Fine Mapping and Functional Verification of the Brdt1 Gene Controlling Determinate Inflorescence in Brassica rapa L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Population Construction
2.2. Morphological Observation and Paraffin Sectioning
2.3. DNA Extraction and BSA-Seq
2.4. Development of SSR Marker
2.5. Mapping
2.6. Cloning and Sequence Analysis of the Candidate Gene
2.7. Plasmid Construction and Plant Transformation
2.8. RNA Extraction and qRT-PCR
3. Results
3.1. Observations of the SAM Apex in B. rapa
3.2. Genetic Analysis
3.3. Primary Mapping of the Determinate Gene Brdt1 Using BSA-Seq
3.4. Fine Mapping of the Brdt1 Gene
3.5. Dissection of the Brdt1 Target Region
3.6. Expression of BraA10.TFL1 in Different Tissues of B. rapa
3.7. Cloning and Sequencing Analysis of the BraA10.TFL1/BraA10.tfl1 Gene
3.8. BraA10.TFL1 Rescues the tfl1-2 Mutant Phenotype in A. thaliana
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, M.; Atri, C.; Banga, S.S. Cytogenetic stability and genome size variations in newly developed derived Brassica juncea allopolyploid lines. J. Oilseed Brassica 2014, 5, 9. [Google Scholar]
- Wang, X.; Zheng, M.; Liu, H.; Zhang, L.; Chen, F.; Zhang, W.; Fan, S.; Peng, M.; Hu, M.; Wang, H.; et al. Fine-mapping and transcriptome analysis of a candidate gene controlling plant height in Brassica napus L. Biotechnol. Biofuels 2020, 13, 42. [Google Scholar] [CrossRef] [PubMed]
- Akter, A.; Kakizaki, T.; Itabashi, E.; Kunita, K.; Shimizu, M.; Akter, M.A.; Mehraj, H.; Okazaki, K.; Dennis, E.S.; Fujimoto, R. Characterization of FLOWERING LOCUS C 5 in Brassica rapa L. Mol. Breed. 2023, 43, 58. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yang, R.; Shen, S.; Zhao, J. Molecular Mechanism of Flowering Time Regulation in Brassica rapa: Similarities and Differences with Arabidopsis. Hortic. Plant J. 2024. [Google Scholar] [CrossRef]
- Ma, L.; Coulter, J.A.; Liu, L.; Zhao, Y.; Chang, Y.; Pu, Y.; Zeng, X.; Xu, Y.; Wu, J.; Fang, Y.; et al. Transcriptome Analysis Reveals Key Cold-Stress-Responsive Genes in Winter Rapeseed (Brassica rapa L.). Int. J. Mol. Sci. 2019, 20, 1071. [Google Scholar] [CrossRef]
- Raza, A.; Su, W.; Hussain, M.A.; Mehmood, S.S.; Zhang, X.; Cheng, Y.; Zou, X.; Lv, Y. Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Cold Tolerance in Rapeseed (Brassica napus L.). Front. Plant Sci. 2021, 12, 721681. [Google Scholar] [CrossRef]
- He, Y.-T.; Tu, J.-X.; Fu, T.-D.; Li, D.-R.; Chen, B.-Y. Genetic Diversity of Germplasm Resources of Brassica campestris L. in China by RAPD Markers. Acta Agron. Sin. 2002, 28, 7. [Google Scholar]
- Kaur, H.; Banga, S.S. Discovery and mapping of Brassica juncea Sdt 1 gene associated with determinate plant growth habit. Theor. Appl. Genet. 2015, 128, 235–245. [Google Scholar] [CrossRef]
- Li, K.; Yao, Y.; Xiao, L.; Zhao, Z.; Guo, S.; Fu, Z.; Du, D. Fine mapping of the Brassica napus Bnsdt1 gene associated with determinate growth habit. Theor. Appl. Genet. 2018, 131, 193–208. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, S.; Li, B.; Zhuo, C.; Hu, K.; Wen, J.; Yi, B.; Ma, C.; Shen, J.; Fu, T.; et al. Fine mapping of BnDM1-the gene regulating indeterminate inflorescence in Brassica napus. Theor. Appl. Genet. 2023, 136, 151. [Google Scholar] [CrossRef]
- Alvarez, J.; Guli, C.L.; Yu, X.H.; Smyth, D.R. terminal flower: A gene affecting inflorescence development in Arabidopsis thaliana. Plant J. 2005, 2, 103–116. [Google Scholar] [CrossRef]
- Nurmansyah; Alghamdi, S.S.; Migdadi, H.M.; Farooq, M. Novel inflorescence architecture in gamma radiation-induced faba bean mutant populations. Int. J. Radiat. Biol. 2019, 95, 1744–1751. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Park, S.J.; Van Eck, J.; Lippman, Z.B. Control of inflorescence architecture in tomato by BTB/POZ transcriptional regulators. Genes. Dev. 2016, 30, 2048–2061. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Xu, L.; Jia, Y.; Chen, C.; Yao, Y.; Liu, H.; Du, D. A novel locus (Bnsdt2) in a TFL1 homologue sustaining determinate growth in Brassica napus. BMC Plant Biol. 2021, 21, 568. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Zhao, H.; Yu, K.; Xiang, Y.; Dai, W.; Du, C.; Tian, E. Exploration into Natural Variation for Genes Associated with Determinate and Capitulum-like Inflorescence in Brassica napus. Int. J. Mol. Sci. 2023, 24, 12902. [Google Scholar] [CrossRef] [PubMed]
- Hanano, S.; Goto, K. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell 2011, 23, 3172–3184. [Google Scholar] [CrossRef] [PubMed]
- Repinski, S.L.; Kwak, M.; Gepts, P. The common bean growth habit gene PvTFL1y is a functional homolog of Arabidopsis TFL1. Theor. Appl. Genet. 2012, 124, 1539–1547. [Google Scholar] [CrossRef]
- Fernandez-Nohales, P.; Domenech, M.J.; Martinez de Alba, A.E.; Micol, J.L.; Ponce, M.R.; Madueno, F. AGO1 controls arabidopsis inflorescence architecture possibly by regulating TFL1 expression. Ann. Bot. 2014, 114, 1471–1481. [Google Scholar] [CrossRef]
- Wang, R.; Albani, M.C.; Vincent, C.; Bergonzi, S.; Luan, M.; Bai, Y.; Kiefer, C.; Castillo, R.; Coupland, G. Aa TFL1 confers an age-dependent response to vernalization in perennial Arabis alpina. Plant Cell 2011, 23, 1307–1321. [Google Scholar] [CrossRef]
- Mundermann, L.; Erasmus, Y.; Lane, B.; Coen, E.; Prusinkiewicz, P. Quantitative modeling of Arabidopsis development. Plant Physiol. 2005, 139, 960–968. [Google Scholar] [CrossRef]
- Jaeger, K.E.; Pullen, N.; Lamzin, S.; Morris, R.J.; Wigge, P.A. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell 2013, 25, 820–833. [Google Scholar] [CrossRef]
- Do, V.G.; Lee, Y.; Kim, S.; Kweon, H.; Do, G. Antisense Expression of Apple TFL1-like Gene (MdTFL1) Promotes Early Flowering and Causes Phenotypic Changes in Tobacco. Int. J. Mol. Sci. 2022, 23, 6006. [Google Scholar] [CrossRef]
- Kaneko-Suzuki, M.; Kurihara-Ishikawa, R.; Okushita-Terakawa, C.; Kojima, C.; Nagano-Fujiwara, M.; Ohki, I.; Tsuji, H.; Shimamoto, K.; Taoka, K.I. TFL1-like Proteins in Rice Antagonize Rice FT-Like Protein in Inflorescence Development by Competition for Complex Formation with 14-3-3 and FD. Plant Cell Physiol. 2018, 59, 458–468. [Google Scholar] [CrossRef]
- Wen, C.; Zhao, W.; Liu, W.; Yang, L.; Wang, Y.; Liu, X.; Xu, Y.; Ren, H.; Guo, Y.; Li, C.; et al. CsTFL1 inhibits determinate growth and terminal flower formation through interaction with CsNOT2a in cucumber. Development 2019, 146, dev180166. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, C.; Zhang, L.; Hu, P.; Hou, W.; Zu, W.; Han, T. Long-day effects on the terminal inflorescence development of a photoperiod-sensitive soybean [Glycine max (L.) Merr.] variety. Plant Sci. 2011, 180, 504–510. [Google Scholar] [CrossRef]
- Yang, J.; Bertolini, E.; Braud, M.; Preciado, J.; Chepote, A.; Jiang, H.; Eveland, A.L. The SvFUL2 transcription factor is required for inflorescence determinacy and timely flowering in Setaria viridis. Plant Physiol. 2021, 187, 1202–1220. [Google Scholar] [CrossRef]
- Zhong, J.; van Esse, G.W.; Bi, X.; Lan, T.; Walla, A.; Sang, Q.; Franzen, R.; von Korff, M. INTERMEDIUM-M encodes an HvAP2L-H5 ortholog and is required for inflorescence indeterminacy and spikelet determinacy in barley. Proc. Natl. Acad. Sci. USA 2021, 118, e2011779118. [Google Scholar] [CrossRef]
- Kobayashi, K.; Yasuno, N.; Sato, Y.; Yoda, M.; Yamazaki, R.; Kimizu, M.; Yoshida, H.; Nagamura, Y.; Kyozuka, J. Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene. Plant Cell 2012, 24, 1848–1859. [Google Scholar] [CrossRef]
- Chen, C.; Xiao, L.; Li, X.; Du, D. Comparative Mapping Combined with Map-Based Cloning of the Brassica juncea Genome Reveals a Candidate Gene for Multilocular Rapeseed. Front. Plant Sci. 2018, 9, 1744. [Google Scholar] [CrossRef]
- Fulton, T.M.; Chunwongse, J.; Tanksley, S.D. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Report. 1995, 13, 207–209. [Google Scholar] [CrossRef]
- Lowe, A.J.; Jones, A.E.; Raybould, A.F.; Trick, M.; Moule, C.L.; Edwards, K.J. Transferability and genome specificity of a new set of microsatellite primers among Brassica species of the U triangle. Mol. Ecol. Notes 2002, 2, 7–11. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, H.; Yang, X.; Chen, L.; Chen, J.; Liu, Y.; Wu, L.; Hu, Y.; Huang, W.; Yao, Y.; et al. Identification and Analysis of Flax Resistance Genes to Septoria linicola (Speg.) Garassini. J. Nat. Fibers 2023, 20, 2163331. [Google Scholar] [CrossRef]
- Jia, Y.; Li, K.; Liu, H.; Zan, L.; Du, D. Characterization of the BnA10.tfl1 Gene Controls Determinate Inflorescence Trait in Brassica napus L. Agronomy 2019, 9, 722. [Google Scholar] [CrossRef]
- Kellogg, E.A. Genetic control of branching patterns in grass inflorescences. Plant Cell 2022, 34, 2518–2533. [Google Scholar] [CrossRef]
- Chen, Z.; Li, W.; Gaines, C.; Buck, A.; Galli, M.; Gallavotti, A. Structural variation at the maize WUSCHEL1 locus alters stem cell organization in inflorescences. Nat. Commun. 2021, 12, 2378. [Google Scholar] [CrossRef]
- Chen, Z.; Gallavotti, A. Improving architectural traits of maize inflorescences. Mol. Breed. 2021, 41, 21. [Google Scholar] [CrossRef] [PubMed]
- Meeks-Wagner, S.S.O.R. A mutation in the Arabidopsis TFL1 gene affects inforescence meristem development. Plant Cell 1991, 3, 92. [Google Scholar]
- Isemura, T.; Kaga, A.; Tabata, S.; Somta, P.; Srinives, P.; Shimizu, T.; Jo, U.; Vaughan, D.A.; Tomooka, N. Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS ONE 2012, 7, e41304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.F.; Zhang, D.Q.; Yu, H.S.; Lin, B.G.; Hua, S.J.; Ding, H.D.; Fu, Y. Location and Mapping of the Determinate Growth Habit of Brassica napus by Bulked Segregant Analysis (BSA) Using Whole Genome Re-Sequencing. Sci. Agric. Sin. 2018, 51, 10. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Gao, Y.; Zhang, Q. Targeted deletion of floral development genes in Arabidopsis with CRISPR/Cas9 using the RNA endoribonuclease Csy4 processing system. Hortic. Res. 2019, 6, 99. [Google Scholar] [CrossRef] [PubMed]
- Balanza, V.; Martinez-Fernandez, I.; Sato, S.; Yanofsky, M.F.; Ferrandiz, C. Inflorescence Meristem Fate Is Dependent on Seed Development and FRUITFULL in Arabidopsis thaliana. Front. Plant Sci. 2019, 10, 1622. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.; Zhang, S.; Huai, Y.; Abdelghany, A.M.; Shaibu, A.S.; Qi, J.; Feng, Y.; Liu, Y.; Li, J.; Qiu, L.; et al. Identification of genes for seed isoflavones based on bulk segregant analysis sequencing in soybean natural population. Theor. Appl. Genet. 2023, 136, 13. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Dai, G.; Zhou, W.; Liang, H.; Huang, J.; Qing, D.; Chen, W.; Wu, H.; Yang, X.; Li, D.; et al. Mapping and Identifying a Candidate Gene Plr4, a Recessive Gene Regulating Purple Leaf in Rice, by Using Bulked Segregant and Transcriptome Analysis with Next-Generation Sequencing. Int. J. Mol. Sci. 2019, 20, 4335. [Google Scholar] [CrossRef]
- Gao, Y.; Du, L.; Ma, Q.; Yuan, Y.; Liu, J.; Song, H.; Feng, B. Conjunctive Analyses of Bulk Segregant Analysis Sequencing and Bulk Segregant RNA Sequencing to Identify Candidate Genes Controlling Spikelet Sterility of Foxtail Millet. Front. Plant Sci. 2022, 13, 842336. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, L.; Corke, F.; Smith, C.; Bevan, M.W. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev. 2008, 22, 1331–1336. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Sun, L.; Xu, P.; Tu, R.; Meng, S.; Wu, W.; Anis, G.B.; Hussain, K.; Riaz, A.; et al. WB1, a Regulator of Endosperm Development in Rice, Is Identified by a Modified MutMap Method. Int. J. Mol. Sci. 2018, 19, 2159. [Google Scholar] [CrossRef]
Combination | F1/RF1 | Population | No. of INDT. Plants | No. of DT. Plants | Expected Ratio | X2 Value |
---|---|---|---|---|---|---|
515 × 520 | indeterminate | F2 | 297 | 27 | 15:1 | 2.40 |
BC1F1 | 168 | 50 | 3:1 | 0.49 |
Type of Marker | Name | Size of Marker | Physical Position (kb) | Chromosome of ‘chiifu’ v1.5 |
---|---|---|---|---|
SSR | BrSSR1 | 174 | 15,476,191 | A10 |
SSR | BrSSR2 | 158 | 15,505,412 | A10 |
SSR | BrSSR3 | 185 | 15,580,043 | A10 |
SSR | BrSSR4 | 166 | 15,712,914 | A10 |
SSR | BrSSR5 | 175 | 15,812,313 | A10 |
SSR | BrSSR6 | 215 | 15,859,041 | A10 |
SSR | BrSSR7 | 182 | 15,872,725 | A10 |
SSR | BrSSR8 | 238 | 15,912,798 | A10 |
SSR | BrSSR9 | 234 | 15,918,222 | A10 |
SSR | BrSSR10 | 174 | 15,731,259 | A10 |
SSR | BrSSR11 | 151 | 15,785,574 | A10 |
SSR | BrSSR12 | 182 | 15,793,126 | A10 |
Gene of B. rapa | Homologous Gene in A. thaliana | Putative Function |
---|---|---|
Bra009492 | AT5G04030 | unknown |
Bra009493 | AT5G04020 | Calmodulin-binding |
Bra009494 | AT5G04010 | F-box family protein |
Bra009495 | AT5G03990 | FK506-binding-like protein |
Bra009496 | AT5G03980 | SGNH hydrolase-type esterase superfamily protein |
Bra009497 | AT5G00970 | F-box family protein |
Bra009498 | AT5G03960 | IQ-domain 12 |
Bra009499 | AT5G03940 | Chloroplast signal recognition particle 54 KDa subunit protein |
Bra009500 | AT5G03910 | ABC2 homolog 12 |
Bra009501 | AT5G03905 | Iron-sulfur cluster biosynthesis family protein |
Bra009502 | AT5G03900 | Iron-sulfur cluster biosynthesis family protein |
Bra009503 | AT5G03900 | Iron-sulfur cluster biosynthesis family protein |
Bra009504 | AT5G03890 | unknown |
Bra009505 | AT5G03880 | Thioredoxin family protein |
Bra009506 | AT5G00893 | unknown |
Bra009507 | AT5G03850 | Nucleic acid-binding, OB-fold-like protein s28 |
Bra009508 | AT5G03840 | TFL1 (TERMINAL FLOWER 1); PEBP (phosphatidylethanolamine binding protein) family protein |
Bra009509 | AT5G03795 | Exostosin family protein |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Zhu, X.; Zhao, Z.; Du, D.; Li, K. Fine Mapping and Functional Verification of the Brdt1 Gene Controlling Determinate Inflorescence in Brassica rapa L. Agronomy 2024, 14, 281. https://doi.org/10.3390/agronomy14020281
Chen C, Zhu X, Zhao Z, Du D, Li K. Fine Mapping and Functional Verification of the Brdt1 Gene Controlling Determinate Inflorescence in Brassica rapa L. Agronomy. 2024; 14(2):281. https://doi.org/10.3390/agronomy14020281
Chicago/Turabian StyleChen, Cuiping, Xuebing Zhu, Zhi Zhao, Dezhi Du, and Kaixiang Li. 2024. "Fine Mapping and Functional Verification of the Brdt1 Gene Controlling Determinate Inflorescence in Brassica rapa L." Agronomy 14, no. 2: 281. https://doi.org/10.3390/agronomy14020281
APA StyleChen, C., Zhu, X., Zhao, Z., Du, D., & Li, K. (2024). Fine Mapping and Functional Verification of the Brdt1 Gene Controlling Determinate Inflorescence in Brassica rapa L. Agronomy, 14(2), 281. https://doi.org/10.3390/agronomy14020281