Trichopria anastrephae: A Promising Neotropical-Native Parasitoid for Drosophila suzukii Control
Abstract
:1. Introduction
2. Material and Methods
2.1. Insects Rearing
2.2. Experimental Setup
2.3. Statistical Analysis
3. Results
3.1. Parasitoid Performance and Reproductive Success
3.2. Host Preference and Switching Indexes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pimentel, D.; McNair, S.; Janecka, J.; Wightman, J.; Simmonds, C.; O’Connell, C.; Wong, E.; Russel, L.; Zern, J.; Aquino, T.; et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 2001, 84, 1–20. [Google Scholar] [CrossRef]
- Perrings, C.; Dehnen-Schmutz, K.; Touza, J.; Williamson, M. How to manage biological invasions under globalization. Trends Ecol. Evol. 2005, 20, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.H.; Simberloff, D.; Kuris, A.M.; Carey, J.R. Eradication revisited: Dealing with exotic species. Trends Ecol. Evol. 2000, 15, 316–320. [Google Scholar] [CrossRef]
- Hulme, P.E.; Pysek, P.; Nentwig, W.; Vila, M. Will threat of biological invasions unite the European Union? Science 2009, 324, 40–41. [Google Scholar] [CrossRef] [PubMed]
- Simberloff, D. We can eliminate invasions or live with them. Successful management projects. Biol. Invasions 2009, 11, 149–157. [Google Scholar] [CrossRef]
- Asplen, M.K.; Anfora, G.; Biondi, A.; Choi, D.S.; Chu, D.; Daane, K.M.; Gibert, P.; Gutierrez, A.P.; Hoelmer, K.A.; Hutchison, W.D.; et al. Invasion biology of spotted-wing Drosophila (Drosophila suzukii): A global perspective and future priorities. J. Pest Sci. 2015, 88, 469–494. [Google Scholar] [CrossRef]
- Garcia, F.R.M.; Lasa, R.; Funes, C.F.; Buzzetti, K. Drosophila suzukii management in Latin America: Current status and perspectives. J. Econ. Entomol. 2022, 115, 1008–1023. [Google Scholar] [CrossRef]
- Bieńkowski, A.O.; Orlova-Bienkowskaja, M.J. Invasive agricultural pest Drosophila suzukii (Diptera, Drosophilidae) appeared in the Russian Caucasus. Insects 2020, 11, 826. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Y.; Fan, L.; Wang, W. Surveys of Drosophila suzukii (Diptera: Drosophilidae) and its host fruits and associated parasitoids in northeastern China. Insects 2022, 13, 390. [Google Scholar] [CrossRef]
- Kirschbaum, D.S.; Funes, C.F.; Buonocore-Biancheri, M.J.; Suárez, L.; Ovruski, S.M. The biology and ecology of Drosophila suzukii (Diptera: Drosophilidae). In Drosophila Suzukii Management; Garcia, F.R.M., Ed.; Springer Nature: Cham, Switzerland, 2020; pp. 41–91. [Google Scholar]
- Lee, J.C.; Dreves, A.J.; Cave, A.M.; Kawai, S.; Isaacs, R.; Miller, J.C.; Van Timmeren, S.; Bruck, D.J. Infestation of wild and ornamental non-crop fruits by Drosophila suzukii (Diptera: Drosophilidae). Ann. Entomol. Soc. Am. 2015, 108, 117–129. [Google Scholar] [CrossRef]
- Kenis, M.; Tonina, L.; Eschen, R.; van der Sluis, B.; Sancassani, M.; Mori, N.; Haye, T.; Helsen, H. Non-crop plants used as hosts by Drosophila suzukii in Europe. J. Pest Sci. 2016, 89, 735–748. [Google Scholar] [CrossRef]
- Bal, H.K.; Adams, C.; Grieshop, M. Evaluation of of-season potential breeding sources for spotted wing drosophila (Drosophila suzukii Matsumura) in Michigan. J. Econ. Entomol. 2017, 110, 2466–2470. [Google Scholar] [CrossRef]
- Grassi, A.; Gottardello, A.; Dalton, D.T.; Tait, G.; Rendon, D.; Ioriatti, C.; Gibeaut, D.; Rossi Stacconi, M.V.; Walton, V.M. Seasonal reproductive biology of Drosophila suzukii (Diptera: Drosophilidae) in temperate climates. Environ. Entomol. 2018, 47, 166–174. [Google Scholar] [CrossRef]
- Atallah, J.; Teixeira, L.; Salazar, R.; Zaragoza, G.; Kopp, A. The making of a pest: The evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc. R. Soc. B 2014, 281, 20132840. [Google Scholar] [CrossRef]
- De Ros, G.; Grassi, A.; Pantezzi, T. Recent Trends in the Economic Impact of Drosophila suzukii. In Drosophila suzukii Management; Garcia, F.R.M., Ed.; Springer Nature: Cham, Switzerland, 2020; pp. 11–28. [Google Scholar]
- Buonocore-Biancheri, M.J.; Kirschbaum, D.S.; Suárez, L.; Ponssa, M.D.; Ovruski, S.M. Drosophila suzukii in Argentina: State of the art and further perspectives. Neotrop. Entomol. 2024, 53, 1–17. [Google Scholar] [CrossRef]
- Little, C.M.; Chapman, T.W.; Kirk, H.N. Plasticity is key to success of Drosophila suzukii (Diptera: Drosophilidae) invasion. J. Insect Sci. 2020, 20, 1049–1055. [Google Scholar] [CrossRef]
- De la Vega, G.J.; Corley, J.C. Drosophila suzukii (Diptera: Drosophilidae) distribution modelling improves our understanding of pest range limits. Int. J. Pest. Manag. 2019, 65, 217–227. [Google Scholar] [CrossRef]
- Funes, C.F.; Escobar, L.I.; Dadda, G.E.; Villagrán, M.E.; Olivera, G.I.; Gastaminza, G.G.; Kirschbaum, D.S. Occurrence and population fluctuations of Drosophila suzukii (Diptera: Drosophilidae) in blueberry crops of subtropical Argentina. Acta Hortic. 2023, 1357, 257–264. [Google Scholar] [CrossRef]
- SAGP (Secretaría de Agricultura, Ganadería y Pesca). Frutos de Hueso: Cereza, Informe Sectorial del Ministerio de Economía, República Argentina; Secretaría de Agricultura, Ganadería y Pesca de la República Argentina: Buenos Aires, Argentina, 2022. Available online: https://www.argentina.gob.ar/sites/default/fles/sagyp/informe_sectorial_2021_cereza.pdf (accessed on 5 January 2024).
- Liburd, O.E.; Rhodes, E.M. Management of Drosophila suzukii in berry crops. In Drosophila suzukii Management; Garcia, F.R.M., Ed.; Springer Nature: Cham, Switzerland, 2020; pp. 241–253. [Google Scholar]
- Donatelli, M.; Magarey, R.D.; Bregaglio, S.; Willocquet, L.; Whish, J.P.; Savary, S. Modelling the impacts of pests and diseases on agricultural systems. Agric. Syst. 2017, 155, 213–224. [Google Scholar] [CrossRef]
- Schmidt, J.M.; Whitehouse, T.S.; Green, K.; Krehenwinkel, H.; Schmidt-Jeffris, R.; Sial, A.A. Local and landscape-scale heterogeneity shape spotted wing drosophila (Drosophila suzukii) activity and natural enemy abundance: Implications for trophic interactions. Agric. Ecosyst. Environ. 2019, 272, 86–94. [Google Scholar] [CrossRef]
- Vasseur, C.; Joannon, A.; Aviron, S.; Burel, F.; Meynard, J.-M.; Baudry, J. The cropping systems mosaic: How does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agric. Ecosyst. Environ. 2013, 166, 3–14. [Google Scholar] [CrossRef]
- Buonocore-Biancheri, M.J.; Suárez, L.; Kirschbaum, D.S.; Garcia, F.R.M.; Funes, C.F.; Ovruski, S.M. Natural parasitism influences biological control strategies against both global invasive pests Ceratitis capitata (Diptera: Tephritidae) and Drosophila suzukii (Diptera: Drosophilidae), and the Neotropical-native pest Anastrepha fraterculus (Diptera: Tephritidae). Environ. Entomol. 2022, 51, 1120–1135. [Google Scholar] [CrossRef]
- Buonocore-Biancheri, M.J.; Wang, X.G.; Núñez-Campero, S.R.; Suárez, L.; Schliserman, P.; Ponssa, M.D.; Kirschbaum, D.S.; Garcia, F.R.M.; Funes, C.F.; Ovruski, S.M. The population dynamics and parasitism rates of Ceratitis capitata, Anastrepha fraterculus, and Drosophila suzukii in non-crop hosts: Implications for the management of pest fruit flies. Insects 2024, 15, 61. [Google Scholar] [CrossRef]
- Wang, X.G.; Daane, K.M.; Hoelmer, K.A.; Lee, J.C. Biological control of spotted-wing drosophila: An update on promising agents. In Drosophila suzukii Management; Garcia, F.R.M., Ed.; Springer Nature: Cham, Switzerland, 2020; pp. 143–168. [Google Scholar]
- Abram, P.K.; Wang, X.G.; Hueppelsheuser, T.; Franklin, M.T.; Daane, K.M.; Lee, J.C.; Lue, C.H.; Girod, P.; Carrillo, J.; Wong, W.H.L.; et al. A coordinated sampling and identification methodology for larval parasitoids of spotted-wing drosophila. J. Econ. Entomol. 2022, 115, 922–942. [Google Scholar] [CrossRef]
- Kacsoh, B.Z.; Schlenke, T.A. High hemocyte load is associated with increased resistance against parasitoids in Drosophila suzukii, a relative of D. melanogaster. PLoS ONE 2012, 7, e34721. [Google Scholar] [CrossRef]
- Poyet, M.; Havard, S.; Prevost, G.; Chabrerie, O.; Doury, G.; Gibert, P.; Eslin, P. Resistance of Drosophila suzukii to the larval parasitoids Leptopilina heterotoma and Asobara japonica is related to haemocyte load. Physiol. Entomol. 2013, 38, 45–53. [Google Scholar] [CrossRef]
- Chabert, S.; Allemand, R.; Poyet, M.; Eslin, P.; Gibert, P. Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol. Control 2012, 63, 40–47. [Google Scholar] [CrossRef]
- Mazzetto, F.; Marchetti, E.; Amiresmaeili, N.; Sacco, D.; Francati, S.; Jucker, C.; Dindo, M.L.; Lupi, D.; Tavella, L. Drosophila parasitoids in northern Italy and their potential to attack the exotic pest Drosophila suzukii. J. Pest Sci. 2016, 89, 837–850. [Google Scholar] [CrossRef]
- Kaçar, G.; Wang, X.G.; Biondi, A.; Daane, K.M. Linear functional response by two pupal Drosophila parasitoids foraging within single or multiple patch environments. PLoS ONE 2017, 12, e0183525. [Google Scholar] [CrossRef]
- Buonocore-Biancheri, M.J.; Núñez-Campero, S.R.; Suárez, L.; Ponssa, M.D.; Kirschbaum, D.S.; Garcia, F.R.M.; Ovruski, S.M. Implications of the niche partitioning and coexistence of two resident parasitoids for Drosophila suzukii management in non-crop areas. Insects 2023, 14, 222. [Google Scholar] [CrossRef]
- Garcia, F.R.M. Basis for area-wide management of Drosophila suzukii in Latin America. In Drosophila suzukii Management; Garcia, F.R.M., Ed.; Springer Nature: Cham, Switzerland, 2020; pp. 93–110. [Google Scholar]
- da Costa Oliveira, D.; Stupp, P.; Martins, L.N.; Wollmann, J.; Santos Geisler, F.C.; Cardoso, T.D.N.; Bernardi, D.; Garcia, F.R.M. Interspecific competition in Trichopria anastrephae parasitism (Hymenoptera: Diapriidae) and Pachycrepoideus vindemmiae (Hymenoptera: Pteromalidae) parasitism on pupae of Drosophila suzukii (Diptera: Drosophilidae). Phytoparasitica 2021, 49, 207–215. [Google Scholar] [CrossRef]
- Wang, X.G.; Messing, R.H. The ectoparasitic pupal parasitoid, Pachycrepoideus vindemmiae (Hymenoptera: Pteromalidae), attacks other primary tephritid fruit fly parasitoids: Host expansion and non-target impact. Biol. Control 2004, 31, 227–236. [Google Scholar] [CrossRef]
- Benoist, R.; Capdevielle-Dulac, C.; Chantre, C.; Jeannette, R.; Calatayud, P.A.; Drezen, J.M.; Dupas, S.; Le Rouzic, A.; Le Ru, B.; Moreau, L.; et al. Quantitative trait loci involved in the reproductive success of a parasitoid wasp. Mol. Ecol. 2020, 29, 3476–3493. [Google Scholar] [CrossRef]
- Pannebakker, B.A.; Garrido, N.R.T.; Zwaan, B.J.; Van Alphen, J.J.M. Geographic variation in host-selection behaviour in the Drosophila parasitoid Leptopilina clavipes. Entomol. Exp. Appl. 2008, 127, 48–51. [Google Scholar] [CrossRef]
- Kruitwagen, A.; Beukeboom, L.W.; Wertheim, B.; van Doorn, G.S. Evolution of parasitoid host preference and performance in response to an invasive host acting as evolutionary trap. Ecol. Evol. 2022, 12, e9030. [Google Scholar] [CrossRef]
- Kruitwagen, A.; Wertheim, B.; Beukeboom, L.W. Artificial selection for non-reproductive host killing in a native parasitoid on the invasive pest, Drosophila suzukii. Evol. Appl. 2021, 14, 1993–2011. [Google Scholar] [CrossRef]
- Rezaei, M.; Talebi, A.A.; Tazerouni, Z. Parasitoids: The role of host preference and host specificity in biological control. In Parasitoids Biology, Behavior and Ecology; Donnelly, E., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2019; pp. 1–35. [Google Scholar]
- Biondi, A.; Wang, X.G.; Daane, K.M. Host preference of three Asian larval parasitoids to closely related Drosophila species: Implications for biological control of Drosophila suzukii. J. Pest Sci. 2021, 94, 273–283. [Google Scholar] [CrossRef]
- Murdoch, W.W. Switching in general predators: Experiments on predator specificity and stability of prey population. Ecol. Monogr. 1969, 39, 335–354. [Google Scholar] [CrossRef]
- Rosenheim, J.A.; Hoy, M.A. Confidence intervals for the Abbott’s formula correction of bioassay data for control response. J. Econ. Entomol. 1989, 82, 331–335. [Google Scholar] [CrossRef]
- Sherratt, T.N.; Harvey, I.F. Frequency-dependent food selection by arthropods: A review. Biol. J. Linn. Soc. 1993, 48, 167–186. [Google Scholar] [CrossRef]
- Fellowes, M.D.; van Alphen, J.J.; Jervis, M.A. Foraging behaviour. In Insects as Natural Enemies: A Practical Perspectives; Jervis, M.A., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 1–71. [Google Scholar] [CrossRef]
- Chesson, P.L. Variable predators and switching behavior. Theor. Popul. Biol. 1984, 26, 11–26. [Google Scholar] [CrossRef]
- Murdoch, W.W.; Marks, J.R. Predation by coccinellid beetles: Experiments on switching. Ecology 1973, 54, 160–167. [Google Scholar] [CrossRef]
- R Core Team. The R Project for Statistical Computing; R. Foundat Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 28 December 2023).
- Vieira, J.G.A.; Krüger, A.P.; Scheuneumann, T.; Morais, M.C.; Speriogin, H.S.; Garcia, F.R.M.; Nava, D.E.; Bernardi, D. Some aspects of the biology of Trichopria anastrephae (Hymenoptera: Diapriidae), a resident parasitoid attacking Drosophila suzukii (Diptera: Drosophilidae) in Brazil. J. Econ. Entomol. 2019, 113, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Vieira, J.G.A.; Krüger, A.P.; Scheunemann, T.; Garcez, A.M.; Morais, M.C.; Garcia, F.R.M.; Nava, D.E.; Bernardi, D. Effect of temperature on the development time and lifetime fecundity of Trichopria anastrephae parasitizing Drosophila suzukii. J. Appl. Entomol. 2020, 114, 857–865. [Google Scholar] [CrossRef]
- Krüger, A.P.; Scheunemann, T.; Vieira, J.G.A.; Morais, M.C.; Bernardi, D.; Nava, D.E.; Garcia, F.R.M. Effects of extrinsic, intraspecific competition and host deprivation on the biology of Trichopria anastrephae (Hymenoptera: Diapriidae) reared on Drosophila suzukii (Diptera: Drosophilidae). Neotrop. Entomol. 2019, 48, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Krüger, A.P.; Garcez, A.M.; Scheunemann, T.; Bernardi, D.; Nava, D.E.; Garcia, F.R.M. Reproductive biology of Trichopria anastrephae Lima (Hymenoptera: Diapriidae), a biological control agent of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). Neotrop. Entomol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Krüger, A.P.; Garcez, A.M.; Scheunemann, T.; Bernardi, D.; Nava, D.E.; Garcia, F.R.M. Trichopria anastrephae as a biological control agent of Drosophila suzukii in strawberries. Neotrop. Entomol. 2024. [Google Scholar] [CrossRef]
- Wang, X.G.; Kaçar, G.; Biondi, A.; Daane, K.M. Life-history and host preference of the pupal parasitoid Trichopria drosophilae of spotted wing drosophila. BioControl 2016, 61, 387–397. [Google Scholar] [CrossRef]
- Wang, X.G.; Kaçar, G.; Biondi, A.; Daane, K.M. Foraging efficiency and outcomes of interactions of two pupal parasitoids attacking the invasive spotted wing drosophila. Biol. Control 2016, 96, 64–71. [Google Scholar] [CrossRef]
- Gonzalez-Cabrera, J.; Moreno-Carrillo, G.; Sanchez-Gonzalez, J.A. Single and combined release of Trichopria drosophilae (Hymenoptera: Diapriidae) to control Drosophila suzukii (Diptera: Drosophilidae). Neotrop. Entomol. 2019, 48, 949–956. [Google Scholar] [CrossRef]
- Rossi Stacconi, M.V.; Grassi, A.; Ioriatti, C.; Anfora, G. Augmentative releases of Trichopria drosophilae for the suppression of early season Drosophila suzukii populations. BioControl 2019, 64, 9–19. [Google Scholar] [CrossRef]
- Wolf, S.; Boycheva-Woltering, S.; Romeis, J.; Collatz, J. Trichopria drosophilae parasitizes Drosophila suzukii in seven common non-crop fruits. J. Pest Sci. 2020, 93, 627–638. [Google Scholar] [CrossRef]
- Wolf, S.; Barmettler, E.; Eisenring, M.; Romeis, J.; Collatz, J. Host searching and host preference of resident pupal parasitoids of Drosophila suzukii in the invaded regions. Pest. Manag. Sci. 2021, 77, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Cai, P.; Lin, J.; Liu, X.; Ao, G.; Zhang, Q.; Xia, H.; Yang, J.; Ji, Q. Life history and host preference of Trichopria drosophilae from Southern China, one of the effective pupal parasitoids on the Drosophila species. Insects 2020, 11, 103. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.G.; Serrato, M.A.; Son, Y.; Walton, V.M.; Hogg, B.N.; Daane, K.M. Thermal performance of two indigenous pupal parasitoids attacking the invasive Drosophila suzukii (Diptera: Drosophilidae). Environ. Entomol. 2018, 47, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Rossi Stacconi, M.V.R.; Buffington, M.; Daane, K.M.; Dalton, D.T.; Grassi, A.; Kaçar, G.; Miller, B.; Miller, J.C.; Baser, N.; Ioriatti, C.; et al. Host stage preference, efficacy and fecundity of parasitoids attacking Drosophila suzukii in newly invaded areas. Biol. Control 2015, 84, 28–35. [Google Scholar] [CrossRef]
- De la Vega, G.J.; Triñanes, F.; González, A. Effect of Drosophila suzukii on blueberry VOCs: Chemical cues for a pupal parasitoid, Trichopria anastrephae. J. Chem. Ecol. 2021, 47, 1014–1024. [Google Scholar] [CrossRef]
- Woltz, M.J.; Lee, J.C. Pupation behavior and larval and pupal biocontrol of Drosophila suzukii in the field. Biol. Control 2017, 110, 62–69. [Google Scholar] [CrossRef]
- Bezerra Da Silva, C.S.; Park, K.R.; Blood, R.A.; Walton, V.M. Intraspecific competition affects the pupation behavior of Spotted Wing Drosophila (Drosophila suzukii). Sci. Rep. 2019, 9, 7775. [Google Scholar] [CrossRef]
- Gabarra, R.; Riudavets, J.; Rodríguez, G.A.; Pujade-Villar, J.; Arno, J. Prospects for the biological control of Drosophila suzukii . BioControl 2015, 60, 331–339. [Google Scholar] [CrossRef]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests. Annu. Rev. Entomol. 2000, 45, 175–201. [Google Scholar] [CrossRef] [PubMed]
- Haye, T.; Girod, P.; Cuthbertson, A.G.S.; Wang, X.G.; Daane, K.M.; Hoelmer, K.A.; Baroffio, C.; Zhang, J.P.; Desneux, N. Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world. J. Pest Sci. 2016, 89, 643–651. [Google Scholar] [CrossRef]
- Bianchi, F.J.J.A.; Booij, C.J.H.; Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B Biol. Sci. 2006, 273, 1715–1727. [Google Scholar] [CrossRef] [PubMed]
Parasitoid Lineages/Host Species | Parasitoid Females Offspring Percentage (Median and Range); (Treatments: Drosophila suzukii:Drosophila melanogaster Puparia Ratios) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
No-Choice Tests | Choice Tests | |||||||||
50:0/0:50 | 45:5 | 40:10 | 35:15 | 30:20 | 25:25 | 20:30 | 15:35 | 10:40 | 5:45 | |
TaDs − Ds | 47 (44−62) a | 57 (43−67) a | 57 (42−67) a | 51 (38−77) a | 60 (46−80) ab | 60 (50−100) ac | 65 (25−67) a | 67 (33–100) a | 50 (0–100) a | 100 (0–100) a |
TaDm − Ds | 56 (46–61) a | 58 (46−70) a | 58 (46−70) a | 62 (46−73) a | 65 (46−80) a | 67 (40−80) a | 58 (40–80) a | 67 (50–67) a | 50 (33–100) a | 25 (0–100) a |
TaDs − Dm | 52 (45–60) a | 0 (0−100) a | 58 (0−100) a | 58 (0−80) a | 55 (0−72) ab | 60 (0−67) ac | 59 (0–67) a | 59 (54–72) a | 56 (40–75) a | 59 (47–64) a |
TaDm − Dm | 53 (43–61) a | 58 (0−100) a | 50 (0−100) a | 50 (0−80) a | 53 (0–67) b | 50 (0−75) bc | 51 (0–66) a | 64 (59–75) a | 50 (37–65) a | 58 (48–70) a |
Statistical results: | ||||||||||
H= | 3.91 | 2.86 | 1.10 | 2.13 | 7.76 | 9.46 | 2.26 | 5.41 | 1.52 | 1.51 |
df= | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
n= | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 |
p= | 0.270 | 0.410 | 0.780 | 0.550 | 0.050 * | 0.020 * | 0.520 | 0.140 | 0.680 | 0.680 |
Observed (Obs)/ Expected (Exp) Parasitism | Switching Tests: Drosophila suzukii/Drosophila melanogaster Puparia Ratios (Median and Range) | |||||||
---|---|---|---|---|---|---|---|---|
45:5 | 40:10 | 35:15 | 30:20 | 20:30 | 15:35 | 10:40 | 5:45 | |
TaDs − Obs | 2.5 (1.3–4.3) a | 1.6 (0.9–1.8) a | 1.3 (1.0−2.0) a | 0.8 (0.6–1.2) b | 0.6 (0.4–0.8) a | 0.5 (0.2–0.7) a | 0.3 (0.2–0.8) a | 0.3 (0.2–0.7) a |
TaDm − Obs | 1.8 (1.2–3.8) a | 2.1 (1.0–3.3) a | 1.3 (0.9−2.7) a | 0.9 (0.8–1.3) b | 0.6 (0.4–0.8) a | 0.5 (0.3–0.7) a | 0.4 (0.2–0.8) a | 0.3 (0.3–0.6) a |
TaDs − Exp | −1.7 (−1.5–−3.5) b | −3.0 (−2.0–−6.3) b | −7.0 (−6.0−35.0) a | 2.5 (1.9–3.0) a | 0.5 (0.5–0.6) a | 0.3 (0.2–0.3) b | 0.2 (0.1–0.2) b | 0.1 (0.06–0.1) b |
TaDm − Exp | −1.6 (−0.8–−3.1) b | −2.7 (−1.1–−5.0) b | −2.5 (−2.3−35.0) a | 2.6 (2.1–6.0) a | 0.5 (0.4–0.6) a | 0.3 (0.2–0.3) b | 0.2 (0.1–0.2) b | 0.1 (0.05–0.1) b |
Statistical results: | ||||||||
H= | 29.676 | 29.657 | 1.443 | 29.519 | 2.043 | 20.544 | 18.177 | 29.796 |
df= | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
n= | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 |
p= | <0.001 * | <0.001 * | =0.695 | <0.001 * | =0.564 | <0.001 * | <0.001 * | <0.001 * |
Obs/Exp results: | Obs > Exp | Obs > Exp | Obs = Exp | Obs < Exp | Obs = Exp | Obs > Exp | Obs > Exp | Obs > Exp |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buonocore-Biancheri, M.J.; Suárez, L.d.C.; Núñez-Campero, S.R.; Ponssa, M.D.; Mello Garcia, F.R.; Kirschbaum, D.S.; Ovruski, S.M. Trichopria anastrephae: A Promising Neotropical-Native Parasitoid for Drosophila suzukii Control. Agronomy 2024, 14, 520. https://doi.org/10.3390/agronomy14030520
Buonocore-Biancheri MJ, Suárez LdC, Núñez-Campero SR, Ponssa MD, Mello Garcia FR, Kirschbaum DS, Ovruski SM. Trichopria anastrephae: A Promising Neotropical-Native Parasitoid for Drosophila suzukii Control. Agronomy. 2024; 14(3):520. https://doi.org/10.3390/agronomy14030520
Chicago/Turabian StyleBuonocore-Biancheri, María Josefina, Lorena del Carmen Suárez, Segundo Ricardo Núñez-Campero, Marcos Darío Ponssa, Flávio Roberto Mello Garcia, Daniel Santiago Kirschbaum, and Sergio Marcelo Ovruski. 2024. "Trichopria anastrephae: A Promising Neotropical-Native Parasitoid for Drosophila suzukii Control" Agronomy 14, no. 3: 520. https://doi.org/10.3390/agronomy14030520
APA StyleBuonocore-Biancheri, M. J., Suárez, L. d. C., Núñez-Campero, S. R., Ponssa, M. D., Mello Garcia, F. R., Kirschbaum, D. S., & Ovruski, S. M. (2024). Trichopria anastrephae: A Promising Neotropical-Native Parasitoid for Drosophila suzukii Control. Agronomy, 14(3), 520. https://doi.org/10.3390/agronomy14030520