Growth and Nutritional Responses of Zucchini Squash to a Novel Consortium of Six Bacillus sp. Strains Used as a Biostimulant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Layout
- “Kompokolokytho”, +PGPR,
- “Kompokolokytho”, −PGPR,
- “ARO-800”, +PGPR,
- “ARO-800”, −PGPR.
2.2. Biostimulant Application
2.2.1. Microbial Inoculant
2.2.2. Seed Treatment with the Microbial Inoculant
2.3. Determination of Plant Biomass, Total Yield, and Fruit Quality Characteristics
2.4. Shoot Mineral Analysis
2.5. Estimation of Root Colonization by Bacillus sp.
2.6. Gas Exchange Assessment
2.7. Statistical Analysis
3. Results
3.1. Greenhouse Zucchini Crop
3.2. Open Field Zucchini Squash Crop
3.3. Root Colonization by PGPR
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef]
- Kastner, T.; Chaudhary, A.; Gingrich, S.; Marques, A.; Persson, U.M.; Bidoglio, G.; Provost, G.; Schwarzmüller, F. Global agricultural trade and land system sustainability: Implications for ecosystem carbon storage, biodiversity, and human nutrition. One Earth 2021, 4, 1425–1443. [Google Scholar] [CrossRef]
- Bailey-Serres, J.; Parker, J.E.; Ainsworth, E.A.; Oldroyd, G.E.; Schroeder, J.I. Genetic strategies for improving crop yields. Nature 2019, 575, 109–118. [Google Scholar] [CrossRef]
- Koli, P.; Bhardwaj, N.R.; Mahawer, S.K. Agrochemicals: Harmful and beneficial effects of climate changing scenarios. In Climate Change and Agricultural Ecosystems; Choudhary, K.K., Kumar, A., Singh, A.K., Eds.; Elsevier: Duxford, UK, 2019; pp. 65–94. [Google Scholar]
- Thompson, R.B.; Incrocci, L.; Van Ruijven, J.; Massa, D. Reducing contamination of water bodies from European vegetable production systems. Agric. Water Manag. 2020, 240, 106258. [Google Scholar] [CrossRef]
- Tei, F.; De Neve, S.; de Haan, J.; Kristensen, H.L. Nitrogen management of vegetable crops. Agric. Water Manag. 2020, 240, 106316. [Google Scholar] [CrossRef]
- Li, J.; van Gerrewey, T.; Geelen, D. A Meta-Analysis of Biostimulant Yield Effectiveness in Field Trials. Front. Plant Sci. 2022, 13, 836702. [Google Scholar] [CrossRef]
- du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci Hort. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating targets for sustainable intensification. Bioscience 2017, 67, 386–391. [Google Scholar] [CrossRef]
- Kalozoumis, P.; Savvas, D.; Aliferis, K.; Ntatsi, G.; Marakis, G.; Simou, E.; Tampakaki, A.; Karapanos, I. Impact of plant growth-promoting rhizobacteria inoculation and grafting on tolerance of tomato to combined water and nutrient stress assessed via metabolomics analysis. Front. Plant Sci. 2021, 12, 670236. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef]
- Sabatino, L.; Consentino, B.B.; Ntatsi, G.; La Bella, S.; Baldassano, S.; Rouphael, Y. Stand-Alone or Combinatorial Effects of Grafting and Microbial and Non-Microbial Derived Compounds on Vigour, Yield and Nutritive and Functional Quality of Greenhouse Eggplant. Plants 2022, 11, 1175. [Google Scholar] [CrossRef]
- Consentino, B.B.; Virga, G.; La Placa, G.G.; Sabatino, L.; Rouphael, Y.; Ntatsi, G.; Iapichino, G.; La Bella, S.; Mauro, R.P.; D’Anna, F.; et al. Celery (Apium graveolens L.) Performances as Subjected to Different Sources of Protein Hydrolysates. Plants 2020, 9, 1633. [Google Scholar] [CrossRef]
- Consentino, B.B.; Aprile, S.; Rouphael, Y.; Ntatsi, G.; De Pasquale, C.; Iapichino, G.; Alibrandi, P.; Sabatino, L. Application of PGPB Combined with Variable N Doses Affects Growth, Yield-Related Traits, N-Fertilizer Efficiency and Nutritional Status of Lettuce Grown under Controlled Condition. Agronomy 2022, 12, 236. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef]
- Ruzzi, M.; Aroca, R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hortic. 2015, 196, 124–134. [Google Scholar] [CrossRef]
- Kumar, A.; Prakash, A.; Johri, B.N. Bacillus as PGPR in crop ecosystem. In Bacteria in Agrobiology: Crop Ecosystems; Maheshwari, D.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 37–59. [Google Scholar]
- Gray, E.J.; Smith, D.L. Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signalling processes. Soil Biol. Biochem. 2005, 37, 395–412. [Google Scholar] [CrossRef]
- Bhattacharyya, P.N.; Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol Biotechnol. 2012, 28, 1327–1350. [Google Scholar] [CrossRef]
- Kashyap, B.K.; Solanki, M.K.; Pandey, A.K.; Prabha, S.; Kumar, P.; Kumari, B. Bacillus as plant growth promoting rhizobacteria (PGPR): A promising green agriculture technology. Plant Health Biot. Stress 2019, 2, 219–236. [Google Scholar]
- Rakshit, A.; Singh, H.B.; Sen, A. Nutrient Use Efficiency: From Basics to Advances; Springer: New Delhi, India, 2015. [Google Scholar]
- Wright, B.; Rowse, H.R.; Whipps, J.M. Application of beneficial microorganisms to seeds during drum priming. Biomed. Sci. Technol. 2003, 13, 599–614. [Google Scholar] [CrossRef]
- Pedrini, S.; Merritt, D.; Stevens, J.; Dixon, K. Seed Coating: Science or Marketing Spin? Trends Plant Sci. 2017, 22, 106–116. [Google Scholar] [CrossRef]
- Liu, J.; Wang, B.; Li, Y.; Huang, L.; Zhang, Q.; Zhu, H.; Wen, Q. RNA sequencing analysis of low temperature and low light intensity-responsive transcriptomes of zucchini (Cucurbita pepo L.). Sci. Hort. 2020, 265, 109263. [Google Scholar] [CrossRef]
- Martínez-Valdivieso, D.; Gómez, P.; Font, R.; Río-Celestino, M.D. Mineral composition and potential nutritional contribution of 34 genotypes from different summer squash morphotypes. Eur. Food Res. Technol. 2015, 240, 71–81. [Google Scholar] [CrossRef]
- Liopa-Tsakalidi, A.; Savvas, D.; Beligiannis, G.N. Modelling the Richards function using Evolutionary Algorithms on the effect of electrical conductivity of nutrient solution on zucchini growth in hydroponic culture. Simul. Model. Pract. Theory 2010, 18, 1266–1273. [Google Scholar] [CrossRef]
- Farid, I.M.; Siam, H.S.; Abbas, M.H.; Mohamed, I.; Mahmoud, S.A.; Tolba, M.; Abbas, H.H.; Yang, X.; Antoniadis, V.; Rinklebe, J.; et al. Co-composted biochar derived from rice straw and sugarcane bagasse improved soil properties, carbon balance, and zucchini growth in a sandy soil: A trial for enhancing the health of low fertile arid soils. Chemosphere 2022, 292, 133389. [Google Scholar] [CrossRef]
- Hussain, M.; Ul-Allah, S.; Farooq, S. Integrated Crop Management in Sustainable Agriculture. Agriculture 2023, 13, 954. [Google Scholar] [CrossRef]
- Contreras, J.I.; Alonso, F.; Cánovas, G.; Baeza, R. Irrigation management of greenhouse zucchini with different soil matric potential level. Agronomic and environmental effects. Agric. Water Manag. 2017, 183, 26–34. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Cardarelli, M.; Tullio, M.; Rivera, C.M.; Rea, E. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol. Fertil. Soils 2008, 44, 501–509. [Google Scholar] [CrossRef]
- Bremner, J.M. Total nitrogen. In Meth Soil Anal: Part 2 Chemical and Microbiological Properties; American Society of Agronomy, Inc.: Madison, WI, USA, 1965; Volume 9, pp. 1149–1178. [Google Scholar]
- Madika, A.; Ameh, J.B.; Machido, D.A. Isolation and Screening of Bacillus subtilis from Soil for Amylase Production. UMYU J. Microbiol. Res. UJMR 2017, 2, 82–86. [Google Scholar] [CrossRef]
- Manzum, A.A.; Al Mamun, M.A. Isolation of Bacillus spp. Bacteria from Soil for Production of Cellulase. Nepal J. Biotechnol. 2018, 6, 57–61. [Google Scholar] [CrossRef]
- Enez, B. Isolation, and Identification of Bacillus sp. from Root Soil of the Astragalus gummier Lab.: Obtaining and Characterization of α-Amylase. Adıyaman Univ. J. Sci. 2020, 10, 29–39. [Google Scholar]
- Vásquez, E.; Millones, C. Isolation, and Identification of Bacteria of Genus Bacillus from Composting Urban Solid Waste and Palm Forest in Northern Peru. Microorganisms 2023, 11, 751. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Toward a sustainable agriculture through plant biostimulants: From experimental data to practical applications. Agronomy 2020, 10, 1461. [Google Scholar] [CrossRef]
- Bucki, P.; Regdos, K.; Siwek, P.; Domagała-Świątkiewicz, I.; Kaszycki, P. Impact of soil management practices on yield quality, weed infestation and soil microbiota abundance in organic zucchini production. Sci. Hort. 2021, 281, 109989. [Google Scholar] [CrossRef]
- EU. Regulation of the European Parliament and of the Council Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. 2019. Available online: https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=OJ:L:2019:170:TOC (accessed on 18 December 2023).
- Viveros, O.M.; Jorquera, M.A.; Crowley, D.E.; Gajardo, G.; Mora, M.L. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J. Soil Sci. Plant Nutr. 2010, 10, 293–319. [Google Scholar]
- Khatoon, Z.; Huang, S.; Rafique, M.; Fakhar, A.; Kamran, M.A.; Santoyo, G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. J. Environ. Manag. 2020, 273, 111118. [Google Scholar] [CrossRef]
- Mena-Violante, H.G.; Olalde-Portugal, V. Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Sci. Hort. 2007, 113, 103–106. [Google Scholar] [CrossRef]
- Patakioutas, G.; Dimou, D.; Yfanti, P.; Karras, G.; Ntatsi, G.; Savvas, D. Root inoculation with beneficial micro-organisms as a means to control Fusarium oxysporum f. sp. lycopersici in two Greek landraces of tomato grown on perlite. Acta Hort. 2015, 1107, 277–286. [Google Scholar] [CrossRef]
- Azziz, G.; Bajsa, N.; Haghjou, T.; Taulé, C.; Valverde, Á.; Igual, J.M.; Arias, A. Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop–pasture rotations in a no-tillage regime in Uruguay. Appl. Soil Ecol. 2012, 61, 320–326. [Google Scholar] [CrossRef]
- Tak, H.I.; Ahmad, F.; Babalola, O.; Inam, A. Growth, photosynthesis and yield of chickpea as influenced by urban wastewater and different levels of phosphorus. Int. J. Plant Res. 2012, 2, 6–13. [Google Scholar] [CrossRef]
- Richardson, A.E.; Barea, J.M.; McNeill, A.M.; Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 2009, 321, 305–339. [Google Scholar] [CrossRef]
- Shah, A.; Nazari, M.; Antar, M.; Msimbira, L.A.; Naamala, J.; Lyu, D.; Rabileh, M.; Zajonc, J.; Smith, D.L. PGPR in agriculture: A sustainable approach to increasing climate change resilience. Front. Sustain. Food Syst. 2021, 5, 667546. [Google Scholar] [CrossRef]
- Larsen, S. Soil phosphorus. Adv. Agron. 1967, 19, 151–210. [Google Scholar]
- Olsen, S.R.; Watanabe, F.S. Diffusion of phosphorus as related to soil texture and plant uptake. Soil Sci. Soc. Am. J. 1963, 27, 648–653. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Growth, yield, fruit quality and nutrient uptake of hydroponically cultivated zucchini squash as affected by irrigation systems and growing seasons. Sci. Hort. 2005, 105, 177–195. [Google Scholar] [CrossRef]
- Maheshwari, D.K.; Dheeman, S. Field Crops: Sustainable Management by PGPR; Springer: Berlin/Heidelberg, Germany, 2019; p. 458. [Google Scholar]
- Bechtaoui, N.; Raklami, A.; Benidire, L.; Tahiri, A.I.; Göttfert, M.; Oufdou, K. Effects of PGPR co-inoculation on growth, phosphorus nutrition and phosphatase/phytase activities of faba bean under different phosphorus availability conditions. Pol. J. Environ. Stud. 2020, 29, 1557–1565. [Google Scholar] [CrossRef]
- Berde, C.V.; Salvi, S.P.; Kajarekar, K.V.; Joshi, S.A.; Berde, V.B. Insight into the Animal Models for Microbiome Studies; Springer: Berlin/Heidelberg, Germany, 2021; Chapter 13. [Google Scholar]
- Konietzny, U.; Greiner, R. Bacterial phytase: Potential application, in vivo function and regulation of its synthesis. Braz. J. Microbiol. 2004, 35, 12–18. [Google Scholar] [CrossRef]
- Ramirez, C.A. Exploring the Relation between Plant Phosphorus Nutrition and Growth Promotion by Bacillus Subtilis/Amyloliquefaciens Strains. Ph.D. Thesis, Auburn University, Auburn, AL, USA, 2010. [Google Scholar]
- Dobrzyński, J.; Jakubowska, Z.; Dybek, B. Potential of Bacillus pumilus to directly promote plant growth. Front. Microbiol. 2022, 13, 1069053. [Google Scholar] [CrossRef]
- Luo, L.; Zhao, C.; Wang, E.; Raza, A.; Yin, C. Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: An overview for its mechanisms. Microbiol. Res. 2022, 259, 127016. [Google Scholar] [CrossRef]
- Behera, B.C.; Singdevsachan, S.K.; Mishra, R.R.; Dutta, S.K.; Thatoi, H.N. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—A review. Biocatal. Agric. Biotechnol. 2014, 3, 97–110. [Google Scholar] [CrossRef]
- Richardson, A.E. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust. J. Plant Physiol. 2001, 28, 897–906. [Google Scholar] [CrossRef]
- Mullaney, E.J.; Ullah, A.H.J. The term phytase comprises several different classes of enzymes. Biochem. Biophys. Res. Commun. 2003, 312, 179–184. [Google Scholar]
- van Raij, B. Recomendações de Adubação e Calagem para o Estado de São Paulo; IAC: Campinas, Brazil, 1996; Volume 100, p. 285. [Google Scholar]
- Batista, C.M.; da Mota, W.F.; Pegoraro, R.F.; Gonçalves, R.E.M.; Aspiazú, I. Production of italian zucchini in response to N and P fertilization. Rev. Bras. Ciências Agrárias 2020, 15, 1–6. [Google Scholar] [CrossRef]
- Souza, F.I.D.; Grangeiro, L.C.; de Souza, V.D.F.; Gonçalvez, F.D.C.; de Oliveira, F.H.; de Jesus, P.M. X Agronomic performance of Italian zucchini as a function of phosphate fertilization. Rev. Bras. Eng. Agrícola Ambient. 2018, 22, 206–211. [Google Scholar] [CrossRef]
- Tchiaze, A.I.; Taffouo, V.D.; Fankem, H.; Kenne, M.; Baziramakenga, R.; Ekodeck, G.E.; Antoun, H. Influence of Nitrogen Sources and Plant Growth-Promoting Rhizobacteria Inoculation on Growth, Crude Fiber and Nutrient Uptake in Squash (Cucurbita moschata Duchesne ex Poir.) Plants. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 53–59. [Google Scholar] [CrossRef]
- Cordero, I.; Balaguer, L.; Rincón, A.; Pueyo, J.J. Inoculation of tomato plants with selected PGPR represents a feasible alternative to chemical fertilization under salt stress. J. Plant Nutr. Soil Sci. 2018, 181, 694–703. [Google Scholar] [CrossRef]
- Novello, G.; Cesaro, P.; Bona, E.; Massa, N.; Gosetti, F.; Scarafoni, A.; Todeschini, V.; Berta, G.; Lingua, G.; Gamalero, E. The effects of plant growth-promoting bacteria with biostimulant features on the growth of a local onion cultivar and a commercial zucchini variety. Agronomy 2021, 11, 888. [Google Scholar] [CrossRef]
- Montemurro, F.; Fiore, A.; Campanelli, G.; Tittarelli, F.; Ledda, L.; Canali, S. Organic fertilization, green manure, and vetch mulch to improve organic zucchini yield and quality. Hort. Sci. 2013, 48, 1027–1033. [Google Scholar] [CrossRef]
Parameter | GH | OF | Parameter | GH | OF |
---|---|---|---|---|---|
Clay (%) | 21.7 | 21.1 | Organic matter (%) | 3.71 | 4.62 |
Silt (%) | 30.9 | 15.3 | NO3 (mg kg−1) | 60.81 | 36.00 |
Sand (%) | 47.4 | 63.6 | NH4 (mg kg−1) | 13.95 | 2.27 |
pH | 7.68 | 7.74 | Available P (mg kg−1) | 17.42 | 24.50 |
EC (dS m−1) | 0.90 | 0.81 | Exchangeable K (mg kg−1) | 213.00 | 154.00 |
Genotype | PGPR | Shoot Fresh Weight (kg/Plant) | Shoot Dry Weight (g/Plant) | Shoot Dry Matter Content (%) |
---|---|---|---|---|
Landrace | −PGPR | 1.373 | 106.4 | 7.8 |
+PGPR | 1.699 | 130.6 | 7.8 | |
“ARO-800” | −PGPR | 1.616 | 137.8 | 8.6 |
+PGPR | 1.983 | 160.9 | 8.2 | |
Main Effects | ||||
PGPR | ||||
−PGPR | 1.494 b | 122.1 b | 8.2 | |
+PGPR | 1.841 a | 145.8 a | 8.0 | |
Genotype | ||||
Landrace | 1.536 b | 118.5 b | 7.8 b | |
“ARO-800” | 1.799 a | 149.4 a | 8.4 a | |
Significance | ||||
PGPR | ** | ** | n.s. | |
Genotype | * | *** | * | |
PGPR × genotype | n.s. | n.s. | n.s. |
Genotype | PGPR | Total Yield (kg m−2) | Mean Fruit Length (cm) | Mean Fruit Weight (g) |
---|---|---|---|---|
Landrace | −PGPR | 1.392 | 16.9 | 146.4 |
+PGPR | 1.765 | 16.7 | 149.6 | |
“ARO-800” | −PGPR | 1.991 | 16.6 | 152.4 |
+PGPR | 2.355 | 16.8 | 156.1 | |
Main Effects | ||||
PGPR | ||||
−PGPR | 1.692 b | 16.7 | 149.4 | |
+PGPR | 2.060 a | 16.8 | 152.8 | |
Genotype | ||||
Landrace | 1.578 b | 16.8 | 147.6 b | |
“ARO-800” | 2.173 a | 16.7 | 154.3 a | |
Significance | ||||
PGPR | ** | n.s. | n.s. | |
Genotype | *** | n.s. | * | |
PGPR × genotype | n.s. | n.s. | n.s. |
Genotype | PGPR | Shoot N (mg g−1 d.wt.) | Shoot P (mg g−1 d.wt.) | Shoot K (mg g−1 d.wt.) | |||
---|---|---|---|---|---|---|---|
1st SD | 2nd SD | 1st SD | 2nd SD | 1st SD | 2nd SD | ||
Landrace | −PGPR | 3.38 | 3.40 | 3.29 | 2.88 | 35.2 | 25.0 |
+PGPR | 3.58 | 3.36 | 4.14 | 3.30 | 35.4 | 28.1 | |
“ARO-800” | −PGPR | 3.52 | 3.49 | 2.73 | 3.08 | 35.4 | 29.3 |
+PGPR | 3.68 | 3.51 | 2.82 | 3.33 | 37.2 | 32.9 | |
Main Effects | |||||||
PGPR | |||||||
−PGPR | 3.45 | 3.45 | 3.01 b | 2.98 b | 35.3 | 27.1 | |
+PGPR | 3.63 | 3.44 | 3.48 a | 3.32 a | 36.3 | 30.5 | |
Genotype | |||||||
Landrace | 3.48 | 3.38 | 3.71 a | 3.09 | 35.3 | 26.5 b | |
“ARO-800” | 3.60 | 3.50 | 2.77 b | 3.20 | 36.3 | 31.1 a | |
Significance | |||||||
PGPR | n.s. | n.s. | * | * | n.s. | n.s. | |
Genotype | n.s. | n.s. | *** | n.s. | n.s. | * | |
PGPR × genotype | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Genotype | PGPR | Shoot Fresh Weight (kg/Plant) | Shoot Dry Weight (g/Plant) | Shoot Dry Matter Content (%) |
---|---|---|---|---|
Landrace | −PGPR | 1.373 | 106.4 | 7.8 |
+PGPR | 1.699 | 130.6 | 7.8 | |
“ARO-800” | −PGPR | 1.616 | 137.8 | 8.6 |
+PGPR | 1.983 | 160.9 | 8.2 | |
Main Effects | ||||
PGPR | ||||
−PGPR | 1.494 b | 122.1 b | 8.2 | |
+PGPR | 1.841 a | 145.8 a | 8.0 | |
Genotype | ||||
Landrace | 1.536 b | 118.5 b | 7.8 b | |
“ARO-800” | 1.799 a | 149.4 a | 8.4 a | |
Significance | ||||
PGPR | ** | ** | n.s. | |
Genotype | * | *** | * | |
PGPR × genotype | n.s. | n.s. | n.s. |
Genotype | PGPR | Total Yield (kg m−2) | Fruit Number Per m2 | Mean Fruit Weight (g) |
---|---|---|---|---|
Landrace | −PGPR | 1.592 | 14.00 | 113.5 |
+PGPR | 1.883 | 16.36 | 115.2 | |
“ARO-800” | −PGPR | 1.601 | 13.67 | 117.2 |
+PGPR | 2.014 | 17.00 | 118.6 | |
Main Effects | ||||
PGPR | ||||
−PGPR | 1.587 b | 13.83 b | 115.3 | |
+PGPR | 1.942 a | 16.68 a | 116.9 | |
Genotype | ||||
Landrace | 1.743 | 15.18 | 114.3 | |
“ARO-800” | 1.807 | 15.33 | 117.4 | |
Significance | ||||
PGPR | ** | * | n.s. | |
Genotype | n.s. | n.s. | n.s. | |
PGPR × genotype | n.s. | n.s. | n.s. |
Genotype | PGPR | Shoot N (mg g−1 d.wt.) | Shoot P (mg g−1 d.wt.) | Shoot K (mg g−1 d.wt.) | |||
---|---|---|---|---|---|---|---|
1st SD | 2nd SD | 1st SD | 2nd SD | 1st SD | 2nd SD | ||
Landrace | −PGPR | 4.78 | 3.40 | 4.90 b | 3.98 | 42.0 | 34.7 |
+PGPR | 5.48 | 3.66 | 6.45 a | 4.14 | 42.5 | 34.3 | |
“ARO-800” | −PGPR | 3.99 | 2.97 | 4.32 bc | 3.35 | 33.5 | 25.0 |
+PGPR | 4.08 | 3.58 | 3.69 cd | 4.49 | 36.0 | 29.3 | |
Main Effects | |||||||
PGPR | |||||||
−PGPR | 4.38 | 3.19 | 4.61 | 3.67 b | 37.8 | 29.1 | |
+PGPR | 4.78 | 3.62 | 5.07 | 4.32 a | 39.3 | 31.8 | |
Genotype | |||||||
Landrace | 5.12 | 3.53 | 5.67 | 4.06 | 42.3 a | 34.4 a | |
“ARO-800” | 4.03 | 3.28 | 4.00 | 3.92 | 34.8 b | 27.1 b | |
Significance | |||||||
PGPR | n.s. | n.s. | ns | * | n.s. | n.s. | |
Genotype | n.s. | n.s. | * | n.s. | * | * | |
PGPR × genotype | n.s. | n.s. | * | n.s. | n.s. | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savvas, D.; Magkana, P.; Yfantopoulos, D.; Kalozoumis, P.; Ntatsi, G. Growth and Nutritional Responses of Zucchini Squash to a Novel Consortium of Six Bacillus sp. Strains Used as a Biostimulant. Agronomy 2024, 14, 362. https://doi.org/10.3390/agronomy14020362
Savvas D, Magkana P, Yfantopoulos D, Kalozoumis P, Ntatsi G. Growth and Nutritional Responses of Zucchini Squash to a Novel Consortium of Six Bacillus sp. Strains Used as a Biostimulant. Agronomy. 2024; 14(2):362. https://doi.org/10.3390/agronomy14020362
Chicago/Turabian StyleSavvas, Dimitrios, Paraskevi Magkana, Dionisios Yfantopoulos, Panagiotis Kalozoumis, and Georgia Ntatsi. 2024. "Growth and Nutritional Responses of Zucchini Squash to a Novel Consortium of Six Bacillus sp. Strains Used as a Biostimulant" Agronomy 14, no. 2: 362. https://doi.org/10.3390/agronomy14020362
APA StyleSavvas, D., Magkana, P., Yfantopoulos, D., Kalozoumis, P., & Ntatsi, G. (2024). Growth and Nutritional Responses of Zucchini Squash to a Novel Consortium of Six Bacillus sp. Strains Used as a Biostimulant. Agronomy, 14(2), 362. https://doi.org/10.3390/agronomy14020362