CRISPR/Cas9-Mediated Targeted Mutagenesis of Betaine Aldehyde Dehydrogenase 2 (BADH2) in Tobacco Affects 2-Acetyl-1-pyrroline
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Cloning of Tobacco NtBADH2 Genes
2.3. Phylogenetic Analysis
2.4. RNA Extraction and Gene Expression Analysis
2.5. Construction of CRISPR/Cas Gene Editing Vectors
2.6. Plant Transformation and Mutant Analysis
2.7. 2AP Measurements
3. Results
3.1. Identification of BADH Genes in Tobacco Genome
3.2. Expression Patterns of NtBADH Genes in Different Tobacco Tissues
3.3. Targeted NtBADH Mutations Using the CRISPR/Cas9 System
3.4. Targeted NtBADH2a-NtBADH2b Double Mutations Affect 2AP Content
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bao, Y.; Zhao, R.; Li, F.; Tang, W.; Han, L. Simultaneous expression of Spinacia oleracea chloroplast choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH) genes contribute to dwarfism in transgenic Lolium perenne. Plant Mol. Biol. Rep. 2011, 29, 379–388. [Google Scholar] [CrossRef]
- Chen, T.H.; Murata, N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr. Opin. Plant Biol. 2002, 5, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.M.; Moreau, R.A.; Yu, C. Betaine accumulation and betaine-aldehyde dehydrogenase in spinach leaves. Plant Physiol. 1981, 67, 1105–1108. [Google Scholar] [CrossRef] [PubMed]
- Burnet, M.; Lafontaine, P.J.; Hanson, A.D. Assay, purification, and partial characterization of choline monooxygenase from spinach. Plant Physiol. 1995, 108, 581–588. [Google Scholar] [CrossRef] [PubMed]
- McCue, K.F.; Hanson, A.D. Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Mol. Biol. 1992, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yamada, N.; Takahashi, H.; Kitou, K.; Sahashi, K.; Tamagake, H.; Tanaka, Y.; Takabe, T. Suppressed expression of choline monooxygenase in sugar beet on the accumulation of glycine betaine. Plant Physiol. Biochem. 2015, 96, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Ishitani, M.; Nakamura, T.; Han, S.Y.; Takabe, T. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol. Boil. 1995, 27, 307–315. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, S.; Yuan, J.; Chen, G.; Lu, G. A betaine aldehyde dehydrogenase gene in quinoa (Chenopodium quinoa): Structure, phylogeny, and expression pattern. Genes Genom. 2016, 38, 1013–1020. [Google Scholar] [CrossRef]
- Singh, A.; Singh, P.K.; Singh, R.; Pandit, A.; Mahato, A.K.; Gupta, D.K.; Tyagi, K.; Sing, A.K.; Sing, N.K.; Sharma, T.R. SNP haplotypes of the BADH1 gene and their association with aroma in rice (Oryza sativa L.). Mol. Breed. 2010, 26, 325–338. [Google Scholar] [CrossRef]
- Liu, Y.; Song, Y.; Zeng, S.; Patra, B.; Yuan, L.; Wang, Y. Isolation and characterization of a salt stress-responsive betaine aldehyde dehydrogenase in Lycium ruthenicum Murr. Physiol. Plant 2018, 163, 73–87. [Google Scholar] [CrossRef]
- He, Q.; Yu, J.; Kim, T.S.; Cho, Y.H.; Lee, Y.S.; Park, Y.J. Resequencing reveals different domestication rate for BADH1 and BADH2 in rice (Oryza sativa). PLoS ONE 2015, 10, e0134801. [Google Scholar] [CrossRef]
- Niazian, M.; Sadat-Noori, S.A.; Tohidfar, M.; Mortazavian, S.M.M.; Sabbatini, P. Betaine aldehyde dehydrogenase (BADH) vs. flavodoxin (Fld): Two important genes for enhancing plants stress tolerance and productivity. Front. Plant Sci. 2021, 12, 650215. [Google Scholar] [CrossRef]
- Okpala, N.E.; Mo, Z.; Duan, M.; Tang, X. The genetics and biosynthesis of 2-acetyl-1-pyrroline in fragrant rice. Plant Physiol. Biochem. 2019, 135, 272–276. [Google Scholar] [CrossRef]
- Zhao, M.; Qian, L.; Chi, Z.; Jia, X.; Qi, F.; Yuan, F.; Liu, Z.; Zheng, Y. Combined metabolomic and quantitative RT-PCR analyses revealed the synthetic differences of 2-Acetyl-1-pyrroline in aromatic and non-aromatic vegetable soybeans. Inter. J. Mol. Sci. 2022, 23, 14529. [Google Scholar] [CrossRef]
- Imran, M.; Shafiq, S.; Ashraf, U.; Qi, J.; Mo, Z.; Tang, X. Biosynthesis of 2-Acetyl-1-pyrroline in fragrant rice: Recent insights into agro-management, environmental factors, and functional genomics. J. Agric. Food Chem. 2023, 71, 4201–4215. [Google Scholar] [CrossRef]
- Chen, S.; Yang, Y.; Shi, W.; Ji, Q.; He, F.; Zhang, Z.; Cheng, Z.; Liu, X.; Xu, M. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell 2008, 20, 1850–1861. [Google Scholar] [CrossRef] [PubMed]
- Yundaeng, C.; Somta, P.; Tangphatsornruang, S.; Wongpornchai, S.; Srinives, P. Gene discovery and functional marker development for fragrance in sorghum (Sorghum bicolor (L.) Moench). Theor. Appl. Genet. 2013, 126, 2897–2906. [Google Scholar] [CrossRef]
- Qian, L.; Jin, H.; Yang, Q.; Zhu, L.; Yu, X.; Fu, X.; Zhao, M.; Yuan, F. A sequence variation in GmBADH2 enhances soybean aroma and is a functional marker for improving soybean flavor. Inter. J. Mol. Sci. 2022, 23, 4116. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, Q.; Zhang, S.; Man, X.; Sui, Y.; Jia, G.; Tang, S.; Zhi, H.; Wu, C.; Diao, X. De novo creation of popcorn-like fragrant foxtail millet. J. Integr. Plant Biol. 2023, 65, 2412–2415. [Google Scholar] [CrossRef] [PubMed]
- Attar, U.; Hinge, V.; Zanan, R.; Adhav, R.; Nadaf, A. Identification of aroma volatiles and understanding 2-acetyl-1-pyrroline biosynthetic mechanism in aromatic mung bean (Vigna radiata (L.) Wilczek). Physiol. Mol. Biol. Plants 2017, 23, 443–451. [Google Scholar] [CrossRef]
- Kaikavoosi, K.; Kad, T.D.; Zanan, R.L.; Nadaf, A.B. 2-Acetyl1-pyrroline augmentation in scented indica rice (Oryza sativa L.) varieties through 11-pyrroline-5-carboxylate synthetase (P5CS) gene transformation. Appl. Biochem. Biotechnol. 2015, 177, 1466–1479. [Google Scholar] [CrossRef]
- Imran, M.; Shafiq, S.; Ilahi, S.; Ghahramani, A.; Bao, G.; Dessoky, E.S.; Widemann, E.; Pan, S.; Mo, Z.; Tang, X. Post-transcriptional regulation of 2-acetyl-1-pyrroline (2-AP) biosynthesis pathway, silicon, and heavy metal transporters in response to Zn in fragrant rice. Front. Plant Sci. 2022, 13, 948884. [Google Scholar] [CrossRef]
- Daping, G.; Mingli, C.; Yang, S.; Yuqin, Z.; Xingtan, Z.; Xiuhong, X. Fine mapping of QTLs for resistance to Phytophthora nicotianae in flue-cured tobacco using a high-density genetic map. Mol. Breed. 2020, 40, 45. [Google Scholar]
- Petolino, J.F.; Worden, A.; Curlee, K.; Connell, J.; Moynahan, T.L.S.; Larsen, C.; Russell, S. Zinc finger nuclease-mediated transgene deletion. Plant Mol. Biol. 2010, 73, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Zhao, W.; Ahmad, N.; Zhao, L. Beyond green and red: Unlocking the genetic orchestration of tomato fruit color and pigmentation. Funct. Integr. Genom. 2023, 23, 243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, F.; Li, X.; Baller, J.A.; Qi, Y.; Starker, C.G.; Bogdanove, A.J.; Voytas, D.F. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol. 2013, 161, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wang, G.; Ma, S.; Xie, X.; Wu, X.; Zhang, X.; Wu, Y.; Zhao, P.; Xia, Q. CRISPR/cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol. Biol. 2015, 87, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Akram, F.; Sahreen, S.; Aamir, F.; Haq, I.U.; Malik, K.A.; Imtiaz, M.; Naseem, W.; Nasir, N.; Waheed, H.M. An insight into modern targeted genome-editing technologies with aspecial focus on CRISPR/Cas9 and its applications. Mol. Biotechnol. 2022, 65, 227–242. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xing, J.; Mi, Q.; Yang, W.; Xiang, H.; Xu, L.; Zeng, W.; Wang, J.; Deng, L.; Jiang, J.; et al. Highly efficient transgene-free genome editing in tobacco using an optimized CRISPR/Cas9 system, pOREU3TR. Plant Sci. 2023, 326, 111523. [Google Scholar] [CrossRef] [PubMed]
- Ahangarzadeh, S.; Daneshvar, M.H.; Rajabi-Memari, H.; Galehdari, H.; Alamisaied, K. Cloning, transformation and expression of human interferon alpha2b gene in tobacco plant (Nicotiana tabacum cv. xanthi). Jundishapur. J. Nat. Pharm. Prod. 2012, 7, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Shan, Q.; Zhang, Y.; Chen, K.; Zhang, K.; Gao, C. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol. J. 2015, 13, 791–800. [Google Scholar] [CrossRef]
- Weigel, P.; Weretilnyk, E.A.; Hanson, A.D. Betaine aldehyde oxidation by spinach chloroplasts. Plant Physiol. 1986, 82, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.B.; Guan, L.L.; Xu, Y.W.; Shen, H.; Wu, W. Cloning and sequence analysis of the safflower betaine aldehyde dehydrogenase gene. Genet. Mol. Res. 2014, 13, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.L.; Gao, X.R.; Yu, X.H.; Wang, X.Z.; An, L.J. Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco. Biotechnol. Lett. 2003, 25, 1431–1436. [Google Scholar] [CrossRef] [PubMed]
- Singh, G. In silico docking analysis of betaine aldehyde dehydrogenase2 with pesticides in scented Basmati rice. Online J. Bioinform. 2021, 22, 111–120. [Google Scholar]
- Bradbury, L.M.T.; Fitzgerald, T.L.; Henry, R.J.; Jin, Q.S.; Waters, D.L.E. The gene for fragrance in rice. Plant Biotechnol. J. 2005, 3, 363–370. [Google Scholar] [CrossRef]
- Juwattanasomran, R.; Somta, P.; Chankaew, S.; Shimizu, T.; Wongpornchai, S.; Kaga, A.; Srinives, P. A SNP in GmBADH2 gene associates with fragrance in vegetable soybean variety “Kaori” and SNAP marker development for the fragrance. Theor. Appl. Genet. 2011, 122, 533–541. [Google Scholar] [CrossRef]
- Aili, Y.; Jingsheng, X.; Hui, Z.; Muqing, Z.; Rukai, C. Cloning and sequencing of BADH gene from maize (Zea mays). Mol. Plant Breed. 2004, 2, 365–368. [Google Scholar]
- Cui, X.Y.; Yong, W.A.N.G.; Guo, J.X. Osmotic regulation of betaine content in Leymus chinensis under saline-alkali stress and cloning and expression of betaine aldehyde dehydrogenase (BADH) gene. Chem. Res. Chin. Univ. 2008, 24, 204–209. [Google Scholar] [CrossRef]
- Walton, P.A.; Hill, P.E.; Subramani, S. Import of stably folded proteins into peroxisomes. Mol. Biol. Cell 1995, 6, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Yukawa, M.; Tsudzuki, T.; Sugiura, M. The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: Complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol. Genet. Genom. 2006, 275, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Arikit, S.; Yoshihashi, T.; Wanchana, S.; Uyen, T.T.; Huong, N.T.; Wongpornchai, S.; Vanavichit, A. Deficiency in the amino aldehyde dehydrogenase encoded by GmAMADH2, the homologue of rice Os2AP, enhances 2-acetyl-1-pyrroline biosynthesis in soybeans (Glycine max L.). Plant. Biotechnol. J. 2011, 9, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Yundaeng, C.; Somta, P.; Tangphatsornruang, S.; Chankaew, S.; Srinives, P. A single base substitution in BADH/AMADH is responsible for fragrance in cucumber (Cucumis sativus L.), and development of SNAP markers for the fragrance. Theor. Appl. Genet. 2015, 128, 1881–1892. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, X.; Zheng, X.; Wang, W.; Yin, X.; Liu, H.; Ma, C.; Niu, X.; Zhu, J.K.; Wang, F. Creation of aromatic maize by CRISPR/Cas. J. Integr. Plant Biol. 2021, 63, 1664–1670. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Tang, S.; Xie, P.; Yang, D.; Wu, Y.; Cheng, S.; Du, K.; Xin, P.; Chu, J.; Yu, F.; et al. Creation of fragrant sorghum by CRISPR/Cas9. J. Integr. Plant Biol. 2022, 64, 961–964. [Google Scholar] [CrossRef]
- Moghaieb, R.E.; Saneoka, H.; Fujita, K. Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima. Plant Sci. 2004, 166, 1345–1349. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Bradbury, L.M.; Gillies, S.A.; Brushett, D.J.; Waters, D.L.; Henry, R.J. Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. Plant Mol. Biol. 2008, 68, 439–449. [Google Scholar] [CrossRef]
- Bao, G.; Ashraf, U.; Wang, C.; He, L.; Wei, X.; Zheng, A.; Mo, Z.; Tang, X. Molecular basis for increased 2-acetyl-1-pyrroline contents under alternate wetting and drying (AWD) conditions in fragrant rice. Plant Physiol. Biochem. 2018, 133, 149–157. [Google Scholar] [CrossRef]
- Li, Y.; Liang, L.; Fu, X.; Gao, Z.; Liu, H.; Tan, J.; Potcho, M.P.; Pan, S.; Tian, H.; Duan, M.; et al. Light and water treatment during the early grain filling stage regulates yield and aroma formation in aromatic rice. Sci. Rep. 2020, 10, 14830. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Du, B.; He, L.; He, J.; Hu, L.; Pan, S.; Tang, X. Exogenous application of zinc (Zn) at the heading stage regulates 2-acetyl-1-pyrroline (2-AP) biosynthesis in different fragrant rice genotypes. Sci. Rep. 2019, 9, 19513. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Hussain, S.; Rana, M.S.; Saleem, M.H.; Rasul, F.; Ali, K.H.; Potcho, M.P.; Pan, S.; Duan, M.; Tang, X. Molybdenum improves 2-acetyl-1-pyrroline, grain quality traits and yield attributes in fragrant rice through efficient nitrogen assimilation under cadmium toxicity. Ecotoxicol. Environ. Saf. 2021, 211, 111911. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Han, R.; Ahmad, N.; Zhao, W.; Zhao, L. Tobacco as green bioreactor for therapeutic protein production: Latest breakthroughs and optimization strategies. Plant Growth Regul. 2023. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Shen, S.; Li, Z.; Wang, H.; Wang, J.; Yang, G.; Yang, W.; Deng, L.; Gong, D.; Zhang, J. CRISPR/Cas9-Mediated Targeted Mutagenesis of Betaine Aldehyde Dehydrogenase 2 (BADH2) in Tobacco Affects 2-Acetyl-1-pyrroline. Agronomy 2024, 14, 321. https://doi.org/10.3390/agronomy14020321
Chen M, Shen S, Li Z, Wang H, Wang J, Yang G, Yang W, Deng L, Gong D, Zhang J. CRISPR/Cas9-Mediated Targeted Mutagenesis of Betaine Aldehyde Dehydrogenase 2 (BADH2) in Tobacco Affects 2-Acetyl-1-pyrroline. Agronomy. 2024; 14(2):321. https://doi.org/10.3390/agronomy14020321
Chicago/Turabian StyleChen, Mingli, Siyu Shen, Zhiyuan Li, Huashun Wang, Jin Wang, Guangyu Yang, Wenwu Yang, Lele Deng, Daping Gong, and Jianduo Zhang. 2024. "CRISPR/Cas9-Mediated Targeted Mutagenesis of Betaine Aldehyde Dehydrogenase 2 (BADH2) in Tobacco Affects 2-Acetyl-1-pyrroline" Agronomy 14, no. 2: 321. https://doi.org/10.3390/agronomy14020321
APA StyleChen, M., Shen, S., Li, Z., Wang, H., Wang, J., Yang, G., Yang, W., Deng, L., Gong, D., & Zhang, J. (2024). CRISPR/Cas9-Mediated Targeted Mutagenesis of Betaine Aldehyde Dehydrogenase 2 (BADH2) in Tobacco Affects 2-Acetyl-1-pyrroline. Agronomy, 14(2), 321. https://doi.org/10.3390/agronomy14020321