Combined Passive Heating Systems in Mediterranean, Low-Cost, Greenhouse Cucumber Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greenhouses and Experiments
2.2. Measurements
3. Results
3.1. Cucumber 2014/15
3.1.1. Greenhouse Microclimate
Substrate and Air Temperature, and Air Humidity
Crop and Screen Temperature, and Water Condensation
Solar Radiation and air CO2 Concentration
3.1.2. Crop Growth and Productivity
3.2. Cucumber 2015/16
3.2.1. Greenhouse Microclimate
Substrate, Soil, and Crop Temperature, and Air Humidity
Cover Temperature and Water Condensation
Solar Radiation and Air CO2 Concentration
3.2.2. Crop Growth and Productivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pardossi, A.; Tognoni, F.; Incrocci, L. Mediterranean greenhouse technology. Chron. Horticult. 2004, 44, 28–34. [Google Scholar]
- Bartzanas, T.; Tchamitchian, M.; Kittas, C. Influence of the heating method on greenhouse microclimate and energy consumption. Biosyst. Eng. 2005, 91, 487–499. [Google Scholar] [CrossRef]
- Bonachela, S.; Granados, M.R.; Lopez, J.C.; Hernandez, J.; Magan, J.J.; Baeza, E.J. How plastic mulches affect the thermal and radiative microclimate in an unheated low-cost greenhouse. Agric. Forest Meteorol. 2012, 152, 65–72. [Google Scholar] [CrossRef]
- Hernández, J.; Bonachela, S.; Granados, M.R.; Lopez, J.C.; Magan, J.J.; Montero, J.I. Microclimate and agronomical effects of internal impermeable screens in an unheated Mediterranean greenhouse. Biosyst. Eng. 2017, 163, 66–77. [Google Scholar] [CrossRef]
- López-Martínez, A.; Molina-Aiz, F.D.; Moreno-Teruel, M.d.l.Á.; Peña-Fernández, A.; Baptista, F.J.F.; Valera-Martínez, D.L. Low Tunnels inside Mediterranean Greenhouses: Effects on Air/Soil Temperature and Humidity. Agronomy 2021, 11, 1973. [Google Scholar] [CrossRef]
- Baptista, F.J.F. Modelling the Climate in Unheated Tomato Greenhouses and Predicting Botrytis cinerea Infection. Ph.D. Thesis, Universidade de Evora, Evora, Portugal, 2008. [Google Scholar]
- Bakker, J.C.; Van Holsteijn, G.P.A. Screens. In Greenhouse Climate Control, an Integrated Approach; Bakker, J.C., Bot, G.P.A., Challa, H., Van de Braak, N.J., Eds.; Wageningen Press: Wageningen, The Netherlands, 1995; pp. 185–195. [Google Scholar]
- Blom, T.J.; Ingratta, F.J. The use of polyethylene film as greenhouse glazing in North America. Acta Hortic. 1985, 170, 69–80. [Google Scholar] [CrossRef]
- Giacomelli, G.A.; Roberts, W.J. Greenhouse Covering Systems. HortTechnology 1993, 3, 50–58. [Google Scholar] [CrossRef]
- Papadopoulos, A.P.; Hao, X. Effects of greenhouse covers on seedless cucumber growth, productivity, and energy use. Sci. Hortic. 1997, 68, 113–123. [Google Scholar] [CrossRef]
- Cemek, B.; Demira, Y.; Uzun, S.; Ceyhan, V. The effects of different greenhouse covering materials on energy requirement, growth and yield of aubergine. Energy 2006, 31, 1780–1788. [Google Scholar] [CrossRef]
- Montero, J.I.; Castilla, N.; Gutiérrez de Ravé, E.; Bretones, F. Climate under plastic in the Almería area. Acta Hortic. 1985, 170, 227–234. [Google Scholar] [CrossRef]
- Van der Ploed, A.; Heuvelink, E. Influence of sub-optimal temperatures on tomato growth and yield. J. Hortic. Sci. Biotechnol. 2005, 80, 652–659. [Google Scholar]
- Wittwer, S.H.; Castilla, N. Protected cultivation of horticultural crops worldwide. HortTechnology 1995, 5, 6–23. [Google Scholar] [CrossRef]
- Dieleman, J.A.; Kempkes, F.L.K. Energy screens in tomato: Determining the optimal opening strategy. Acta Hortic. 2006, 718, 599–606. [Google Scholar] [CrossRef]
- Medrano, E.; Alonso, J.F.; Sánchez-Guerrero, M.C.; Lorenzo, P. Incorporation of a model to predict crop transpiration in commercial irrigation equipment as a control method for water supply to soilless horticultural crops. Acta Hortic. 2008, 801, 1325–1330. [Google Scholar] [CrossRef]
- Lorenzo, P.; Sánchez-Guerrero, M.C.; Medrano, E.; Soriano, T.; Castilla, N. Responses of cucumbers to mulching in an unheated plastic greenhouse. J. Hortic. Sci. Technol. 2005, 80, 11–17. [Google Scholar] [CrossRef]
- Nisen, A.; Grafiadellis, M.; Jiménez, R.; La Malfa, G.; Martínez-García, P.F.; Monteiro, A.; Verlodt, H.; Villele, O.; Zabeltitz, C.H.; Denis, J.C.; et al. Cultures Protegees en Climat Mediterraneen; FAO: Rome, Italy, 1988. [Google Scholar]
- Toki, T.; Ogiwara, S.; Aoki, H. Effect of varying night temperature on the growth and yield of cucumber. Acta Hortic. 1978, 87, 233–237. [Google Scholar] [CrossRef]
- Daskalaki, A.; Burrage, S.W. The effect of root zone temperature on the growth and root anatomy of cucumber (Cucumis sativus L.). Acta Hortic. 1998, 449, 569–574. [Google Scholar] [CrossRef]
- Gruda, N.; Balliu, A.; Sallaku, G. Crop technologies: Cucumber. In Good Agricultural Practices for Greenhouse Vegetable Production in the South East European Countries—Principles for Sustainable Intensification of Smallholder Farms. Plant Production and Protection Paper 230; Baudoin, W., Nersisyan, A., Shamilov, A., Hodder, A., Gutierrez, D., de Pascale, S., Nicola, S., Gruda, N., Urban, L., Tanny, J., Eds.; FAO: Rome, Italy, 2017; pp. 287–300. [Google Scholar]
- Li, X.; Gruda, N.; Dong, J.; Duan, Z. Greenhouse soil warmed by capillary network and its effect on the growth of cucumber. Acta Hortic. 2020, 1296, 149–158. [Google Scholar] [CrossRef]
- Li, D.; Dong, J.; Gruda, N.S.; Li, X.; Duan, Z. Elevated root-zone temperature promotes the growth and alleviates the photosynthetic acclimation of cucumber plants exposed to elevated [CO2]. Environ. Exp. Bot. 2022, 194, 104694. [Google Scholar] [CrossRef]
- Miao, Y.; Ren, J.; Zhang, Y.; Chen, X.; Qi, M.; Li, T.; Zhang, G.; Liu, Y. Effect of low root-zone temperature on photosynthesis, root structure and mineral element absorption of tomato seedlings. Sci. Hortic. 2023, 315, 111956. [Google Scholar]
- Bai, L.; Deng, H.; Zhang, X.; Yu, X.; Li, Y. Gibberellin is involved in inhibition of cucumber growth and nitrogen uptake at suboptimal root-zone temperatures. PLoS ONE 2016, 11, e0156188. [Google Scholar] [CrossRef] [PubMed]
- Soriano, T.; Montero, J.I.; Sánchez-Guerrero, M.C.; Medrano, E.; Antón, A.; Hernández, J.; Morales, M.I.; Castilla, N. A study of direct solar radiation transmission in asymmetrical multi-span greenhouses using scale models and simulation models. Biosyst. Eng. 2004, 88, 243–253. [Google Scholar] [CrossRef]
- Sánchez-Guerrero, M.C.; Lorenzo, P.; Medrano, E.; Castilla, N.; Soriano, M.T.; Baille, A. Effect of variable CO2 enrichment on greenhouse production in mild winter climates. Agric. For. Meteorol. 2005, 132, 244–252. [Google Scholar] [CrossRef]
- Pieters, J.G.; Deltour, J.; Debruyckere, M. Light transmission through condensation on glass and polyethylene. Agric. For. Meteorol. 1997, 85, 51–62. [Google Scholar] [CrossRef]
- Pollet, I.V.; Pieters, J.G. Condensation and radiation transmittance of greenhouse transparent materials. Part 3: Results for glass plates and plastic films. J. Agric. Eng. 2000, 77, 419–428. [Google Scholar] [CrossRef]
Cover | BM | FS | MS | ||||
---|---|---|---|---|---|---|---|
External Film | Internal Film | ||||||
Cucumber 2014/15 | τSW | τLW | τSW | τLW | τSW | τSW | τSW |
NM + FS | 90 | 10 | - | - | - | 94 | - |
BM + FS | 90 | 10 | - | - | 1 | 94 | - |
BM + MS | 90 | 10 | - | - | 1 | - | 87 |
Cucumber 2015/16 | |||||||
BM + FS | 90 | 10 | - | - | 1 | 94 | - |
BM + MS | 90 | 10 | - | - | 1 | - | 87 |
BM + DL | 92 | 14 | 92 | 14 | 1 | - | - |
2014/2015 | 2015/2016 | |||||
---|---|---|---|---|---|---|
BM + FS | BM + MS | NM + FS | BM + FS | BM + MS | BM + DL | |
Daily soil temperature (°C) | 18.5 | 19.3 | 17.8 | 20.7 | 21.1 | 21.0 |
Daily coir temperature (°C) | 16.4 | 16.9 | 15.4 | 18.2 | 18.4 | 18.2 |
Daily air temperature (°C) | 15.1 | 14.4 | 15.3 | 16.2 | 15.9 | 16.1 |
Night-time | 10.8 | 10.6 | 11.3 | 12.7 | 12.6 | 12.8 |
Daytime | 20.8 | 19.4 | 20.6 | 20.9 | 20.3 | 20.5 |
Daily crop temperature (°C) | 14.8 | 14.4 | 15.6 | 16.5 | 16.1 | 16.1 |
Night-time | 10.8 | 10.7 | 11.9 | 12.6 | 12.7 | 12.8 |
Daytime | 20.2 | 19.5 | 20.6 | 21.9 | 20.7 | 20.7 |
Night-time lower surface screen temperature (°C) | 10.2 | 10.3 | 11.3 | - | - | - |
Night-time lower surface cover temperature (°C) | - | - | - | 9.0 | 9.3 | 11.2 |
Daily relative air humidity (%) | 84.6 | 80.4 | 84.7 | 83.9 | 82.4 | 85.7 |
Night-time | 88.8 | 85.5 | 88.6 | 88.6 | 87.4 | 91.8 |
Daytime | 79.7 | 73.8 | 79.3 | 77.5 | 75.7 | 77.6 |
Daytime [CO2] (μmol mol−1) | 316 | 344 | 329 | 370 | 367 | 353 |
2014/15 | Biomass (g m−2) | LAI | ||
---|---|---|---|---|
Shoot | Vegetative | Generative | (m−2 m−2) | |
BM + FS | 752.1 a * | 257.3 a | 494.9 a | 3.5 a |
BM + MS | 786.1 a | 293.8 a | 492.3 a | 3.6 a |
NM + FS | 716.3 a | 273.1 a | 443.2 a | 3.7 a |
2015/16 | ||||
BM + FS | 648.0 a | 233.5 a | 414.6 a | 3.2 a |
BM + MS | 670.7 a | 254.1 a | 416.6 a | 3.5 a |
BM + DL | 658.5 a | 220.1 a | 438.4 b | 3.5 a |
2014/15 | Yield (kg m−2) | Marketable Yield Components | ||||
---|---|---|---|---|---|---|
Total | Marketable | Non-Marketable | Fruit Number (Fruit m−2) | Fruit Weight (g Fruit−1) | ||
Total | First Class | |||||
BM + FS | 11.9 a * | 10.4 b | 9.9 b | 1.5 b | 26.9 ab | 397 a |
BM + MS | 11.8 a | 10.9 b | 10.3 b | 0.9 a | 28.6 b | 381 b |
NM + FS | 10.4 a | 8.7 a | 8.1 a | 1.7 b | 24.0 a | 364 a |
2015/16 | ||||||
BM + FS | 11.4 a | 10.7 a | 10.1 a | 0.7 a | 25.5 a | 417 a |
BM + MS | 11.7 a | 11.2 a | 10.6 b | 0.5 a | 28.6 a | 419 a |
BM + DL | 11.4 a | 10.9 a | 10.1 a | 0.5 a | 26.3 a | 407 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonachela, S.; Granados, M.R.; Hernández, J.; López, J.C.; Magán, J.J. Combined Passive Heating Systems in Mediterranean, Low-Cost, Greenhouse Cucumber Crops. Agronomy 2024, 14, 374. https://doi.org/10.3390/agronomy14020374
Bonachela S, Granados MR, Hernández J, López JC, Magán JJ. Combined Passive Heating Systems in Mediterranean, Low-Cost, Greenhouse Cucumber Crops. Agronomy. 2024; 14(2):374. https://doi.org/10.3390/agronomy14020374
Chicago/Turabian StyleBonachela, Santiago, María Rosa Granados, Joaquín Hernández, Juan Carlos López, and Juan José Magán. 2024. "Combined Passive Heating Systems in Mediterranean, Low-Cost, Greenhouse Cucumber Crops" Agronomy 14, no. 2: 374. https://doi.org/10.3390/agronomy14020374
APA StyleBonachela, S., Granados, M. R., Hernández, J., López, J. C., & Magán, J. J. (2024). Combined Passive Heating Systems in Mediterranean, Low-Cost, Greenhouse Cucumber Crops. Agronomy, 14(2), 374. https://doi.org/10.3390/agronomy14020374