Technology for Production of Wheat Doubled Haploid via Maize Pollen Induction—Updated Review
Abstract
:1. Introduction
2. Origin, Principle, and Advantages of Wheat × Maize System
3. Research Progress of the Wheat × Maize System
3.1. Genotype Effects
3.2. Environmental Factors
3.3. Treatment of Wheat Spikes and Timing of Pollination
3.4. Hormone Treatment
3.5. Embryo Rescue
3.6. Doubling Treatment
4. Stability of Doubled Haploids
5. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Zheng, Y.; Duan, L.; Wang, M.; Wang, H.; Li, H.; Li, R.; Zhang, H. Artificial Selection Trend of Wheat Varieties Released in Huang-Huai-Hai Region in China Evaluated Using DUS Testing Characteristics. Front. Plant Sci. 2022, 13, 898102. [Google Scholar] [CrossRef]
- State Council of the People’s Republic of China. Regulations on Protection of New Varieties of Plants; China Agricultural Publishing House: Beijing, China, 1997; pp. 4–5.
- Standing Committee of the National People’s Congress. People’s Republic of China Seed Law; Law Press: Beijing, China, 2015; pp. 4–7. [Google Scholar]
- Wang, L.; Chang, L.; Li, H.; Ge, L.; Xin, A.; Gao, S.; Ji, W.; Sun, H.; Zhao, C. Method of Wheat Seeds Purity Testing by Molecular Markers. J. Triticeae Crops 2009, 29, 1–8. [Google Scholar]
- GB 4404.1-2008; Seed of Food Crops-Part 1: Cereals. Standards Press of China: Beijing, China, 2008.
- Prigge, V.; Xu, X.; Li, L.; Babu, R.; Chen, S.; Atlin, G.N.; Melchinger, A.E. New Insights into the Genetics of in Vivo Induction of Maternal Haploids, the Backbone of Doubled Haploid Technology in Maize. Genetics 2012, 190, 781–793. [Google Scholar] [CrossRef]
- Dunwell, J.M. Haploids in flowering plants: Origins and exploitation. Plant Biotechnol. J. 2010, 8, 377–424. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, W.; Inagaki, M.; Tawkaz, S.; Baum, M.; Ginkel, M.V. Recent advances and application of doubled haploids in wheat breeding. Afr. J. Biotechnol. 2012, 11, 15484–15492. [Google Scholar] [CrossRef]
- Blakeslee, A.F.; Belling, J.; Farnham, M.E.; Bergner, A.D. A Haploid Mutant in the Jimson Weed, “Datura Stramonium”. Science 1922, 55, 646–647. [Google Scholar] [CrossRef] [PubMed]
- Guha, S.; Maheshwari, S.C. In vitro Production of Embryos from Anthers of Datura. Nature 1964, 204, 497. [Google Scholar] [CrossRef]
- Niizeki, H.; Oono, K. Induction of Haploid Rice Plant from Anther Culture. Proc. Jpn. Acad. 1968, 44, 554–557. [Google Scholar] [CrossRef]
- Ho, K.M.; Jones, G.E. Mingo Barley. Can. J. Plant Sci. 1980, 60, 279–280. [Google Scholar] [CrossRef]
- Kalinowska, K.; Chamas, S.; Unkel, K.; Demidov, D.; Lermontova, I.; Dresselhaus, T.; Kumlehn, J.; Dunemann, F.; Houben, A. State-of-the-art and novel developments of in vivo haploid technologies. Theor. Appl. Genet. 2019, 132, 593–605. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Britt, A.B.; Tripathi, L.; Sharma, S.; Upadhyaya, H.D.; Ortiz, R. Haploids: Contraints and opportunities in plant breeding. Biotechnol. Adv. 2015, 33, 812–829. [Google Scholar] [CrossRef] [PubMed]
- Zargar, M.; Zavarykina, T.; Voronov, S.; Pronina, I.; Bayat, M. The Recent Development in Technologies for Attaining Doubled Haploid Plants In Vivo. Agriculture 2022, 12, 1595. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, M.Y.; Polle, E.A.; Konzak, C.F. Highly Efficient Doubled-Haploid Production in Wheat (Triticum aestivum L.) via Induced Microspore Embryogenesis. Crop Sci. 2002, 42, 686–692. [Google Scholar] [CrossRef]
- Tawkaz, S. Response of Some Wheat Genotypes to Anther Culture Technique for Doubled Haploid Production. Master’s Thesis, Sudan Academy of Science, Khartoum, Sudan, 2011. [Google Scholar]
- Ding, M.; Zhao, H.; Gu, J.; Li, H.; Liu, K.; Yang, M.; Li, S. Research and Breeding Application Progress of the Technique of Producing Double Haploid of Wheat by Wide Hybridization between Wheat and Maize. Agric. Sci. Technol. 2017, 18, 2202–2208. [Google Scholar] [CrossRef]
- Liu, H.; Wang, K.; Jia, Z.; Gong, Q.; Lin, Z.; Du, L.; Pei, X.; Ye, X. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J. Exp. Bot. 2019, 71, 1337–1349. [Google Scholar] [CrossRef]
- Tang, H.; Wang, K.; Zhang, S.; Han, Z.; Chang, Y.; Qiu, Y.; Yu, M.; Du, L.; Ye, X. A fast technique for visual screening of wheat haploids generated from TaMTL-edited mutants carrying anthocyanin markers. Plant Commun. 2023, 4, 100569. [Google Scholar] [CrossRef]
- Kumar Niroula, R.; Prasad Bimb, H. Overview of Wheat × Maize System of Crosses for Dihaploid Induction in Wheat. World Appl. Sci. J. 2009, 7, 1037–1045. [Google Scholar]
- Ding, M.; Yang, Z.; Cui, Y.; Li, H.; Liu, K.; Zhao, H.; Yang, M.; Gu, J.; Li, S. A high-yield and multi-resistant new wheat variety bred using diploid technology—Yunmai 110. J. Triticeae Crops 2022, 42, 1589. [Google Scholar]
- Zhao, G. Study on Chinese Wheat Planting Regionalization (II). J. Triticeae Crops 2010, 30, 886–895. [Google Scholar]
- National Bureau of Statistics of China, China Statistical Yearbook 2023; China Statistics Press: Beijing, China, 2023. Available online: https://www.stats.gov.cn/sj/ndsj/2023/indexch.htm (accessed on 5 January 2024).
- Clausen, R.E.; Mann, M.C. Inheritance in Nicotiana Tabacum: V. The Occurrence of Haploid Plants in Interspecific Progenies. Proc. Natl. Acad. Sci. USA 1924, 10, 121–124. [Google Scholar] [CrossRef]
- Gaines, E.F.; Aase, H.C. A haploid wheat plant. Am. J. Bot. 1926, 13, 373–385. [Google Scholar] [CrossRef]
- Barclay, I.R. High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature 1975, 256, 410–411. [Google Scholar] [CrossRef]
- Laurie, D.A.; Bennett, M.D. Wheat × maize hybridization. Can. J. Genet. Cytol. 1986, 28, 313–316. [Google Scholar] [CrossRef]
- Laurie, D.A. Factors Affecting Fertilization Frequency in Crosses of Triticum aestivum cv. ‘Highbury’ × Zea mays cv. ‘Seneca 60’. Plant Breed. 1989, 103, 133–140. [Google Scholar] [CrossRef]
- Laurie, D.A.; Snape, J.W. The agronomic performance of wheat doubled haploid lines derived from wheat × maize crosses. Theor. Appl. Genet. 1990, 79, 813–816. [Google Scholar] [CrossRef] [PubMed]
- Laurie, D.A.; Reymondie, S. High Frequencies of Fertilization and Haploid Seedling Production in Crosses Between Commercial Hexaploid Wheat Varieties and Maize. Plant Breed. 1991, 106, 182–189. [Google Scholar] [CrossRef]
- Campbell, A.W.; Griffin, W.B.; Burritt, D.J.; Conner, A.J. Production of wheat doubled haploids via wide crosses in New Zealand wheat. N. Z. J. Crop Hortic. Sci. 2000, 28, 185–194. [Google Scholar] [CrossRef]
- Jauhar, P.P.; Xu, S.S.; Baenziger, P.S. Haploidy in Cultivated Wheats: Induction and Utility in Basic and Applied Research. Crop Sci. 2009, 49, 737–755. [Google Scholar] [CrossRef]
- Niroula, R.K.; Bimb, H.P.; Thapa, D.B.; Sah, B.P.; Nayak, S. Production of haploid wheat plants from wheat (Triticum aestivum L.) × maize (Zea mays L.) cross system. Himal. J. Sci. 2007, 4, 65–69. [Google Scholar] [CrossRef]
- Moradi, P.; Haghnazari, A.; Bozorgipour, R.; Sharma, B. Development of yellow rust resistant doubled haploid lines of wheat through wheat × maize crosses. Int. J. Plant Prod. 2009, 3, 77–88. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Abdelkhalik, S.; Shahzad, A.; Gu, J.; Yang, Z.; Ding, M.; Liu, K.; Zhao, H.; Yang, M. Development of thermo-photo sensitive genic male sterile lines in wheat using doubled haploid breeding. BMC Plant Biol. 2020, 20, 246. [Google Scholar] [CrossRef]
- Bennett, M.D.; Finch, R.A.; Barclay, I.R. The time rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma 1976, 54, 175–200. [Google Scholar] [CrossRef]
- Michel, B. Replication fork arrest and DNA recombination. Trends Biochem. Sci. 2000, 25, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Mochida, K.; Tsujimoto, H.; Sasakuma, T. Confocal analysis of chromosome behavior in wheat × maize zygotes. Genome 2004, 47, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Ravi, M.; Chan, S.W.L. Haploid plants produced by centromere-mediated genome elimination. Nature 2010, 464, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Sanei, M.; Pickering, R.; Kumke, K.; Nasuda, S.; Houben, A. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc. Natl. Acad. Sci. USA 2011, 108, E498–E505. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhu, Q.; Wang, H.; Xiao, J.; Xing, L.; Chen, P.; Jin, W.; Wang, X.-E. Competitive Expression of Endogenous Wheat CENH3 May Lead to Suppression of Alien ZmCENH3 in Transgenic Wheat × Maize Hybrids. J. Genet. Genom. 2015, 42, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, C.; Chaudhary, H.K.; Relan, A.; Manoj, N.V.; Singh, K.; Sharma, P. Haploid induction efficiency of diverse Himalayan maize (Zea mays) and cogon grass (Imperata cylindrica) gene pools in hexaploid and tetraploid wheats and triticale following chromosome elimination-mediated approach of doubled haploidy breeding. Cereal Res. Commun. 2020, 48, 539–545. [Google Scholar] [CrossRef]
- Gurtay, G.; Kutlu, I.; Avci, S. Production of haploids in ancient, local and modern wheat by anther culture and maize pollination. Acta Biol. Cracoviensia. Ser. Bot. 2021, 63, 43–53. [Google Scholar] [CrossRef]
- Laurie, D.A.; Bennett, M.D. Cytological evidence for fertilization in hexaploid wheat × sorghum crosses. Plant Breed. 1988, 100, 73–82. [Google Scholar] [CrossRef]
- Laurie, D.A. The frequency of fertilization in wheat × pearl millet crosses. Genome 1989, 32, 1063–1067. [Google Scholar] [CrossRef]
- Ushiyama, T.; Shimizu, T.; Kuwabara, T. High frequency of haploid production of wheat through intergeneric cross with teosinte. Jpn. J. Breed. 1991, 41, 353–357. [Google Scholar] [CrossRef]
- Riera-Lizarazu, O.; Mujeeb-Kazi, A. Polyhaploid production in the Triticeae: Wheat × Tripsacum crosses. Crop Sci. 1993, 33, 973–976. [Google Scholar] [CrossRef]
- Mochida, K.; Tsujimoto, H. Production of Wheat Doubled Haploids by Pollination With Job’s Tears (Coix lachryma-jobi L.). J. Hered. 2001, 92, 81–83. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, H.K.; Sethi, G.S.; Singh, S.; Pratap, A.; Sharma, S. Efficient haploid induction in wheat by using pollen of Imperata cylindrica. Plant Breed. 2005, 124, 96–98. [Google Scholar] [CrossRef]
- Kishii, M.; Singh, S. Haploid Production Technology: Fasten Wheat Breeding to Meet Future Food Security. In Accelerated Plant Breeding, Volume 1: Cereal Crops; Gosal, S.S., Wani, S.H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 139–165. [Google Scholar]
- Ohkawa, Y.; Suenaga, K.; Ogawa, T. Production of haploid wheat plants through pollination of sorghum pollen. Jpn. J. Breed. 1992, 42, 891–894. [Google Scholar] [CrossRef]
- Inagaki, M.; Mujeeb-Kazi, A. Comparison of polyhaploid production frequencies in crosses of hexaploid wheat with maize, pearl millet and sorghum. Jpn. J. Breed. 1995, 45, 157–161. [Google Scholar] [CrossRef]
- Inagaki, M.N.; Hash, C.T. Production of haploids in bread wheat, durum wheat and hexaploid triticale crossed with pearl millet. Plant Breed. 1998, 117, 485–487. [Google Scholar] [CrossRef]
- Ishii, T.; Ueda, T.; Tanaka, H.; Tsujimoto, H. Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: Pearl millet chromosome dynamics in hybrid embryo cells. Chromosome Res. 2010, 18, 821–831. [Google Scholar] [CrossRef]
- Suenaga, K.; Morshedi, A.R.; Darvey, N.L. Evaluation of teosinte lines as pollen parents for wheat haploid production. Cereal Res. Commun. 1998, 26, 119–125. [Google Scholar] [CrossRef]
- Li, D.W.; Qio, J.W.; Ouyang, P.; Yao, Q.X.; Dawei, L.D.; Jiwen, Q.; Ping, O.; Qingxiao, Y. High frequncies of fertilization and embryo formation in hexaploid wheat × Tripsacum dactyloides crosses. Theor. Appl. Genet. 1996, 92, 1103–1107. [Google Scholar] [CrossRef]
- MacDonald, G.E. Cogongrass (Imperata cylindrica)—Biology, Ecology, and Management. Crit. Rev. Plant Sci. 2004, 23, 367–380. [Google Scholar] [CrossRef]
- Mayel, A.; Chaudhary, H.K.; Badiyal, A.; Jamwal, N.S. Comparative Pollination Efficiency of Freshly Harvested Pollen of Imperata cylindrica and Zea mays for Haploid Induction in Bread Wheat. Cereal Res. Commun. 2016, 44, 162–171. [Google Scholar] [CrossRef]
- Kapoor, C.; Chaudhary, H.K.; Sharma, P.; Relan, A.; Manoj, N.V.; Singh, K.; Sood, V.K. In vivo haploid induction potential of Himalayan maize (Zea mays) and cogon grass (Imperata cylindrica) gene pools in different segregational cycles of intra and inter-generic crosses of wheat. Plant Genet. Resour. Charact. Util. 2021, 19, 522–529. [Google Scholar] [CrossRef]
- Dhiman, R.; Rana, V.; Chaudhary, H. Himalayan maize—Potential pollen source for maize mediated system of chromosome elimination approach in DH breeding of bread wheat. Cereal Res. Commun. 2012, 40, 246–255. [Google Scholar] [CrossRef]
- Khokhar, M.I.; Razaq, A.; Iqbal, J.; Anwar, M.J.; Iqbal, M.Z.; Rehman, S.U. Choice of maize genotype affects wheat haploid seed and success of embryo rescue. RADS J. Biol. Res. Appl. Sci. 2019, 10, 1–5. [Google Scholar] [CrossRef]
- Rather, S.A.; Chaudhary, H.K.; Kaila, V. Influence of different wheat and Imperata cylindrica genetic backgrounds on haploid induction efficiency in wheat doubled haploid breeding. Czech J. Genet. Plant Breed. 2014, 50, 195–200. [Google Scholar] [CrossRef]
- Verma, V.; Bains, N.S.; Mangat, G.S.; Nanda, G.S.; Gosal, S.S.; Singh, K. Maize genotypes show striking differences for induction and regeneration of haploid wheat embryos in the wheat × maize system. Crop Sci. 1999, 39, 1722–1727. [Google Scholar] [CrossRef]
- Brazauskas, G.; Pašakinskienė, I.; Ruzgas, V. Improved approaches in wheat × maize crossing for wheat doubled haploid production. Biologija 2005, 51, 15–18. [Google Scholar]
- Jeberson, M.S.; Chaudhary, H.K.; Chahota, R.K.; Wani, S.H. Doubled haploid production in advanced back cross generations and molecular cytogenetic characterization of rye chromatin in triticale wheat derived doubled haploid lines. Biocell 2021, 45, 1651–1659. [Google Scholar] [CrossRef]
- Sharma, S.; Sethi, G.S.; Chaudhary, H.K. Influence of winter and spring wheat genetic backgrounds on haploid induction parameters and trait correlations in the wheat × maize system. Euphytica 2005, 144, 199–205. [Google Scholar] [CrossRef]
- Singh, A.K.; Zhang, P.; Dong, C.; Li, J.; Trethowan, R.; Sharp, P. Molecular cytogenetic characterization of stem rust and stripe rust resistance in wheat-Thinopyrum bessarabicum–derived doubled haploid lines. Mol. Breed. 2019, 39, 125. [Google Scholar] [CrossRef]
- Tehseen, M.M.; Tonk, F.A.; Tosun, M.; Randhawa, H.S.; Kurtulus, E.; Ozseven, I.; Akin, B.; Zulfuagaoglu, O.N.; Nazari, K. QTL mapping of adult plant resistance to stripe rust in a doubled haploid wheat population. Front. Genet. 2022, 13, 900558. [Google Scholar] [CrossRef]
- Laurie, D.A.; Bennett, M.D. The production of haploid wheat plants from wheat × maize crosses. Theor. Appl. Genet. 1988, 76, 393–397. [Google Scholar] [CrossRef]
- Suenaga, K.; Tamaki, M.; Nakajima, K. Influence of wheat (Triticum aestivum) and maize (Zea mays) genotypes on haploid wheat production in crosses between wheat and maize. Bull. Natl. Inst. Agrobiol. Resour. 1991, 6, 131–142. Available online: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5624105 (accessed on 5 January 2024).
- Suenaga, K.; Nakajima, K. Efficient production of haploid wheat (Triticum aestivum) through crosses between Japanese wheat and maize (Zea mays). Plant Cell Rep. 1989, 8, 263–266. [Google Scholar] [CrossRef]
- Singh, S.; Sethi, G.S.; Chaudhary, H.K. Differential responsiveness of winter and spring wheat genotypes to maize-mediated production of haploids. Cereal Res. Commun. 2004, 32, 201–207. [Google Scholar] [CrossRef]
- Avcı, S.; Kutlu, İ. Comparison of orchard-grass and sweet maize for doubled haploid plant production via wide hybridization in bread wheat. Turk. J. Agric.-Food Sci. Technol. 2020, 8, 1548–1552. [Google Scholar] [CrossRef]
- Niroula, R.K.; Thapa, D.B. Response of wheat genotypes to maize mediated polyhaploid production. Am.-Eurasian J. Agron. 2009, 2, 156–161. Available online: https://www.researchgate.net/publication/230642921 (accessed on 5 January 2024).
- Gu, J.; Liu, K.; Li, S.; Tian, Y.; Yang, H.; Yang, M. Study on the in vitro culture of cut plants in wheat haploid embryo induction by a wheat × maize cross. Front. Agric. China 2008, 2, 391–395. [Google Scholar] [CrossRef]
- Khan, M.A.; Ahmad, J. In vitro wheat haploid embryo production by wheat × maize cross system under different environmental conditions. Pak. J. Agric. Sci. 2011, 48, 49–53. [Google Scholar]
- Khan, H.; Bhardwaj, S.C.; Gangwar, O.P.; Prasad, P.; Rathore, R. Efficiency of double haploid production in wheat through wide hybridization and embryo rescue. Indian J. Genet. Plant Breed. 2017, 77, 428–430. [Google Scholar] [CrossRef]
- Hussain, M.; Niaz, M.; Iqbal, M.; Iftikhar, T.; Ahmad, J. Emasculation techniques and detached tiller culture in wheat × maize crosses. J. Agric. Res 2012, 50, 1–19. [Google Scholar]
- Martins-Lopes, P.F.; Guedes-Pinto, H.; Pinto-Carnide, O.; Snape, J. The effect of spikelet position on the success frequencies of wheat haploid production using the maize cross system. Euphytica 2001, 121, 265–271. [Google Scholar] [CrossRef]
- Mahato, A.; Chaudhary, H.K. Auxin induced haploid induction in wide crosses of durum wheat. Cereal Res. Commun. 2019, 47, 552–565. [Google Scholar] [CrossRef]
- Shubham; Sandal, S.S.; Walia, P.; Upadhyay, V. Application of Auxins in Haploid Embryo Induction in Hexaploidy Wheat. Int. J. Environ. Clim. Change 2023, 13, 251–255. [Google Scholar] [CrossRef]
- Juzoń, K.; Warchoł, M.; Dziurka, K.; Czyczyło-Mysza, I.M.; Marcińska, I.; Skrzypek, E. The effect of 2,4-dichlorophenoxyacetic acid on the production of oat (Avena sativa L.) doubled haploid lines through wide hybridization. PeerJ 2022, 10, e12854. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, N.; Sirohi, M.; Khanna, V.K. Influence of age of the embryo and method of hormone application on haploid embryo formation in wheat × maize crosses. In Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004; p. 771. [Google Scholar]
- Usha, P.; Khanna, V.K. Effect of hormonal treatments on haploid formation and in vitro haploid regeneration in wheat × maize system. Int. J. Plant Sci. 2017, 12, 234–239. [Google Scholar]
- Kumlehn, J.; Stein, N. Biotechnological Approaches to Barley Improvement; Springer: Berlin/Heidelberg, Germany, 2014; Volume 69. [Google Scholar]
- Slama-Ayed, O.; Bouhaouel, I.; Ayed, S.; De Buyser, J.; Picard, E.; Amara, H.S. Efficiency of three haplomethods in durum wheat (Triticum turgidum subsp. durum Desf.): Isolated microspore culture, gynogenesis and wheat × maize crosses. Czech J. Genet. Plant Breed. 2019, 55, 101–109. [Google Scholar] [CrossRef]
- Cherkaoui, S.; Lamsaouri, O.; Chlyah, A.; Chlyah, H. Durum wheat × maize crosses for haploid wheat production: Influence of parental genotypes and various experimental factors. Plant Breed. 2000, 119, 31–36. [Google Scholar] [CrossRef]
- Goyal, P. Improving the Efficiency of Detached Tiller Culture and Plant Regeneration in Wheat × Maize System of Doubled Haploid Production in Wheat. Ph.D. Thesis, Punjab Agricultural University, Ludhiana, India, 2016. [Google Scholar]
- Chen, X. A Study on the Increasing Frequences of Plant Production During Embryo Culture in Crosses Between Wheat and Maize. Sci. Agricutura Sin. 1996, 29, 29–32. [Google Scholar]
- Hooghvorst, I.; Nogués, S. Chromosome doubling methods in doubled haploid and haploid inducer-mediated genome-editing systems in major crops. Plant Cell Rep. 2021, 40, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, W.; Tawkaz, S.; Inagaki, M.; Picard, E.; Baum, M. Methods and Applications of Doubled Haploid Technology in Wheat Breeding; ICARDA: Aleppo, Syria, 2013; Volume 114, p. 5055. [Google Scholar]
- INAGAKI, M. Chromosome doubling of the wheat haploids obtained from crosses with Hordeum bulbosum L. Jpn. J. Breed. 1985, 35, 193–195. [Google Scholar] [CrossRef]
- Khan, M.A.; Shaukat, S.; Ahmad, J.; Kashif, M.; Khan, A.S.; Iqbal, M.Z. Use of intergeneric cross for production of doubled haploid wheat (Triticum aestivum L.). J. Sci. Technol. Dev. 2012, 31, 295–300. [Google Scholar]
- Niu, Z.; Jiang, A.; Abu Hammad, W.; Oladzadabbasabadi, A.; Xu, S.S.; Mergoum, M.; Elias, E.M. Review of doubled haploid production in durum and common wheat through wheat × maize hybridization. Plant Breed. 2014, 133, 313–320. [Google Scholar] [CrossRef]
- Sharma, P.; Chaudhary, H.K.; Manoj, N.V.; Kumar, P. New protocol for colchicine induced efficient doubled haploidy in haploid regenerants of tetraploid and hexaploid wheats at in vitro level. Cereal Res. Commun. 2019, 47, 356–368. [Google Scholar] [CrossRef]
- Comeau, A.; Nadeau, P.; Plourde, A.; Simard, R.; Maës, O.; Kelly, S.; Harper, L.; Lettre, J.; Landry, B.; St-Pierre, C.-A. Media for the in ovulo culture of proembryos of wheat and wheat-derived interspecific hybrids or haploids. Plant Sci. 1992, 81, 117–125. [Google Scholar] [CrossRef]
- Kammholz, S.J.; Grams, R.A.; Banks, P.M.; Sutherland, M.W. Segregation of glutenins in wheat × maize-derived doubled haploid wheat populations. Aust. J. Agric. Res. 1998, 49, 1253–1260. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, L.; Sun, J. Molecular evidence on maize specific DNA fragment transferred into wheat through sexual hybridization. Sci. China Ser. C Life Sci. 1998, 41, 126–132. [Google Scholar] [CrossRef]
- Brazauskas, G.; Pasakinskiene, I.; Jahoor, A. AFLP analysis indicates no introgression of maize DNA in wheat × maize crosses. Plant Breed. 2004, 123, 117–121. [Google Scholar] [CrossRef]
- Schmid, T.E.; Xu, W.; Adler, I.-D. Detection of aneuploidy by multicolor FISH in mouse sperm after in vivo treatment with acrylamide, colchicine, diazepam or thiabendazole. Mutagenesis 1999, 14, 173–179. [Google Scholar] [CrossRef]
- Sharma, C.B.S.R. Chemically induced aneuploidy in higher plants. Mutagenesis 1990, 5, 105–126. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, S.S.; Dhesi, J.S.; Gill, B.S.; Svendsgaard, D. Evaluation of 10 chemicals for aneuploidy induction in the hexaploid wheat assay. Mutagenesis 1991, 6, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Suenaga, K.; Nakajima, K. Variation in doubled haploid plants of wheat obtained through wheat (Triticum aestivum) × maize (Zea mays) crosses. Plant Breed. 1993, 111, 120–124. [Google Scholar] [CrossRef]
- Shrestha, S.; Koo, D.-H.; Evers, B.; Wu, S.; Walkowiak, S.; Hucl, P.; Pozniak, C.; Fritz, A.; Poland, J. Wheat doubled haploids have a marked prevalence of chromosomal aberrations. Plant Genome 2023, 16, e20309. [Google Scholar] [CrossRef]
- Lv, J.; Yu, K.; Wei, J.; Gui, H.; Liu, C.; Liang, D.; Wang, Y.; Zhou, H.; Carlin, R.; Rich, R.; et al. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat. Biotechnol. 2020, 38, 1397–1401. [Google Scholar] [CrossRef]
Pollen Source | First Reported | Rates of Haploid Embryos (%) | Average Rate of Haploid Embryos (%) | Rates of Haploid Plantlets (%) | Average Rate of Haploid Plantlets (%) | Wheat Genotype Dependence | References |
---|---|---|---|---|---|---|---|
Maize | [28] | 1.6–60.7 | 17.0 | 16.3–86.6 | 58.0 | weak | [35,36,60,61,62] |
Sorghum | [45] | 0–42.1 | 18.0 | 56.4–63.3 | 59.9 | strong | [52,53] |
Pearl millet | [46] | 0.3–39.4 | 18.1 | 44.6–72.2 | 53.1 | weak | [53,54,55] |
Teosinte | [47] | 12.5–57.5 | 40.5 | 34.6–90.3 | 72.2 | weak | [47,56] |
Tripsacum | [48] | 5.0–59.0 | 22.9 | 69.3–83.3 | 78.5 | weak | [48,57] |
Job’s tears | [49] | 10.6 | 10.6 | 26.1 | 26.1 | unknown | [49] |
Imperata cylindrica | [50] | 0–64.7 | 27.4 | 18.1–84.9 | 48.9 | weak | [50,59,60,63] |
Ae. caudata | [51] | No data | No data | No data | No data | unknown | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, X.; Peng, J.; Fu, D. Technology for Production of Wheat Doubled Haploid via Maize Pollen Induction—Updated Review. Agronomy 2024, 14, 375. https://doi.org/10.3390/agronomy14020375
Guan X, Peng J, Fu D. Technology for Production of Wheat Doubled Haploid via Maize Pollen Induction—Updated Review. Agronomy. 2024; 14(2):375. https://doi.org/10.3390/agronomy14020375
Chicago/Turabian StyleGuan, Xizhen, Junhua Peng, and Daolin Fu. 2024. "Technology for Production of Wheat Doubled Haploid via Maize Pollen Induction—Updated Review" Agronomy 14, no. 2: 375. https://doi.org/10.3390/agronomy14020375
APA StyleGuan, X., Peng, J., & Fu, D. (2024). Technology for Production of Wheat Doubled Haploid via Maize Pollen Induction—Updated Review. Agronomy, 14(2), 375. https://doi.org/10.3390/agronomy14020375