbonization of kitchen waste based on multi-component reaction mechanism. Fuel 2022, 324, 124693. [Google Scholar] [CrossRef]
- Choi, C.; Zhang, W.; Fukumoto, K.; Machida, H.; Norinaga, K. A Review on Detailed Kinetic Modeling and Computational Fluid Dynamics of Thermochemical Processes of Solid Fuels. Energy Fuels 2021, 35, 5479–5494. [Google Scholar] [CrossRef]
- Hameed, S.; Sharma, A.; Pareek, V.; Wu, H.; Yu, Y. A review on biomass pyrolysis models: Kinetic, network and mechanistic models. Biomass Bioenergy 2019, 123, 104–122. [Google Scholar] [CrossRef]
- Djandja, O.S.; Liew, R.K.; Liu, C.; Liang, J.; Yuan, H.; He, W.; Feng, Y.; Lougou, B.G.; Duan, P.-G.; Lu, X.; et al. Catalytic hydrothermal carbonization of wet organic solid waste: A review. Sci. Total Environ. 2023, 873, 162119. [Google Scholar] [CrossRef] [PubMed]
- Mäkelä, M.; Fullana, A.; Yoshikawa, K. Ash behavior during hydrothermal treatment for solid fuel applications. Part 1: Overview of different feedstock. Energy Convers. Manag. 2016, 121, 402–408. [Google Scholar] [CrossRef]
- Ischia, G.; Cutillo, M.; Guella, G.; Bazzanella, N.; Cazzanelli, M.; Orlandi, M.; Miotello, A.; Fiori, L. Hydrothermal carbonization of glucose: Secondary char properties, reaction pathways, and kinetics. Chem. Eng. J. 2022, 449, 137827. [Google Scholar] [CrossRef]
- Fletcher, D.F. The future of computational fluid dynamics (CFD) simulation in the chemical process industries. Chem. Eng. Res. Des. 2022, 187, 299–305. [Google Scholar] [CrossRef]
- Tu, J.; Yeoh, G.-H.; Liu, C. Chapter 1—Introduction. In Computational Fluid Dynamics, 3rd ed.; Tu, J., Yeoh, G.-H., Liu, C., Eds.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 1–31. ISBN 978-0-08-101127-0. [Google Scholar]
- Chater, H.; Mohamed, A.; Koukouch, A.; Mouaky, A.; Bostyn, S.; Sarh, B.; Tabet, F. Analysis of Fluid Flow and Heat Transfer inside a Batch Reactor for Hydrothermal Carbonization Process of a Biomass. Energies 2022, 15, 818. [Google Scholar] [CrossRef]
- Heidari, M.; Salaudeen, S.; Arku, P.; Acharya, B.; Tasnim, S.; Dutta, A. Development of a mathematical model for hydrothermal carbonization of biomass: Comparison of experimental measurements with model predictions. Energy 2021, 214, 119020. [Google Scholar] [CrossRef]
- Mendecka, B.; Di Ilio, G.; Lombardi, L. Thermo-Fluid Dynamic and Kinetic Modeling of Hydrothermal Carbonization of Olive Pomace in a Batch Reactor. Energies 2020, 13, 4142. [Google Scholar] [CrossRef]
- Li, Y.; Liu, F.; Li, X.; Jin, H. Flow and heat transfer characteristics of natural convection in hydrothermal reactor with segmented heating. Appl. Therm. Eng. 2023, 227, 120451. [Google Scholar] [CrossRef]
- Sadino-Riquelme, M.C.; Donoso-Bravo, A.; Zorrilla, F.; Valdebenito-Rolack, E.; Gómez, D.; Hansen, F. Computational fluid dynamics (CFD) modeling applied to biological wastewater treatment systems: An overview of strategies for the kinetics integration. Chem. Eng. J. 2023, 466, 143180. [Google Scholar] [CrossRef]
- Li, S.-J.; Zhu, L.-T.; Zhang, X.; Luo, Z.-H. Recent Advances in CFD Simulations of Multiphase Flow Processes with Phase Change. Ind. Eng. Chem. Res. 2023, 62, 10729–10786. [Google Scholar] [CrossRef]
- Lee, W.H. A Pressure Iteration Scheme for Two-Phase Flow Modeling; Computational Methods for Two-Phase Flow and Particle Transport; World Scientific Pub. Co. Pte. Ltd.: Singapore, 2013. [Google Scholar]
- Melo, T.M.; Bottlinger, M.; Schulz, E.; Leandro, W.M.; Botelho De Oliveira, S.; Menezes De Aguiar Filho, A.; El-Naggar, A.; Bolan, N.; Wang, H.; Ok, Y.S.; et al. Management of biosolids-derived hydrochar (Sewchar): Effect on plant germination, and farmers’ acceptance. J. Environ. Manag. 2019, 237, 200–214. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Y.; Li, B.; Huang, J. Modeling the phase change process for a two-phase closed thermosyphon by considering transient mass transfer time relaxation parameter. Int. J. Heat Mass Transf. 2016, 101, 614–619. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Sajjadi, B.; Raman, A.A.A.; Parthasarathy, R. Fluid dynamic analysis of non-Newtonian flow behavior of municipal sludge simulant in anaerobic digesters using submerged, recirculating jets. Chem. Eng. J. 2016, 298, 259–270. [Google Scholar] [CrossRef]
- Samstag, R.; Ducoste, J.; Griborio, A.; Nopens, I.; Batstone, D.; Wicks, J.; Saunders, S.; Wicklein, E.; Kenny, G.; Laurent, J. CFD for wastewater treatment: An overview. Water Sci. Technol. 2016, 74, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Pan, Y.; Jiang, K.; Zhu, K.; Ren, X. Effect of high-temperature thermal hydrolysis on rheological properties and dewaterability of sludge. Environ. Technol. 2021, 42, 3707–3715. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Guo, Y.; Tan, W. Effects of thermal hydrolysis temperature on physical characteristics of municipal sludge. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2015, 72, 2018–2026. [Google Scholar] [CrossRef] [PubMed]
- Ngo, S.I.; Lim, Y.-I. Multiscale Eulerian CFD of Chemical Processes: A Review. ChemEngineering 2020, 4, 23. [Google Scholar] [CrossRef]
- Wang, J. Continuum theory for dense gas-solid flow: A state-of-the-art review. Chem. Eng. Sci. 2020, 215, 115428. [Google Scholar] [CrossRef]
- Kieckhefen, P.; Pietsch-Braune, S.; Dosta, M.; Heinrich, S. Possibilities and Limits of Computational Fluid Dynamics–Discrete Element Method Simulations in Process Engineering: A Review of Recent Advancements and Future Trends. Annu. Rev. Chem. Biomol. Eng. 2020, 11, 397–422. [Google Scholar] [CrossRef]
- Lungu, M.; Siame, J.; Mukosha, L. Comparison of CFD-DEM and TFM approaches for the simulation of the small scale challenge problem 1. Powder Technol. 2021, 378, 85–103. [Google Scholar] [CrossRef]
- Moliner, C.; Marchelli, F.; Spanachi, N.; Martinez-Felipe, A.; Bosio, B.; Arato, E. CFD simulation of a spouted bed: Comparison between the Discrete Element Method (DEM) and the Two Fluid Model (TFM). Chem. Eng. J. 2019, 377, 120466. [Google Scholar] [CrossRef]
- Zhong, W.; Yu, A.; Zhou, G.; Xie, J.; Zhang, H. CFD simulation of dense particulate reaction system: Approaches, recent advances and applications. Chem. Eng. Sci. 2016, 140, 16–43. [Google Scholar] [CrossRef]
- Attanayake, D.D.; Sewerin, F.; Kulkarni, S.; Dernbecher, A.; Dieguez-Alonso, A.; Van Wachem, B. Review of Modelling of Pyrolysis Processes with CFD-DEM. Flow Turbul. Combust. 2023, 111, 355–408. [Google Scholar] [CrossRef]
- Lu, L.; Gao, X.; Dietiker, J.-F.; Shahnam, M.; Rogers, W.A. MFiX based multi-scale CFD simulations of biomass fast pyrolysis: A review. Chem. Eng. Sci. 2022, 248, 117131. [Google Scholar] [CrossRef]
- Ramos, A.; Monteiro, E.; Rouboa, A. Numerical approaches and comprehensive models for gasification process: A review. Renew. Sustain. Energy Rev. 2019, 110, 188–206. [Google Scholar] [CrossRef]
- Aragon-Briceño, C.; Pożarlik, A.; Bramer, E.; Brem, G.; Wang, S.; Wen, Y.; Yang, W.; Pawlak-Kruczek, H.; Niedźwiecki, Ł.; Urbanowska, A.; et al. Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate. Renew. Energy 2022, 184, 577–591. [Google Scholar] [CrossRef]
- Ghavami, N.; Özdenkçi, K.; Chianese, S.; Musmarra, D.; De Blasio, C. Process simulation of hydrothermal carbonization of digestate from energetic perspectives in Aspen Plus. Energy Convers. Manag. 2022, 270, 116215. [Google Scholar] [CrossRef]
- Sangaré, D.; Moscosa-Santillán, M.; Aragon-Piña, A.; Bostyn, S.; Belandria, V.; Gökalp, I. Hydrothermal carbonization of biomass: Experimental study, energy balance, process simulation, design, and techno-economic analysis. Biomass Convers. Biorefinery 2022, 14, 2561–2576. [Google Scholar] [CrossRef]
- Haag, J.; Gentric, C.; Lemaitre, C.; Leclerc, J.-P. Modelling of Chemical Reactors: From Systemic Approach to Compartmental Modelling. Int. J. Chem. React. Eng. 2018, 16, 20170172. [Google Scholar] [CrossRef]
- Volpe, M.; Picone, A.; Luz, F.C.; Mosonik, M.C.; Volpe, R.; Messineo, A. Potential pitfalls on the scalability of laboratory-based research for hydrothermal carbonization. Fuel 2022, 315, 123189. [Google Scholar] [CrossRef]
- Hussin, F.; Hazani, N.N.; Khalil, M.; Aroua, M.K. Environmental life cycle assessment of biomass conversion using hydrothermal technology: A review. Fuel Process. Technol. 2023, 246, 107747. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Q.; Chen, J.; Xu, D.; Zhan, H.; Peng, H.; Pan, J.; Vlaskin, M.; Leng, L.; Li, H. Machine learning for hydrothermal treatment of biomass: A review. Bioresour. Technol. 2023, 370, 128547. [Google Scholar] [CrossRef]
- Islam, M.A.; Limon, M.S.H.; Romic, M.; Islam, M. Hydrochar-based soil amendments for agriculture: A review of recent progress. Arab. J. Geosci. 2021, 14, 102. [Google Scholar] [CrossRef]
- Merzari, F.; Langone, M.; Andreottola, G.; Fiori, L. Methane production from process water of sewage sludge hydrothermal carbonization. A review. Valorising sludge through hydrothermal carbonization. Crit. Rev. Environ. Sci. Technol. 2019, 49, 947–988. [Google Scholar] [CrossRef]
- Berge, N.D.; Ro, K.S.; Mao, J.; Flora, J.R.V.; Chappell, M.A.; Bae, S. Hydrothermal Carbonization of Municipal Waste Streams. Environ. Sci. Technol. 2011, 45, 5696–5703. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C.; Wagner, M.; Salem, M.; Antunes, P.M.; George, C.; Ramke, H.-G.; Titirici, M.-M.; Antionietti, M. Material derived from hydrothermal carbonization: Effects on plant growth and arbuscular mycorrhiza. Appl. Soil Ecol. 2010, 45, 238–242. [Google Scholar] [CrossRef]
- Belda, R.M.; Lidón, A.; Fornes, F. Biochars and hydrochars as substrate constituents for soilless growth of myrtle and mastic. Ind. Crops Prod. 2016, 94, 132–142. [Google Scholar] [CrossRef]
- Khosravi, A.; Zheng, H.; Liu, Q.; Hashemi, M.; Tang, Y.; Xing, B. Production and characterization of hydrochars and their application in soil improvement and environmental remediation. Chem. Eng. J. 2022, 430, 133142. [Google Scholar] [CrossRef]
- Sevilla, M.; Maciá-Agulló, J.A.; Fuertes, A.B. Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products. Biomass Bioenergy 2011, 35, 3152–3159. [Google Scholar] [CrossRef]
- Tasca, A.L.; Puccini, M.; Gori, R.; Corsi, I.; Galletti, A.M.R.; Vitolo, S. Hydrothermal carbonization of sewage sludge: A critical analysis of process severity, hydrochar properties and environmental implications. Waste Manag. 2019, 93, 1–13. [Google Scholar] [CrossRef]
- Andert, J.; Mumme, J. Impact of pyrolysis and hydrothermal biochar on gas-emitting activity of soil microorganisms and bacterial and archaeal community composition. Appl. Soil Ecol. 2015, 96, 225–239. [Google Scholar] [CrossRef]
- De Jager, M.; Röhrdanz, M.; Giani, L. The influence of hydrochar from biogas digestate on soil improvement and plant growth aspects. Biochar 2020, 2, 177–194. [Google Scholar] [CrossRef]
- Bargmann, I.; Rillig, M.C.; Kruse, A.; Greef, J.-M.; Kücke, M. Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. Z. Pflanzenernähr. Bodenk. 2014, 177, 48–58. [Google Scholar] [CrossRef]
- Chu, Q.; Lyu, T.; Xue, L.; Yang, L.; Feng, Y.; Sha, Z.; Yue, B.; Mortimer, R.J.G.; Cooper, M.; Pan, G. Hydrothermal carbonization of microalgae for phosphorus recycling from wastewater to crop-soil systems as slow-release fertilizers. J. Clean. Prod. 2021, 283, 124627. [Google Scholar] [CrossRef]
- Fei, Y.; Zhao, D.; Liu, Y.; Zhang, W.; Tang, Y.; Huang, X.; Wu, Q.; Wang, Y.; Xiao, T.; Liu, C. Feasibility of sewage sludge derived hydrochars for agricultural application: Nutrients (N, P, K) and potentially toxic elements (Zn, Cu, Pb, Ni, Cd). Chemosphere 2019, 236, 124841. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Zhan, L.; Ok, Y.S.; Gao, B. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J. Ind. Eng. Chem. 2018, 57, 15–21. [Google Scholar] [CrossRef]
- Beck, D.; Johnson, G.; Spolek, G. Amending greenroof soil with biochar to affect runoff water quantity and quality. Environ. Pollut. 2011, 159, 2111–2118. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Inyang, M.; Zimmerman, A.; Cao, X.; Pullammanappallil, P.; Yang, L. Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresour. Technol. 2011, 102, 6273–6278. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Gao, B.; Chen, J.; Yang, L. Engineered Biochar Reclaiming Phosphate from Aqueous Solutions: Mechanisms and Potential Application as a Slow-Release Fertilizer. Environ. Sci. Technol. 2013, 47, 8700–8708. [Google Scholar] [CrossRef] [PubMed]
- Takaya, C.; Fletcher, L.A.; Singh, S.; Anyikude, K.U.; Ross, A. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere 2016, 145, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Feng, Y.; Xue, L.; Han, L.; Yang, L.; Sun, Q.; Chu, Q. Biowaste to treasure: Application of microbial-aged hydrochar in rice paddy could improve nitrogen use efficiency and rice grain free amino acids. J. Clean. Prod. 2019, 240, 118180. [Google Scholar] [CrossRef]
- Gajic, A.; Koch, H.-J. Sugar Beet (L.) Growth Reduction Caused by Hydrochar Is Related to Nitrogen Supply. J. Environ. Qual. 2012, 41, 1067–1075. [Google Scholar] [CrossRef]
- Alewell, C.; Ringeval, B.; Ballabio, C.; Robinson, D.; Panagos, P.; Borrelli, P. Global phosphorus shortage will be aggravated by soil erosion. Nat. Commun. 2020, 2020, 4546. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Song, L.; Yuan, J.; Li, W.; Zhu, Y.; Chang, S.X.; Luo, Y.; Ciais, P.; Peñuelas, J.; et al. Reduced phosphorus availability in paddy soils under atmospheric CO2 enrichment. Nat. Geosci. 2023, 16, 162–168. [Google Scholar] [CrossRef]
- Huang, R.; Tang, Y. Evolution of phosphorus complexation and mineralogy during (hydro)thermal treatments of activated and anaerobically digested sludge: Insights from sequential extraction and P K-edge XANES. Water Res. 2016, 100, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhai, Y.; Zhu, Y.; Peng, C.; Wang, T.; Xu, B.; Li, C.; Zeng, G. Feedwater pH affects phosphorus transformation during hydrothermal carbonization of sewage sludge. Bioresour. Technol. 2017, 245, 182–187. [Google Scholar] [CrossRef] [PubMed]
- De Jager, M.; Giani, L. An investigation of the effects of hydrochar application rate on soil amelioration and plant growth in three diverse soils. Biochar 2021, 3, 349–365. [Google Scholar] [CrossRef]
- Karatas, O.; Khataee, A.; Kalderis, D. Recent progress on the phytotoxic effects of hydrochars and toxicity reduction approaches. Chemosphere 2022, 298, 134357. [Google Scholar] [CrossRef] [PubMed]
- Marzbali, M.H.; Kundu, S.; Halder, P.; Patel, S.; Hakeem, I.G.; Paz-Ferreiro, J.; Madapusi, S.; Surapaneni, A.; Shah, K. Wet organic waste treatment via hydrothermal processing: A critical review. Chemosphere 2021, 279, 130557. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, A.; Cheela, V.; D’Adamo, I.; Iacovidou, E.; Islam, M.; Johnson, M.; Miller, T.; Parajuly, K.; Parchomenko, A.; Radhakrishnan, L.; et al. Zero waste approach towards a sustainable waste management. Resour. Environ. Sustain. 2021, 3, 100014. [Google Scholar] [CrossRef]
- Huang, H.; Yuan, X. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. Bioresour. Technol. 2016, 200, 991–998. [Google Scholar] [CrossRef]
- Bardhan, M.; Novera, T.M.; Tabassum, M.; Islam, M.A.; Islam, M.A.; Hameed, B.H. Co-hydrothermal carbonization of different feedstocks to hydrochar as potential energy for the future world: A review. J. Clean. Prod. 2021, 298, 126734. [Google Scholar] [CrossRef]
- Lang, Q.; Guo, Y.; Zheng, Q.; Liu, Z.; Gai, C. Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: Hydrochar properties and heavy metal transformation behavior. Bioresour. Technol. 2018, 266, 242–248. [Google Scholar] [CrossRef]
- Li, C.; Cai, R.; Hasan, A.; Lu, X.; Yang, X.; Zhang, Y. Fertility assessment and nutrient conversion of hydrochars derived from co-hydrothermal carbonization between livestock manure and corn cob. J. Environ. Chem. Eng. 2023, 11, 109166. [Google Scholar] [CrossRef]
- Busch, D.; Stark, A.; Kammann, C.I.; Glaser, B. Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from hydrothermal carbonization compared to biochar from pyrolysis. Ecotoxicol. Environ. Saf. 2013, 97, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Al-Wabel, M.I.; Rafique, M.I.; Ahmad, M.; Ahmad, M.; Hussain, A.; Usman, A.R.A. Pyrolytic and hydrothermal carbonization of date palm leaflets: Characteristics and ecotoxicological effects on seed germination of lettuce. Saudi J. Biol. Sci. 2019, 26, 665–672. [Google Scholar] [CrossRef]
- Breulmann, M.; Schulz, E.; van Afferden, M.; Müller, R.; Fühner, C. Hydrochars derived from sewage sludge: Effects of pre-treatment with water on char properties, phytotoxicity and chemical structure. Arch. Agron. Soil Sci. 2017, 64, 860–872. [Google Scholar] [CrossRef]
- Busch, D.; Kammann, C.; Grünhage, L.; Müller, C. Simple Biotoxicity Tests for Evaluation of Carbonaceous Soil Additives: Establishment and Reproducibility of Four Test Procedures. J. Environ. Qual. 2012, 41, 1023–1032. [Google Scholar] [CrossRef] [PubMed]
- Puccini, M.; Ceccarini, L.; Antichi, D.; Seggiani, M.; Tavarini, S.; Hernandez Latorre, M.; Vitolo, S. Hydrothermal Carbonization of Municipal Woody and Herbaceous Prunings: Hydrochar Valorisation as Soil Amendment and Growth Medium for Horticulture. Sustainability 2018, 10, 846. [Google Scholar] [CrossRef]
- Marzban, N.; Libra, J.A.; Rotter, V.S.; Ro, K.S.; Moloeznik Paniagua, D.; Filonenko, S. Changes in Selected Organic and Inorganic Compounds in the Hydrothermal Carbonization Process Liquid While in Storage. ACS Omega 2023, 8, 4234–4243. [Google Scholar] [CrossRef]
- Neumaier, D.; Lohr, D.; Voßeler, R.; Girmann, S.; Kolbinger, S.; Meinken, E. Hydrochars as peat substitute in growing media for organically grown potted herbs. Acta Hortic. 2017, 377–386. [Google Scholar] [CrossRef]
- Scrinzi, D.; Bona, D.; Denaro, A.; Silvestri, S.; Andreottola, G.; Fiori, L. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 1. production and chemical characterization. J. Environ. Manag. 2022, 309, 114688. [Google Scholar] [CrossRef]
- Roehrdanz, M.; Greve, T.; de Jager, M.; Buchwald, R.; Wark, M. Co-composted hydrochar substrates as growing media for horticultural crops. Sci. Hortic. 2019, 252, 96–103. [Google Scholar] [CrossRef]
- Al-Naqeb, G.; Sidarovich, V.; Scrinzi, D.; Mazzeo, I.; Robbiati, S.; Pancher, M.; Fiori, L.; Adami, V. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 3. Toxicological evaluation. J. Environ. Manag. 2022, 320, 115910. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Elkhlifi, Z.; Iftikhar, J.; Sarraf, M.; Ali, B.; Saleem, M.H.; Ibranshahib, I.; Bispo, M.D.; Meili, L.; Ercisli, S.; Torun Kayabasi, E.; et al. Potential Role of Biochar on Capturing Soil Nutrients, Carbon Sequestration and Managing Environmental Challenges: A Review. Sustainability 2023, 15, 2527. [Google Scholar] [CrossRef]
- Li, S.; Chan, C.Y. Will Biochar Suppress or Stimulate Greenhouse Gas Emissions in Agricultural Fields? Unveiling the Dice Game through Data Syntheses. Soil Syst. 2022, 6, 73. [Google Scholar] [CrossRef]
- Islam, M.T.; Sultana, A.I.; Chambers, C.; Saha, S.; Saha, N.; Kirtania, K.; Reza, M.T. Recent Progress on Emerging Applications of Hydrochar. Energies 2022, 15, 9340. [Google Scholar] [CrossRef]
- Masoumi, S.; Borugadda, V.B.; Nanda, S.; Dalai, A.K. Hydrochar: A Review on Its Production Technologies and Applications. Catalysts 2021, 11, 939. [Google Scholar] [CrossRef]
- Bahcivanji, L.; Gascó, G.; Paz-Ferreiro, J.; Méndez, A. The effect of post-pyrolysis treatment on waste biomass derived hydrochar. Waste Manag. 2020, 106, 55–61. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, J.; Yi, Y. Biochar and hydrochar derived from freshwater sludge: Characterization and possible applications. Sci. Total Environ. 2020, 763, 144550. [Google Scholar] [CrossRef]
- Spokas, K. Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Manag. 2010, 1, 289–303. [Google Scholar] [CrossRef]
- Lanza, G.; Stang, A.; Kern, J.; Wirth, S.; Gessler, A. Degradability of raw and post-processed chars in a two-year field experiment. Sci. Total Environ. 2018, 628–629, 1600–1608. [Google Scholar] [CrossRef]
- Malghani, S.; Jüschke, E.; Baumert, J.; Thuille, A.; Antonietti, M.; Trumbore, S.; Gleixner, G. Carbon sequestration potential of hydrothermal carbonization char (hydrochar) in two contrasting soils; results of a 1-year field study. Biol. Fertil. Soils 2015, 51, 123–134. [Google Scholar] [CrossRef]
- Bamminger, C.; Marschner, B.; Jüschke, E. An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils. Eur. J. Soil Sci. 2014, 65, 72–82. [Google Scholar] [CrossRef]
- Steinbeiss, S.; Gleixner, G.; Antonietti, M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol. Biochem. 2009, 41, 1301–1310. [Google Scholar] [CrossRef]
- De Jager, M.; Schröter, F.; Wark, M.; Giani, L. The stability of carbon from a maize-derived hydrochar as a function of fractionation and hydrothermal carbonization temperature in a Podzol. Biochar 2022, 4, 52. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy 2015, 8, 512–523. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Rangabhashiyam, S.; Dulta, K.; Umeh, C.T.; Iwuozor, K.O.; Aniagor, C.O.; Eshiemogie, S.O.; Iwuchukwu, F.U.; Igwegbe, C.A. Recent advances in hydrochar application for the adsorptive removal of wastewater pollutants. Chem. Eng. Res. Des. 2022, 184, 419–456. [Google Scholar] [CrossRef]
- Kragulj Isakovski, M.; Maletić, S.; Tamindžija, D.; Apostolović, T.; Petrović, J.; Trickovic, J.; Agbaba, J. Impact of hydrochar and biochar amendments on sorption and biodegradation of organophosphorus pesticides during transport through Danube alluvial sediment. J. Environ. Manag. 2020, 274, 111156. [Google Scholar] [CrossRef]
- Lang, Q.; Guo, X.; Wang, C.; Li, Y.; Xu, J.; Zhao, X.; Li, J.; Liu, B.; Sun, Q. Hydrochar reduces oxytetracycline in soil and Chinese cabbage by altering soil properties, shifting microbial community structure and promoting microbial metabolism. Chemosphere 2023, 338, 139578. [Google Scholar] [CrossRef]
- Yue, Y.; Yao, Y.; Lin, Q.; Li, G.; Zhao, X. The change of heavy metals fractions during hydrochar decomposition in soils amended with different municipal sewage sludge hydrochars. J. Soils Sediments 2017, 17, 763–770. [Google Scholar] [CrossRef]
- Chung, J.W.; Foppen, J.W.; Izquierdo, M.; Lens, P.N.L. Removal of Escherichia coli from Saturated Sand Columns Supplemented with Hydrochar Produced from Maize. J. Environ. Qual. 2014, 43, 2096–2103. [Google Scholar] [CrossRef]
- Regmi, P.; Garcia Moscoso, J.L.; Kumar, S.; Cao, X.; Mao, J.; Schafran, G. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J. Environ. Manag. 2012, 109, 61–69. [Google Scholar] [CrossRef]
- Yu, X.; Liu, S.; Lin, G.; Yang, Y.; Zhang, S.; Zhao, H.; Zheng, C.; Gao, X. KOH-activated hydrochar with engineered porosity as sustainable adsorbent for volatile organic compounds. Colloids Surf. A Physicochem. Eng. Asp. 2019, 588, 124372. [Google Scholar] [CrossRef]
- Benavente, V.; Lage, S.; Gentili, F.G.; Jansson, S. Influence of lipid extraction and processing conditions on hydrothermal conversion of microalgae feedstocks—Effect on hydrochar composition, secondary char formation and phytotoxicity. Chem. Eng. J. 2022, 428, 129559. [Google Scholar] [CrossRef]
- Lucian, M.; Volpe, M.; Gao, L.; Piro, G.; Goldfarb, J.L.; Fiori, L. Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste. Fuel 2018, 233, 257–268. [Google Scholar] [CrossRef]
- Volpe, M.; Fiori, L. From olive waste to solid biofuel through hydrothermal carbonisation: The role of temperature and solid load on secondary char formation and hydrochar energy properties. J. Anal. Appl. Pyrolysis 2017, 124, 63–72. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Gillespie, A.W.; Beare, M.H.; Curtin, D.; Sanei, H.; Yanni, S.F. Evaluating biodegradability of soil organic matter by its thermal stability and chemical composition. Soil Biol. Biochem. 2015, 91, 182–191. [Google Scholar] [CrossRef]
- Trading Economics. EU Carbon Permits. Available online: https://climate.ec.europa.eu/system/files/2023-10/COM_2023_654_1_EN_ACT_part1_CMR%2BSWD.pdf (accessed on 28 November 2023).
- Langone, M.; Basso, D. Process Waters from Hydrothermal Carbonization of Sludge: Characteristics and Possible Valorization Pathways. Int. J. Environ. Res. Public Health 2020, 17, 6618. [Google Scholar] [CrossRef]
- Owsianiak, M.; Ryberg, M.W.; Renz, M.; Hitzl, M.; Hauschild, M.Z. Environmental Performance of Hydrothermal Carbonization of Four Wet Biomass Waste Streams at Industry-Relevant Scales. ACS Sustain. Chem. Eng. 2016, 4, 6783–6791. [Google Scholar] [CrossRef]
- González-Arias, J.; Sánchez, M.E.; Cara-Jiménez, J.; Baena-Moreno, F.M.; Zhang, Z. Hydrothermal carbonization of biomass and waste: A review. Environ. Chem. Lett. 2022, 20, 211–221. [Google Scholar] [CrossRef]
- Ipiales, R.P.; de la Rubia, M.A.; Diaz, E.; Mohedano, A.F.; Rodriguez, J.J. Integration of Hydrothermal Carbonization and Anaerobic Digestion for Energy Recovery of Biomass Waste: An Overview. Energy Fuels 2021, 35, 17032–17050. [Google Scholar] [CrossRef]
- Kambo, H.S.; Minaret, J.; Dutta, A. Process Water from the Hydrothermal Carbonization of Biomass: A Waste or a Valuable Product? Waste Biomass Valorization 2018, 9, 1181–1189. [Google Scholar] [CrossRef]
- Stemann, J.; Putschew, A.; Ziegler, F. Hydrothermal carbonization: Process water characterization and effects of water recirculation. Bioresour. Technol. 2013, 143, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Gerner, G.; Chung, J.W.; Meyer, L.; Wanner, R.; Heiniger, S.; Seiler, D.; Krebs, R.; Treichler, A.; Kontic, R.; Kulli, B. Hydrothermal Carbonization of Sewage Sludge: New Improvements in Phosphatic Fertilizer Production and Process Water Treatment Using Freeze Concentration. Energies 2023, 16, 7027. [Google Scholar] [CrossRef]
- Blach, T.; Lechevallier, P.; Engelhart, M. Effect of temperature during the hydrothermal carbonization of sewage sludge on the aerobic treatment of the produced process waters. J. Water Process Eng. 2023, 51, 103368. [Google Scholar] [CrossRef]
- González-Arias, J.; de la Rubia, M.A.; Sánchez, M.E.; Gómez, X.; Cara-Jiménez, J.; Martínez, E.J. Treatment of hydrothermal carbonization process water by electrochemical oxidation: Assessment of process performance. Environ. Res. 2023, 216, 114773. [Google Scholar] [CrossRef] [PubMed]
- Weide, T.; Brügging, E.; Wetter, C. Anaerobic and aerobic degradation of wastewater from hydrothermal carbonization (HTC) in a continuous, three-stage and semi-industrial system. J. Environ. Chem. Eng. 2019, 7, 102912. [Google Scholar] [CrossRef]
- Farru, G.; Dang, C.H.; Schultze, M.; Kern, J.; Cappai, G.; Libra, J.A. Benefits and Limitations of Using Hydrochars from Organic Residues as Replacement for Peat on Growing Media. Horticulturae 2022, 8, 325. [Google Scholar] [CrossRef]
- Homagain, K.; Shahi, C.; Luckai, N.; Sharma, M. Life cycle cost and economic assessment of biochar-based bioenergy production and biochar land application in Northwestern Ontario, Canada. For. Ecosyst. 2016, 3, 21. [Google Scholar] [CrossRef]
- Kwon, G.; Bhatnagar, A.; Wang, H.; Kwon, E.E.; Song, H. A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar. J. Hazard. Mater. 2020, 400, 123242. [Google Scholar] [CrossRef]
- Thangarajan, R.; Bolan, N.S.; Tian, G.; Naidu, R.; Kunhikrishnan, A. Role of organic amendment application on greenhouse gas emission from soil. Sci. Total Environ. 2013, 465, 72–96. [Google Scholar] [CrossRef] [PubMed]
- FAIRR How Waste Mismanagement Drives Biodiversity Loss and Accelerates Climate Risk. Coller FAIRR Protein Producer Index 2021/22. Available online: https://www.fairr.org/resources/reports/index-2021-how-animal-waste-mismanagement-drives-biodiversity-loss-and-accelerates-climate-risk (accessed on 29 December 2023).
- Nwuche, C.; Gupta, S.; Akor, J.; Nweze, E.; Nweze, J.; Unah, U. Biogas from Manure: The Future of Renewable Natural Gas and Its Implications. In Climate Changes Mitigation and Sustainable Bioenergy Harvest through Animal Waste: Sustainable Environmental Implications of Animal Waste; Springer Nature: Cham, Switzerland, 2023; pp. 171–214. ISBN 978-3-031-26223-4. [Google Scholar]
- Cantrell, K.B.; Ducey, T.; Ro, K.S.; Hunt, P.G. Livestock waste-to-bioenergy generation opportunities. Bioresour. Technol. 2008, 99, 7941–7953. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, K.; Ro, K.; Mahajan, D.; Anjom, M.; Hunt, P.G. Role of Thermochemical Conversion in Livestock Waste-to-Energy Treatments: Obstacles and Opportunities. Ind. Eng. Chem. Res. 2007, 46, 8918–8927. [Google Scholar] [CrossRef]
- Ro, K.S. Kinetics and Energetics of Producing Animal Manure-Based Biochar. Bioenergy Res. 2016, 9, 447–453. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef]
- Ro, K.S.; Libra, J.A.; Bae, S.; Berge, N.D.; Flora, J.R.V.; Pecenka, R. Combustion Behavior of Animal-Manure-Based Hydrochar and Pyrochar. ACS Sustain. Chem. Eng. 2019, 7, 470–478. [Google Scholar] [CrossRef]
- Lima, I.M.; Ro, K.S.; Reddy, G.B.; Boykin, D.L.; Klasson, K.T. Efficacy of Chicken Litter and Wood Biochars and Their Activated Counterparts in Heavy Metal Clean up from Wastewater. Agriculture 2015, 5, 806–825. [Google Scholar] [CrossRef]
- Sweeten, J.; Heflin, K.; Auvermann, B.; McCollum, F. Combustion-Fuel Properties of Manure or Compost from Paved vs. Unpaved Cattle Feedlots; American Society of Agricultural and Biological Engineers: Saint Joseph, MI, USA, 2006. [Google Scholar] [CrossRef]
- Ro, K.S.; Jackson, M.A.; Szogi, A.A.; Compton, D.L.; Moser, B.R.; Berge, N.D. Sub- and Near-Critical Hydrothermal Carbonization of Animal Manures. Sustainability 2022, 14, 5052. [Google Scholar] [CrossRef]
- Álvarez-Murillo, A.; Ledesma, B.; Román, S.; Sabio, E.; Gañán, J. Biomass pyrolysis toward hydrocarbonization. Influence on subsequent steam gasification processes. J. Anal. Appl. Pyrolysis 2015, 113, 380–389. [Google Scholar] [CrossRef]
- Ro, K.S.; Flora, J.R.V.; Bae, S.; Libra, J.A.; Berge, N.D.; Álvarez-Murillo, A.; Li, L. Properties of Animal-Manure-Based Hydrochars and Predictions Using Published Models. ACS Sustain. Chem. Eng. 2017, 5, 7317–7324. [Google Scholar] [CrossRef]
- Marzban, N.; Libra, J.A.; Hosseini, S.H.; Fischer, M.G.; Rotter, V.S. Experimental evaluation and application of genetic programming to develop predictive correlations for hydrochar higher heating value and yield to optimize the energy content. J. Environ. Chem. Eng. 2022, 10, 108880. [Google Scholar] [CrossRef]
- Hwang, O.; Lee, S.-R.; Cho, S.; Ro, K.S.; Spiehs, M.; Woodbury, B.; Silva, P.J.; Han, D.-W.; Choi, H.; Kim, K.-Y.; et al. Efficacy of Different Biochars in Removing Odorous Volatile Organic Compounds (VOCs) Emitted from Swine Manure. ACS Sustain. Chem. Eng. 2018, 6, 14239–14247. [Google Scholar] [CrossRef]
- Han, L.; Sun, H.; Ro, K.S.; Sun, K.; Libra, J.A.; Xing, B. Removal of antimony (III) and cadmium (II) from aqueous solution using animal manure-derived hydrochars and pyrochars. Bioresour. Technol. 2017, 234, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Qaramaleki, S.V.; Cardenas, J.; Jackson, M.A.; Compton, D.L.; Szogi, A.A.; Ro, K.S.; Coronella, C.J. Characterization of Products from Catalytic Hydrothermal Carbonization of Animal Manure. Agronomy 2023, 13, 2219. [Google Scholar] [CrossRef]
- White, A.; Whittingham, J. Ultimate analysis of coals and cokes using instrumental techniques. Fuel 1983, 62, 1058–1061. [Google Scholar] [CrossRef]
- Ducey, T.F.; Collins, J.C.; Ro, K.S.; Woodbury, B.L.; Griffin, D.D. Hydrothermal carbonization of livestock mortality for the reduction of pathogens and microbially-derived DNA. Front. Environ. Sci. Eng. 2017, 11, 9. [Google Scholar] [CrossRef]
- Sun, K.; Ro, K.; Guo, M.; Novak, J.; Mashayekhi, H.; Xing, B. Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresour. Technol. 2011, 102, 5757–5763. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Ro, K.S.; Sun, K.; Sun, H.; Wang, Z.; Libra, J.A.; Xing, B. New Evidence for High Sorption Capacity of Hydrochar for Hydrophobic Organic Pollutants. Environ. Sci. Technol. 2016, 50, 13274–13282. [Google Scholar] [CrossRef]
- Cao, X.; Ro, K.S.; Chappell, M.; Li, Y.; Mao, J. Chemical Structures of Swine-Manure Chars Produced under Different Carbonization Conditions Investigated by Advanced Solid-State 13C Nuclear Magnetic Resonance (NMR) Spectroscopy. Energy Fuels 2010, 25, 1755–1768. [Google Scholar] [CrossRef]
- Wang, P.; Liu, X.; Wu, X.; Xu, J.; Dong, F.; Zheng, Y. Evaluation of biochars in reducing the bioavailability of flubendiamide in water/sediment using passive sampling with polyoxymethylene. J. Hazard. Mater. 2018, 344, 1000–1006. [Google Scholar] [CrossRef]
- Zoghlami, A.; Paës, G. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front. Chem. 2019, 7, 874. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Baloch, H.A.; Griffin, G.J.; Mubarak, N.M.; Bhutto, A.W.; Abro, R.; Mazari, S.A.; Ali, B.S. An overview of effect of process parameters on hydrothermal carbonization of biomass. Renew. Sustain. Energy Rev. 2017, 73, 1289–1299. [Google Scholar] [CrossRef]
- Mujtaba, M.; Fernandes Fraceto, L.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; Araujo De Medeiros, G.; Do Espírito Santo Pereira, A.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Kumar, B.; Verma, P. Biomass-based biorefineries: An important architype towards a circular economy. Fuel 2021, 288, 119622. [Google Scholar] [CrossRef]
- Wei, H.; Yingting, Y.; Jingjing, G.; Wenshi, Y.; Junhong, T. Lignocellulosic Biomass Valorization: Production of Ethanol. In Encyclopedia of Sustainable Technologies; Abraham, M.A., Ed.; Elsevier: Oxford, UK, 2017; pp. 601–604. ISBN 978-0-12-804792-7. [Google Scholar]
- Overend, R.P. Biomass Energy Heat Provision for Cooking and Heating in Developing Countries. In Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2018; pp. 1–20. ISBN 978-1-4939-2493-6. [Google Scholar]
- Menon, V.; Rao, M. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 2012, 38, 522–550. [Google Scholar] [CrossRef]
- Muh, E.; Tabet, F.; Amara, S. Biomass Conversion to Fuels and Value-Added Chemicals: A Comprehensive Review of the Thermochemical Processes. Curr. Altern. Energy 2019, 3, 3–25. [Google Scholar] [CrossRef]
- Kumar, M.; Olajire Oyedun, A.; Kumar, A. A review on the current status of various hydrothermal technologies on biomass feedstock. Renew. Sustain. Energy Rev. 2018, 81, 1742–1770. [Google Scholar] [CrossRef]
- Tekin, K.; Karagöz, S.; Bektaş, S. A review of hydrothermal biomass processing, Supplement. Renew. Sustain. Energy Rev. 2014, 40, 673–687. [Google Scholar] [CrossRef]
- Acharya, B.; Dutta, A.; Minaret, J. Review on comparative study of dry and wet torrefaction. Sustain. Energy Technol. Assess. 2015, 12, 26–37. [Google Scholar] [CrossRef]
- De Lasa, H.; Salaices, E.; Mazumder, J.; Lucky, R. Catalytic Steam Gasification of Biomass: Catalysts, Thermodynamics and Kinetics. Chem. Rev. 2011, 111, 5404–5433. [Google Scholar] [CrossRef]
- Peterson, A.A.; Vogel, F.; Lachance, R.P.; Fröling, M.; Antal, M.J., Jr.; Tester, J.W. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ. Sci. 2008, 1, 32. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy Fuels 2006, 20, 848–889. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Kruse, A.; Zevaco, T. Properties of Hydrochar as Function of Feedstock, Reaction Conditions and Post-Treatment. Energies 2018, 11, 674. [Google Scholar] [CrossRef]
- Brebu, M.; Vasile, C. Thermal Degradation of Lignin—A Review. Cellul. Chem. Technol. 2009, 44, 353. [Google Scholar]
- Liu, Z.; Quek, A.; Kent Hoekman, S.; Balasubramanian, R. Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 2013, 103, 943–949. [Google Scholar] [CrossRef]
- Kambo, H.S.; Dutta, A. Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Appl. Energy 2014, 135, 182–191. [Google Scholar] [CrossRef]
- Novianti, S.; Biddinika, M.K.; Prawisudha, P.; Yoshikawa, K. Upgrading of Palm Oil Empty Fruit Bunch Employing Hydrothermal Treatment in Lab-scale and Pilot Scale. Procedia Environ. Sci. 2014, 20, 46–54. [Google Scholar] [CrossRef]
- Kang, S.; Li, X.; Fan, J.; Chang, J. Solid fuel production by hydrothermal carbonization of black liquor. Bioresour. Technol. 2012, 110, 715–718. [Google Scholar] [CrossRef]
- Calucci, L.; Rasse, D.P.; Forte, C. Solid-State Nuclear Magnetic Resonance Characterization of Chars Obtained from Hydrothermal Carbonization of Corncob and Miscanthus. Energy Fuels 2013, 27, 303–309. [Google Scholar] [CrossRef]
- Xiao, L.-P.; Shi, Z.-J.; Xu, F.; Sun, R.-C. Hydrothermal carbonization of lignocellulosic biomass. Bioresour. Technol. 2012, 118, 619–623. [Google Scholar] [CrossRef]
- Cao, X.; Ro, K.S.; Libra, J.A.; Kammann, C.I.; Lima, I.; Berge, N.; Li, L.; Li, Y.; Chen, N.; Yang, J.; et al. Effects of Biomass Types and Carbonization Conditions on the Chemical Characteristics of Hydrochars. J. Agric. Food Chem. 2013, 61, 9401–9411. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, X.; Wang, J.; Li, X.; Cheng, J.; Yang, H.; Chen, H. Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy 2013, 58, 376–383. [Google Scholar] [CrossRef]
- Yao, Z.; Ma, X. Characteristics of co-hydrothermal carbonization on polyvinyl chloride wastes with bamboo. Bioresour. Technol. 2018, 247, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Danso-Boateng, E.; Shama, G.; Wheatley, A.D.; Martin, S.J.; Holdich, R.G. Hydrothermal carbonisation of sewage sludge: Effect of process conditions on product characteristics and methane production. Bioresour. Technol. 2015, 177, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Hrdlicka, J.; Feik, C.; Carpenter, D.; Pomeroy, M. Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis; NREL/TP-510-44557; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2008; p. 944893. [Google Scholar]
- Wiedner, K.; Rumpel, C.; Steiner, C.; Pozzi, A.; Maas, R.; Glaser, B. Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale. Biomass Bioenergy 2013, 59, 264–278. [Google Scholar] [CrossRef]
- Jian, X.; Zhuang, X.; Li, B.; Xu, X.; Wei, Z.; Song, Y.; Jiang, E. Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis. Environ. Technol. Innov. 2018, 10, 27–35. [Google Scholar] [CrossRef]
- Garlapalli, R.K.; Wirth, B.; Reza, M.T. Pyrolysis of hydrochar from digestate: Effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation. Bioresour. Technol. 2016, 220, 168–174. [Google Scholar] [CrossRef]
- Spokas, K.A.; Novak, J.M.; Stewart, C.E.; Cantrell, K.B.; Uchimiya, M.; DuSaire, M.G.; Ro, K.S. Qualitative analysis of volatile organic compounds on biochar. Chemosphere 2011, 85, 869–882. [Google Scholar] [CrossRef]
- Wang, G.; Yang, Y.; Kong, Y.; Ma, R.; Yuan, J.; Li, G. Key factors affecting seed germination in phytotoxicity tests during sheep manure composting with carbon additives. J. Hazard. Mater. 2022, 421, 126809. [Google Scholar] [CrossRef]
- Karre, A.V.; Cai, T. Review of innovative uses of biochar in environmental applications for nitrobenzene removal in aqueous and soil phases. Front. Chem. Eng. 2023, 5, 1186878. [Google Scholar] [CrossRef]
- Tang, J.; Zhu, W.; Kookana, R.; Katayama, A. Characteristics of biochar and its application in remediation of contaminated soil. J. Biosci. Bioeng. 2013, 116, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Zhao, Y.; Liu, Y.; Chen, J.; Wu, Q.; Ruan, Y.; Li, S.; Shi, J.; Zhao, L.; Sun, X.; et al. Pyrolysis temperature of biochar affects ecoenzymatic stoichiometry and microbial nutrient-use efficiency in a bamboo forest soil. Geoderma 2020, 363, 114162. [Google Scholar] [CrossRef]
- Dicke, C.; Lanza, G.; Mumme, J.; Ellerbrock, R.; Kern, J. Effect of Hydrothermally Carbonized Char Application on Trace Gas Emissions from Two Sandy Soil Horizons. J. Environ. Qual. 2014, 43, 1790. [Google Scholar] [CrossRef]
- Mumme, J.; Srocke, F.; Heeg, K.; Werner, M. Use of biochars in anaerobic digestion. Bioresour. Technol. 2014, 164, 189–197. [Google Scholar] [CrossRef]
- Malghani, S.; Gleixner, G.; Trumbore, S.E. Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biol. Biochem. 2013, 62, 137–146. [Google Scholar] [CrossRef]
Dry | Wet | ||||||
---|---|---|---|---|---|---|---|
Parameters | Poultry Litter | Feedlot Manure (Unpaved) | Feedlot Manure (Paved) | Dairy Manure | Swine (Pit Recharge) | Swine (Flush) | Swine (Dewatered) |
MC (%) | 7.5–41.4 | 19.81 | 20.27 | 98 | 96.18 | ||
VM (%db) | 40.3–74.3 | 33.77 | 64.6–76.7 | 63.4–83.8 | 68.7 | 68.6–83.8 | 61.3–73.6 |
Ash (%db) | 16.9–43.9 | 58.73 | 15.4–20.2 | 14.8–22.9 | 31.3 | 16.2–19.6 | 20.9–26.7 |
FC (%db) | 5.7–15.8 | 7.5 | 7.9–15.2 | 4.5–13.7 | 11.9 | 5.6–12 | |
C (%db) | 22–42.1 | 21.7 | 43.1–45.1 | 40.8–46.5 | 45.7 | 44.7–57.0 | 31.0–47.4 |
H (%db) | 3.8–5.2 | 2.62 | 5.2–5.5 | 5.3–5.5 | 6.5 | 5.9–9.7 | 5.2–6.0 |
N (%db) | 2.6–3.7 | 1.94 | 2.4–3.1 | 2.3–2.6 | 3.5 | 2.1–4.1 | 4.1–5.3 |
S (%db) | 0.5–0.7 | 0.42 | 0.4–0.7 | 0.3 | 0.4 | 0.31 | 0.9–1.7 |
O (%db) (diff.) | 27.1–34.8 | 14.6 | 27.7–32.5 | 27.2–33.2 | 31.4 | 29.2–38.2 | 25.3–26. |
HHV (MJ/kg) | 9.2 | 6.3 | 13.4 | 17.6 | 17.2 | 18.2–22.9 | 19.5 |
Refs | [180,181,182,183,184] | [185] | [182,185] | [7,181,182] | [180] | [180,186] | [7,182,183] |
Process Condition | Raw Material | VM (%db) | FC (%db) | Ash (%db) | C (%db) | H (%db) | N (%db) | O (%db) | Refs. |
---|---|---|---|---|---|---|---|---|---|
P350 | swine | 31.7–49.8 | 17.7–26.6 | 32.5–41.8 | 51.5 | 4.9 | 3.5 | 11.1 | [182,183,190] |
H210–250 | swine | 54.0–59.8 | 12–15.2 | 21.1–34.5 | 66.0 | 8.4 | 3.5 | 22.2 | [183,186] |
P350 | poultry | 33.5–42.3 | 27.0–30.8 | 30.7–35.7 | 51.1 | 3.8 | 4.5 | 15.6 | [182,183,190] |
H250 | poultry | 39.2–39.8 | 14.8–17.3 | 42.9–46 | 39.1–45.8 | 3.1 | 3.1 | 9.0 | [183,191] |
P350 | dairy | 53.5 | 23.2 | 24.2 | 55.8 | 4.3 | 2.6 | 18.7 | [182] |
H170 | dairy | 66.14 | 13.41 | 20.45 | 40.97 | 5.09 | 1.69 | 23.64 | [182,192] |
P350 | cattle | 47.9 | 23.5 | 28.7 | 53.3 | 4.1 | 3.6 | 15.7 | [182] |
- | coals | 32–34.8 | 55.7–57.7 | 9–12.1 | 56.6–78.8 | 3.6–4.9 | 1.0–1.7 | 4.7–8.8 | [183,193] |
Lignocellulosic Biomass | MC (%) | VM (%db) | FC (%db) | Ash (%db) | H/C (-) | O/C (-) | Refs. |
---|---|---|---|---|---|---|---|
Coconut fiber | n.a. | 80.9 | 11.0 | 8.1 | 1.4 | 0.7 | [216] |
Eucalyptus leaves | n.a. | 79.2 | 10.3 | 10.5 | 1.6 | 0.7 | [216] |
Miscanthus | n.a. | 87.5 | 11.7 | 0.8 | 1.5 | 0.7 | [217] |
Empty fruit bunch | n.a. | 78.7 | 15.3 | 5.9 | 1.7 | 0.8 | [218] |
Pine wood meal | n.a. | 87.3 | 12.4 | 1.2 | 1.8 | 0.8 | [219] |
Corncob | n.a. | 81.1 | 17.5 | 1.4 | 1.6 | 0.7 | [220] |
Cornstalk | n.a. | n.a. | n.a. | 4.6 | 1.6 | 0.7 | [221] |
Tamarix ramosissima | n.a. | n.a. | n.a. | 4.4 | 1.6 | 0.7 | [221] |
Sugar beet | n.a. | 75.4 | 18.5 | 6.2 | 1.6 | 0.6 | [222] |
Bark | n.a. | 66.8 | 25.5 | 7.7 | 1.3 | 0.4 | [222] |
Corncob residue | n.a. | 78.6 | 17.2 | 4.2 | 1.6 | 0.8 | [214] |
Hyacinth | n.a. | 52.9 | 6.7 | 40.4 | 2.2 | 0.6 | [223] |
Wood sawdust | n.a. | 83.1 | 9.5 | 7.4 | 1.7 | 0.6 | [117] |
Bamboo | n.a. | 80.0 | 17.6 | 2.4 | 1.7 | 0.7 | [224] |
Primary sewage sludge | n.a. | 68.6 | 3.9 | 27.5 | 1.9 | 1.1 | [225] |
Wood chip | 4.6 | 56.9 | 40.0 | 3.1 | n.a. | n.a. | [184] |
Sugar beet pulp | 6.9 | 75.4 | 18.5 | 6.2 | n.a. | n.a. | [222] |
Bark | 7.0 | 66.8 | 25.5 | 7.7 | n.a. | n.a. | [222] |
Oak | 5.8 | 79.1 | 14.6 | 0.5 | 0.1 | 0.8 | [226] |
Pine | 7.6 | 79.9 | 12.3 | 0.3 | 0.1 | 0.7 | [226] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, C.H.; Cappai, G.; Chung, J.-W.; Jeong, C.; Kulli, B.; Marchelli, F.; Ro, K.S.; Román, S. Research Needs and Pathways to Advance Hydrothermal Carbonization Technology. Agronomy 2024, 14, 247. https://doi.org/10.3390/agronomy14020247
Dang CH, Cappai G, Chung J-W, Jeong C, Kulli B, Marchelli F, Ro KS, Román S. Research Needs and Pathways to Advance Hydrothermal Carbonization Technology. Agronomy. 2024; 14(2):247. https://doi.org/10.3390/agronomy14020247
Chicago/Turabian StyleDang, Chau Huyen, Giovanna Cappai, Jae-Wook Chung, Changyoon Jeong, Beatrice Kulli, Filippo Marchelli, Kyoung S. Ro, and Silvia Román. 2024. "Research Needs and Pathways to Advance Hydrothermal Carbonization Technology" Agronomy 14, no. 2: 247. https://doi.org/10.3390/agronomy14020247
APA StyleDang, C. H., Cappai, G., Chung, J. -W., Jeong, C., Kulli, B., Marchelli, F., Ro, K. S., & Román, S. (2024). Research Needs and Pathways to Advance Hydrothermal Carbonization Technology. Agronomy, 14(2), 247. https://doi.org/10.3390/agronomy14020247