Oliviculture and Viticulture Crop Byproducts Use for Peat Partial Substitution for Carnation Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Media Preparation
2.2. Growing Media Properties
2.3. Plant Growth, Physiology and Mineral Analysis
2.4. Total Phenolics, Total Flavonoids and Antioxidant Activity
2.5. Lipid Peroxidation and Hydrogen Peroxide Content
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chilosi, G.; Esposito, A.; Castellani, F.; Stanzione, V.; Aleandri, M.P.; Dell’Unto, D.; Tomassini, A.; Vannini, A.; Altieri, R. Characterization and Use of Olive Mill Waste Compost as Peat Surrogate in Substrate for Cultivation of Photinia Potted Plants: Assessment of Growth Performance and In Vitro Suppressiveness. Waste Biomass Valoriz. 2018, 9, 919–928. [Google Scholar] [CrossRef]
- International Olive Oil Council. 2023. Available online: https://www.internationaloliveoil.org/the-world-of-olive-oil/# (accessed on 15 November 2023).
- Fraga, H.; Moriondo, M.; Leolini, L.; Santos, J.A. Mediterranean olive orchards under climate change: A review of future impacts and adaptation strategies. Agronomy 2021, 11, 56. [Google Scholar] [CrossRef]
- International Organization of Vine and Wine. State of the World Vine and Wine Sector 2021; International Organisation of Vine and Wine Intergovernmental Organisation: Dijon, France, 2022; pp. 1–19. [Google Scholar]
- Santillán, D.; Sotés, V.; Iglesias, A.; Garrote, L. Adapting viticulture to climate change in the Mediterranean region: Evaluations accounting for spatial differences in the producers-climate interactions. BIO Web Conf. 2019, 12, 01001. [Google Scholar] [CrossRef]
- Morales, A.B.; Bustamante, M.A.; Marhuenda-Egea, F.C.; Moral, R.; Ros, M.; Pascual, J.A. Agri-food sludge management using different co-composting strategies: Study of the added value of the composts obtained. J. Clean. Prod. 2016, 121, 186–197. [Google Scholar] [CrossRef]
- Al Afif, R.; Pfeifer, C. Biochemical methane potential of three-phase olive mill solid waste: Influence of temperature and supplemental enzymes. Carbon Resour. Convers. 2022, 5, 248–254. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, C.; González-González, A.; Cuadros-Salcedo, F.; Cuadros-Blázquez, F. Two-phase Olive mill waste: A circular economy solution to an imminent problem in Southern Europe. J. Clean. Prod. 2020, 274, 122789. [Google Scholar] [CrossRef]
- Niculescu, V.C.; Ionete, R.E. An Overview on Management and Valorisation of Winery Wastes. Appl. Sci. 2023, 13, 5063. [Google Scholar] [CrossRef]
- Bolechowski, A.; Moral, R.; Bustamante, M.A.; Bartual, J.; Paredes, C.; Pérez-Murcia, M.D.; Carbonell-Barrachina, A.A. Winery-distillery composts as partial substitutes of traditional growing media: Effect on the volatile composition of thyme essential oils. Sci. Hortic. 2015, 193, 69–76. [Google Scholar] [CrossRef]
- Carmona, E.; Moreno, M.T.; Avilés, M.; Ordovas, J. Composting of wine industry wastes and their use as a substrate for growing soilless ornamental plants. Span. J. Agric. Res. 2012, 10, 482–491. [Google Scholar] [CrossRef]
- Berbel, J.; Posadillo, A. Review and analysis of alternatives for the valorisation of agro-industrial olive oil by-products. Sustainability 2018, 10, 237. [Google Scholar] [CrossRef]
- Alkhalidi, A.; Halaweh, G.; Khawaja, M.K. Recommendations for olive mills waste treatment in hot and dry climate. J. Saudi Soc. Agric. Sci. 2023, 22, 361–373. [Google Scholar] [CrossRef]
- Galanakis, C.M. Phenols recovered from olive mill wastewater as additives in meat products. Trends Food Sci. Technol. 2018, 79, 98–105. [Google Scholar] [CrossRef]
- Basso, V.; Schiavenin, C.; Mendonça, S.; de Siqueira, F.G.; Salvador, M.; Camassola, M. Chemical features and antioxidant profile by Schizophyllum commune produced on different agroindustrial wastes and byproducts of biodiesel production. Food Chem. 2020, 329, 127089. [Google Scholar] [CrossRef] [PubMed]
- Chrysargyris, A.; Hajisolomou, E.; Xylia, P.; Tzortzakis, N. Olive-mill and grape-mill waste as a substitute growing media component for unexploded vegetables production. Sustain. Chem. Pharm. 2023, 31, 100940. [Google Scholar] [CrossRef]
- Garrido, T.; Gizdavic-Nikolaidis, M.; Leceta, I.; Urdanpilleta, M.; Guerrero, P.; de la Caba, K.; Kilmartin, P.A. Optimizing the extraction process of natural antioxidants from chardonnay grape marc using microwave-assisted extraction. Waste Manag. 2019, 88, 110–117. [Google Scholar] [CrossRef]
- Anastasiou, C.C.; Christou, P.; Michael, A.; Nicolaides, D.; Lambrou, T.P. Approaches to Olive Mill Wastewater Treatment and Disposal in Cyprus. Environ. Res. J. 2011, 5, 49–58. [Google Scholar] [CrossRef]
- Meissner, G.; Athmann, M.; Fritz, J.; Kauer, R.; Stoll, M.; Schultz, H. Conversion to organic and biodynamic viticultural practices: Impact on soil, grapevine development and grape quality. Oeno One 2019, 53, 639–659. [Google Scholar] [CrossRef]
- Sciubba, F.; Chronopoulou, L.; Pizzichini, D.; Lionetti, V.; Fontana, C.; Aromolo, R.; Socciarelli, S.; Gambelli, L.; Bartolacci, B.; Finotti, E.; et al. Olive mill wastes: A source of bioactive molecules for plant growth and protection against pathogens. Biology 2020, 9, 450. [Google Scholar] [CrossRef]
- Hernández-Lara, A.; Ros, M.; Pérez-Murcia, M.D.; Bustamante, M.Á.; Moral, R.; Andreu-Rodríguez, F.J.; Fernández, J.A.; Egea-Gilabert, C.; Antonio Pascual, J. The influence of feedstocks and additives in 23 added-value composts as a growing media component on Pythium irregulare suppressivity. Waste Manag. 2021, 120, 351–363. [Google Scholar] [CrossRef]
- Pecorini, I.; Peruzzi, E.; Albini, E.; Doni, S.; Macci, C.; Masciandaro, G.; Iannelli, R. Evaluation of MSW Compost and Digestate Mixtures for a Circular Economy Application. Sustainability 2020, 12, 3042. [Google Scholar] [CrossRef]
- Pardo, T.; Martínez-Fernández, D.; Clemente, R.; Walker, D.J.; Bernal, M.P. The use of olive-mill waste compost to promote the plant vegetation cover in a trace-element-contaminated soil. Environ. Sci. Pollut. Res. 2014, 21, 1029–1038. [Google Scholar] [CrossRef]
- Manikas, I.; Malindretos, G.; Abeliotis, K. Sustainable Cities through Alternative Urban Farming: The Case of Floriculture. J. Int. Food Agribus. Mark. 2020, 32, 295–311. [Google Scholar] [CrossRef]
- Reddy, P.P. Carnation. In Sustainable Crop Protection under Protected Cultivation; Springer: Singapore, 2016; pp. 345–354. ISBN 9789812879509. [Google Scholar]
- Aalami, O.; Azadi, P.; Hadizadeh, H.; Wilde, H.D.; Karimian, Z.; Nemati, H.; Samiei, L. Melatonin strongly enhances the Agrobacterium- mediated transformation of carnation in nitrogen-depleted media. BMC Plant Biol. 2023, 23, 316. [Google Scholar] [CrossRef]
- Metwally, N.E.; Hadid, A.F.A. Evaluation for Producing Carnations in Different Growing Media under Protected Cultivation. J. Agric. Res. 2013, 2, 167–172. [Google Scholar]
- Soltani, M.; Naderi, D. Yield Compounds and Nutrient Elements of Carnation (Dianthus caryophyllus L.) under Different Growing Media. Open J. Ecol. 2016, 6, 184–191. [Google Scholar] [CrossRef]
- Sant, D.; Casanova, E.; Segarra, G.; Avilés, M.; Reis, M.; Trillas, M.I. Effect of Trichoderma asperellum strain T34 on Fusarium wilt and water usage in carnation grown on compost-based growth medium. Biol. Control 2010, 53, 291–296. [Google Scholar] [CrossRef]
- Muhammad, H.M.D.; Anjum, M.A.; Ahmad, R.; Ercisli, S. Foliar Application of Moringa and Mint Leaf Extracts Enhances Carnation Growth and Flower Yield Under Saline Conditions by Improving Plant Defense Mechanism. J. Plant Growth Regul. 2023. [Google Scholar] [CrossRef]
- Giménez, A.; Fernández, J.A.; Pascual, J.A.; Ros, M.; Saez-Tovar, J.; Martinez-Sabater, E.; Gruda, N.S.; Egea-Gilabert, C. Promising composts as growing media for the production of baby leaf lettuce in a floating system. Agronomy 2020, 10, 1540. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Antoniou, O.; Tzionis, A.; Prasad, M.; Tzortzakis, N. Alternative soilless media using olive-mill and paper waste for growing ornamental plants. Environ. Sci. Pollut. Res. 2018, 25, 35915–35927. [Google Scholar] [CrossRef]
- Fan, R.; Luo, J.; Yan, S.; Zhou, Y.; Zhang, Z. Effects of Biochar and Super Absorbent Polymer on Substrate Properties and Water Spinach Growth. Pedosphere 2015, 25, 737–748. [Google Scholar] [CrossRef]
- Prasad, M.; Chrysargyris, A.; McDaniel, N.; Kavanagh, A.; Gruda, N.S.N.S.; Tzortzakis, N. Plant nutrient availability and pH of biochars and their fractions, with the possible use as a component in a growing media. Agronomy 2020, 10, 10. [Google Scholar] [CrossRef]
- Mill, L.A.; Najar, B.; Demasi, S.; Caser, M.; Gaino, W.; Cioni, P.L.; Pistelli, L.; Scariot, V. Cultivation substrate composition influences morphology, volatilome and essential oil of Lavandula angustifolia Mill. Agronomy 2019, 9, 411. [Google Scholar]
- European Standard EN 13041; Soil Improvers and Growing Media—Determination of Physical Properties—Dry Bulk Density, Air Volume, Water Volume, Shrinkage Value and Total Pore Space. European Committee for Standardization: Brussels, Belgium, 1999.
- Chrysargyris, A.; Goumenos, C.; Tzortzakis, N. Use of Medicinal and Aromatic Plant Residues for Partial Peat Substitution in Growing Media for Sonchus oleraceus Production. Agronomy 2023, 13, 1074. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Pitsikoulaki, G.; Stamatakis, A.; Chrysargyris, A. Ammonium to Total Nitrogen Ratio Interactive Effects with Salinity Application on Solanum lycopersicum Growth, Physiology, and Fruit Storage in a Closed Hydroponic System. Agronomy 2022, 12, 386. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Tzanakaki, K.; Economakis, C.D. Effect of origanum oil and vinegar on the maintenance of postharvest quality of tomato. Food Nutr. Sci. 2011, 2, 974–982. [Google Scholar] [CrossRef]
- Meyers, K.J.; Watkins, C.B.; Pritts, M.P.; Liu, R.H. Antioxidant and antiproliferative activities of strawberries. J. Agric. Food Chem. 2003, 51, 6887–6892. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Loreto, F.; Velikova, V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 2001, 127, 1781–1787. [Google Scholar] [CrossRef]
- De Azevedo Neto, A.D.; Prisco, J.T.; Enéas-Filho, J.; De Abreu, C.E.B.; Gomes-Filho, E. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 2006, 56, 87–94. [Google Scholar] [CrossRef]
- Rinaldi, S.; De Lucia, B.; Salvati, L.; Rea, E. Understanding complexity in the response of ornamental rosemary to different substrates: A multivariate analysis. Sci. Hortic. 2014, 176, 218–224. [Google Scholar] [CrossRef]
- Abad, M.; Noguera, P.; Burés, S. National inventory of organic wastes for use as growing media for ornamental potted plant production: Case study in Spain. Bioresour. Technol. 2001, 77, 197–200. [Google Scholar] [CrossRef]
- Lasaridi, K.; Protopapa, I.; Kotsou, M.; Pilidis, G.; Manios, T.; Kyriacou, A. Quality assessment of composts in the Greek market: The need for standards and quality assurance. J. Environ. Manag. 2006, 80, 58–65. [Google Scholar] [CrossRef]
- Ribeiro, H.M.; Romero, A.M.; Pereira, H.; Borges, P.; Cabral, F.; Vasconcelos, E. Evaluation of a compost obtained from forestry wastes and solid phase of pig slurry as a substrate for seedlings production. Bioresour. Technol. 2007, 98, 3294–3297. [Google Scholar] [CrossRef]
- Patra, D.D.; Anwar, M.; Chand, S. Integrated nutrient management and waste recycling for restoring soil fertility and productivity in Japanese mint and mustard sequence in Uttar Pradesh, India. Agric. Ecosyst. Environ. 2000, 80, 267–275. [Google Scholar] [CrossRef]
- Papafotiou, M.; Phsyhalou, M.; Kargas, G.; Chatzipavlidis, I.; Chronopoulos, J. Olive-mill wastes compost as growing medium component for the production of poinsettia. Sci. Hortic. 2004, 102, 167–175. [Google Scholar] [CrossRef]
- Santos, C.V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic. 2004, 103, 93–99. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Gautam, M. Biochemical parameters of plants as indicators of air pollution. J. Environ. Biol. 2007, 28, 127–132. [Google Scholar] [PubMed]
- Jalal, K.C.A.; Shamsuddm, A.A.; Rahman, M.F.; Nurzatul, N.Z.; Rozihan, M. Growth and total carotenoid, chlorophyll a and chlorophyll b of tropical microalgae (Isochrysis sp.) in laboratory cultured conditions. J. Biol. Sci. 2013, 13, 10–17. [Google Scholar] [CrossRef]
- Colom, M.R.; Vazzana, C. Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants. Environ. Exp. Bot. 2003, 49, 135–144. [Google Scholar] [CrossRef]
- Kiarostami, K.; Mohseni, R.; Saboora, A. Biochemical changes of Rosmarinus officinalis under salt stress. J. Stress Physiol. Biochem. 2010, 6, 114–122. [Google Scholar]
- Ouzounidou, G.; Asfi, M.; Sotirakis, N.; Papadopoulou, P.; Gaitis, F. Olive mill wastewater triggered changes in physiology and nutritional quality of tomato (Lycopersicon esculentum Mill.) depending on growth substrate. J. Hazard. Mater. 2008, 158, 523–530. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Koutsos, T. Olive mill wastewater as a source of organic matter, water and nutrients for restoration of degraded soils and for crops managed with sustainable systems. Agric. Water Manag. 2017, 190, 55–64. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Antoniou, O.; Athinodorou, F.; Vassiliou, R.; Papadaki, A.; Tzortzakis, N. Deployment of olive-stone waste as a substitute growing medium component for Brassica seedling production in nurseries. Environ. Sci. Pollut. Res. 2019, 26, 35461–35472. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Compos. Anal. 2017, 60, 38–50. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Diaz-Vivancos, P.; Álvarez, S.; Fernández-García, N.; Sánchez-Blanco, M.J.; Hernández, J.A. NaCl-induced physiological and biochemical adaptative mechanisms in the ornamental Myrtus communis L. plants. J. Plant Physiol. 2015, 183, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Ceglie, F.G.; Bustamante, M.A.; Ben Amara, M.; Tittarelli, F. The challenge of peat substitution in organic seedling production: Optimization of growing media formulation through mixture design and response surface analysis. PLoS ONE 2015, 10, e0128600. [Google Scholar] [CrossRef] [PubMed]
- Gruda, N.S. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- Ma, J.; Chen, Y.; Wang, K.; Huang, Y.; Wang, H. Re-utilization of Chinese medicinal herbal residues improved soil fertility and maintained maize yield under chemical fertilizer reduction. Chemosphere 2021, 283, 131262. [Google Scholar] [CrossRef]
Peat 100% | OW 5% | OW 10% | OW 20% | OW 100% | |
---|---|---|---|---|---|
pH | 6.43 ± 0.18 | 6.88 ± 0.06 | 7.17 ± 0.05 | 7.31 ± 0.08 | 7.21 ± 0.04 |
EC (mS/cm) | 0.85 ± 0.03 b | 0.83 ± 0.08 b | 0.89 ± 0.06 ab | 1.03 ± 0.03 a | 1.02 ± 0.01 a |
Organic matter (%) | 72.73 ± 0.97 e | 77.49 ± 0.86 d | 81.33 ± 1.25 c | 87.92 ± 0.68 b | 94.67 ± 0.89 a |
Organic C (%) | 42.19 ± 0.56 e | 44.95 ± 0.50 d | 47.17 ± 0.72 c | 50.99 ± 0.39 b | 55.86 ± 0.52 a |
C/N ratio | 50.29 ± 1.51 ab | 57.03 ± 2.02 a | 42.63 ± 2.65 c | 47.51 ± 1.85 bc | 50.90 ± 2.72 ab |
N (g/kg) | 8.48 ± 0.18 b | 7.94 ± 0.26 b | 11.21 ± 0.52 a | 10.84 ± 0.48 a | 11.11 ± 0.57 a |
K (g/kg) | 2.03 ± 0.02 d | 2.09 ± 0.15 d | 3.84 ± 0.09 c | 4.72 ± 0.12 b | 10.34 ± 0.27 a |
P (g/kg) | 1.13 ± 0.03 a | 1.20 ± 0.05 a | 0.91 ± 0.09 a | 0.89 ± 0.04 a | 0.43 ± 0.17 b |
Ca (g/kg) | 14.95 ± 0.31 a | 10.12 ± 0.51 b | 9.69 ± 0.19 b | 10.31 ± 0.32 b | 3.78 ± 0.07 c |
Mg (g/kg) | 0.78 ± 0.03 a | 0.61 ± 0.01 b | 0.55 ± 0.01 bc | 0.50 ± 0.04 c | 0.12 ± 0.00 d |
Na (g/kg) | 0.96 ± 0.02 b | 0.77 ± 0.08 c | 0.84 ± 0.00 bc | 0.92 ± 0.02 bc | 3.97 ± 0.06 a |
Total porosity (% v/v) | 85.54 ± 0.74 ab | 77.78 ± 2.26 c | 89.68 ± 2.72 a | 77.03 ± 1.87 c | 81.64 ± 2.08 bc |
Air filled porosity (% v/v) | 18.94 ± 0.77 a | 16.70 ± 1.22 ab | 14.89 ± 1.46 bc | 12.74 ± 0.74 c | 16.54 ± 0.14 ab |
Bulk density (g/cm3) | 0.14 ± 0.01 d | 0.23 ± 0.00 c | 0.25 ± 0.01 c | 0.29 ± 0.01 b | 0.54 ± 0.01 a |
Container capacity (% v/v) | 66.61 ± 1.02 b | 61.08 ± 1.10 c | 74.78 ± 1.36 a | 64.29 ± 1.23 bc | 65.10 ± 2.05 bc |
Peat 100% | GW 5% | GW 10% | GW 20% | GW 100% | |
---|---|---|---|---|---|
pH | 6.43 ± 0.18 | 6.53 ± 0.04 | 6.77 ± 0.05 | 6.82 ± 0.05 | 7.11 ± 0.12 |
EC (mS/cm) | 0.85 ± 0.03 c | 1.10 ± 0.08 a | 0.86 ± 0.04 bc | 0.99 ± 0.02 bc | 0.93 ± 0.03 ab |
Organic matter (%) | 72.73 ± 0.97 c | 72.24 ± 1.89 c | 82.96 ± 1.04 b | 83.25 ± 0.94 b | 91.93 ± 0.78 a |
Organic C (%) | 42.19 ± 0.56 c | 41.90 ± 1.10 c | 48.12 ± 0.61 b | 48.29 ± 0.54 b | 53.32 ± 0.45 a |
C/N ratio | 50.28 ± 1.51 a | 34.20 ± 0.76 c | 42.41 ± 2.08 b | 27.29 ± 1.38 d | 27.30 ± 0.57 d |
N (g/kg) | 8.48 ± 0.18 d | 12.37 ± 0.50 c | 11.49 ± 0.45 c | 17.69 ± 0.89 b | 19.67 ± 0.27 a |
K (g/kg) | 2.03 ± 0.02 d | 5.37 ± 0.10 c | 5.41 ± 0.18 c | 9.69 ± 0.16 b | 18.43 ± 0.50 a |
P (g/kg) | 1.13 ± 0.03 d | 1.94 ± 0.06 b | 1.48 ± 0.05 c | 1.92 ± 0.07 b | 3.00 ± 0.14 a |
Ca (g/kg) | 14.95 ± 0.31 a | 15.09 ± 0.59 a | 11.77 ± 0.38 b | 15.19 ± 1.11 a | 8.89 ± 0.32 c |
Mg (g/kg) | 0.76 ± 0.03 b | 0.97 ± 0.02 a | 0.76 ± 0.04 b | 0.95 ± 0.02 a | 0.31 ± 0.04 c |
Na (g/kg) | 0.96 ± 0.02 c | 1.09 ± 0.02 b | 0.90 ± 0.02 c | 0.92 ± 0.01 c | 3.42 ± 0.07 a |
Total porosity (% v/v) | 85.54 ± 0.74 a | 61.59 ± 4.41 c | 59.71 ± 4.16 c | 52.78 ± 2.29 c | 76.86 ± 1.11 b |
Air filled porosity (% v/v) | 18.94 ± 0.77 a | 9.94 ± 1.89 c | 9.76 ± 2.27 c | 10.28 ± 0.86 c | 12.75 ± 0.81 b |
Bulk density (g/cm3) | 0.14 ± 0.01 d | 0.17 ± 0.00 c | 0.20 ± 0.00 b | 0.23 ± 0.00 b | 0.35 ± 0.01 a |
Container capacity (% v/v) | 66.61 ± 1.02 a | 51.64 ± 2.56 c | 49.94 ± 2.37 bc | 42.49 ± 1.94 c | 61.81 ± 0.84 b |
Peat 100% | OW + GW 5% | OW + GW 10% | OW + GW 20% | |
---|---|---|---|---|
pH | 6.43 ± 0.18 | 6.34 ± 0.04 | 6.41 ± 0.04 | 6.72 ± 0.05 |
EC (mS/cm) | 0.85 ± 0.03 b | 1.20 ± 0.05 a | 1.30 ± 0.15 a | 1.09 ± 0.01 a |
Organic matter (%) | 72.73 ± 0.97 c | 79.24 ± 2.05 b | 81.43 ± 1.30 b | 86.25 ± 1.26 a |
Organic C (%) | 42.19 ± 0.56 c | 45.96 ± 1.19 b | 47.23 ± 0.75 b | 50.03 ± 0.73 a |
C/N ratio | 50.28 ± 1.51 a | 40.81 ± 0.77 b | 41.65 ± 0.67 b | 36.11 ± 1.67 a |
N (g/kg) | 8.48 ± 0.18 c | 11.38 ± 0.52 b | 11.43 ± 0.30 b | 14.04 ± 0.86 a |
K (g/kg) | 2.03 ± 0.02 c | 4.98 ± 0.15 b | 5.24 ± 0.11 b | 7.29 ± 0.69 a |
P (g/kg) | 1.13 ± 0.03 b | 1.88 ± 0.09 a | 1.94 ± 0.07 a | 1.74 ± 0.08 a |
Ca (g/kg) | 14.95 ± 0.31 bc | 22.11 ± 0.99 a | 17.41 ± 0.99 b | 13.70 ± 1.01 c |
Mg (g/kg) | 0.76 ± 0.03 b | 1.25 ± 0.07 a | 1.11 ± 0.05 a | 0.87 ± 0.07 b |
Na (g/kg) | 0.96 ± 0.02 a | 1.03 ± 0.01 a | 0.96 ± 0.02 a | 0.86 ± 0.04 b |
Total porosity (% v/v) | 85.54 ± 0.74 | 80.93 ± 2.58 | 82.09 ± 1.68 | 78.06 ± 3.74 |
Air filled porosity (% v/v) | 18.94 ± 0.77 a | 14.09 ± 1.69 b | 12.81 ± 0.79 b | 9.99 ± 1.68 b |
Bulk density (g/cm3) | 0.14 ± 0.01 c | 0.15 ± 0.00 c | 0.17 ± 0.00 b | 0.23 ± 0.01 a |
Container capacity (% v/v) | 66.61 ± 1.02 | 66.84 ± 1.41 | 69.25 ± 1.09 | 68.06 ± 2.57 |
Peat 100% | OW 5% | OW 10% | OW 20% | |
pH | 6.50 ± 0.09 | 6.85 ± 0.02 | 7.01 ± 0.07 | 7.10 ± 0.04 |
EC (mS/cm) | 1.37 ± 0.07 a | 0.94 ± 0.03 b | 0.85 ± 0.01 bc | 0.71 ± 0.08 c |
Organic matter (%) | 72.78 ± 1.32 c | 78.31 ± 1.76 b | 86.67 ± 1.59 a | 89.27 ± 0.58 a |
Organic C (%) | 42.21 ± 0.76 c | 45.42 ± 1.02 b | 50.27 ± 0.92 a | 51.78 ± 0.34 a |
C/N ratio | 48.77 ± 1.68 b | 49.02 ± 2.56 b | 61.08 ± 1.10 a | 57.78 ± 0.55 a |
N (g/kg) | 8.67 ± 0.25 ab | 9.30 ± 0.42 a | 8.23 ± 0.17 b | 8.96 ± 0.13 ab |
K (g/kg) | 3.07 ± 0.22 b | 3.71 ± 0.45 ab | 2.94 ± 0.33 b | 4.30 ± 0.06 a |
P (g/kg) | 1.56 ± 0.12 | 1.55 ± 0.29 | 1.29 ± 0.21 | 1.36 ± 0.10 |
Ca (g/kg) | 24.16 ± 0.69 a | 22.58 ± 2.10 a | 14.00 ± 1.59 b | 13.22 ± 0.28 b |
Mg (g/kg) | 1.85 ± 0.05 a | 1.74 ± 0.16 a | 1.03 ± 0.12 b | 0.95 ± 0.02 b |
Na (g/kg) | 3.09 ± 0.12 a | 2.45 ± 0.27 b | 1.98 ± 0.19 bc | 1.79 ± 0.02 c |
Peat 100% | GW 5% | GW 10% | GW 20% | |
pH | 6.50 ± 0.09 | 6.75 ± 0.05 | 6.82 ± 0.03 | 6.65 ± 0.05 |
EC (mS/cm) | 1.37 ± 0.07 a | 1.08 ± 0.08 b | 1.04 ± 0.00 b | 1.10 ± 0.07 b |
Organic matter (%) | 72.78 ± 1.32 b | 80.56 ± 0.40 a | 83.63 ± 1.13 a | 83.92 ± 3.18 a |
Organic C (%) | 42.21 ± 0.76 b | 46.73 ± 0.23 a | 48.51 ± 0.66 a | 48.68 ± 1.84 a |
C/N ratio | 48.77 ± 1.68 a | 39.41 ± 2.49 c | 42.94 ± 1.21 bc | 47.74 ± 1.10 ab |
N (g/kg) | 8.67 ± 0.25 c | 11.94 ± 0.71 a | 11.30 ± 0.25 ab | 10.19 ± 0.20 b |
K (g/kg) | 3.07 ± 0.22 b | 4.71 ± 0.05 a | 4.79 ± 0.58 a | 5.34 ± 0.19 a |
P (g/kg) | 1.56 ± 0.12 a | 1.61 ± 0.15 a | 0.68 ± 0.13 b | 0.91 ± 0.18 b |
Ca (g/kg) | 24.16 ± 0.69 a | 19.46 ± 1.10 b | 17.82 ± 0.07 bc | 15.45 ± 0.64 c |
Mg (g/kg) | 1.85 ± 0.05 a | 1.62 ± 0.08 b | 1.46 ± 0.02 b | 1.18 ± 0.03 c |
Na (g/kg) | 3.09 ± 0.12 a | 2.55 ± 0.05 b | 2.19 ± 0.13 c | 1.81 ± 0.02 d |
Peat 100% | OW + GW 5% | OW + GW 10% | OW + GW 20% | |
pH | 6.50 ± 0.09 | 6.70 ± 0.01 | 6.73 ± 0.05 | 6.86 ± 0.01 |
EC (mS/cm) | 1.37 ± 0.07 | 1.15 ± 0.05 | 1.28 ± 0.09 | 1.14 ± 0.03 |
Organic matter (%) | 72.78 ± 1.32 b | 80.07 ± 1.18 a | 78.50 ± 1.30 ab | 79.88 ± 2.90 a |
Organic C (%) | 42.21 ± 0.76 b | 46.43 ± 0.68 a | 45.53 ± 0.76 ab | 46.33 ± 1.68 a |
C/N ratio | 48.77 ± 1.68 a | 39.88 ± 2.60 b | 35.77 ± 0.80 b | 34.87 ± 3.18 b |
N (g/kg) | 8.67 ± 0.25 b | 11.71 ± 0.56 a | 12.74 ± 0.46 a | 13.50 ± 1.34 a |
K (g/kg) | 3.07 ± 0.22 c | 4.01 ± 0.37 bc | 4.93 ± 0.55 b | 5.81 ± 0.21 a |
P (g/kg) | 1.56 ± 0.12 b | 1.72 ± 0.03 ab | 1.99 ± 0.11 a | 1.77 ± 0.03 ab |
Ca (g/kg) | 24.16 ± 0.69 a | 19.22 ± 0.71 b | 19.60 ± 0.05 b | 17.50 ± 1.08 b |
Mg (g/kg) | 1.85 ± 0.05 a | 1.49 ± 0.06 b | 1.41 ± 0.07 b | 1.21 ± 0.03 c |
Na (g/kg) | 3.09 ± 0.12 a | 2.20 ± 0.16 b | 2.28 ± 0.16 b | 1.95 ± 0.06 b |
Height | Leaf No | Fresh Weight | Dry Weight | Dry Matter Content (%) | |
---|---|---|---|---|---|
Peat 100% | 17.75 ± 1.36 | 22.75 ± 0.85 b | 7.90 ± 0.74 a | 1.15 ± 0.03 | 12.29 ± 0.24 b |
OW 5% | 19.50 ± 2.17 | 26.00 ± 0.00 a | 7.20 ± 0.69 a | 1.03 ± 0.10 | 12.69 ± 0.47 b |
OW 10% | 17.62 ± 1.21 | 26.25 ± 1.03 a | 6.32 ± 0.57 ab | 0.91 ± 0.03 | 13.99 ± 0.73 ab |
OW 20% | 16.62 ± 1.08 | 20.25 ± 0.47 c | 4.51 ± 0.78 b | 0.90 ± 0.21 | 15.66 ± 0.43 a |
Peat 100% | 17.75 ± 1.36 | 22.75 ± 0.85 ab | 7.90 ± 0.74 a | 1.15 ± 0.03 | 12.29 ± 0.24 |
GW 5% | 17.12 ± 2.51 | 23.25 ± 1.10 a | 7.43 ± 0.80 ab | 1.08 ± 0.06 | 11.79 ± 0.57 |
GW 10% | 14.75 ± 1.60 | 25.50 ± 0.95 a | 6.56 ± 0.17 ab | 0.91 ± 0.13 | 13.95 ± 1.69 |
GW 20% | 17.62 ± 0.89 | 20.00 ± 0.81 b | 5.50 ± 0.53 b | 0.89 ± 0.07 | 13.08 ± 0.62 |
Peat 100% | 17.75 ± 1.36 ab | 22.75 ± 0.85 ab | 7.90 ± 0.74 | 1.15 ± 0.03 | 12.29 ± 0.24 |
OW + GW 5% | 21.37 ± 1.17 a | 25.50 ± 1.19 a | 7.96 ± 0.88 | 1.14 ± 0.21 | 12.33 ± 0.16 |
OW + GW 10% | 15.87 ± 1.87 b | 23.50 ± 0.86 ab | 8.67 ± 0.84 | 1.27 ± 0.14 | 12.57 ± 0.30 |
OW + GW 20% | 14.75 ± 0.25 b | 21.00 ± 1.47 b | 7.07 ± 0.36 | 0.96 ± 0.00 | 12.61 ± 0.59 |
Chlorophyll Fluorescence | SPAD | Chl a | Chl b | Total Chls | Carotenoids | Chla:Chlb | Carotenoids: Total Chls | |
---|---|---|---|---|---|---|---|---|
Peat 100% | 0.82 ± 0.01 ab | 71.74 ± 5.56 ab | 0.93 ± 0.02 a | 0.38 ± 0.02 a | 1.31 ± 0.03 a | 0.20 ± 0.01 a | 2.55 ± 0.14 b | 0.16 ± 0.01 |
OW 5% | 0.84 ± 0.01 a | 86.24 ± 15.19 a | 0.99 ± 0.09 a | 0.34 ± 0.04 a | 1.34 ± 0.14 a | 0.20 ± 0.01 a | 3.05 ± 0.11 a | 0.16 ± 0.00 |
OW 10% | 0.83 ± 0.01 ab | 63.70 ± 8.24 ab | 0.87 ± 0.02 a | 0.29 ± 0.00 ab | 1.17 ± 0.01 a | 0.18 ± 0.00 ab | 3.10 ± 0.14 a | 0.16 ± 0.01 |
OW 20% | 0.81 ± 0.00 b | 55.55 ± 3.96 b | 0.66 ± 0.02 b | 0.21 ± 0.01 b | 0.88 ± 0.03 b | 0.13 ± 0.00 b | 3.15 ± 0.05 a | 0.16 ± 0.00 |
Peat 100% | 0.82 ± 0.01 | 71.74 ± 5.56 b | 0.93 ± 0.02 ab | 0.38 ± 0.02 a | 1.31 ± 0.03 ab | 0.20 ± 0.01 | 2.55 ± 0.14 b | 0.15 ± 0.01 bc |
GW 5% | 0.85 ± 0.02 | 93.78 ± 9.10 a | 1.05 ± 0.03 a | 0.38 ± 0.01 a | 1.43 ± 0.04 a | 0.21 ± 0.01 | 2.94 ± 0.08 a | 0.16 ± 0.00 c |
GW 10% | 0.82 ± 0.00 | 69.18 ± 7.62 b | 0.84 ± 0.12 b | 0.27 ± 0.04 b | 1.12 ± 0.16 b | 0.18 ± 0.02 | 3.09 ± 0.07 a | 0.17 ± 0.00 ab |
GW 20% | 0.83 ± 0.01 | 70.94 ± 5.54 b | 0.80 ± 0.01 b | 0.28 ± 0.00 b | 1.10 ± 0.01 b | 0.20 ± 0.02 | 2.91 ± 0.02 a | 0.16 ± 0.00 a |
Peat 100% | 0.82 ± 0.01 b | 71.74 ± 5.56 | 0.93 ± 0.02 a | 0.38 ± 0.02 a | 1.31 ± 0.03 ab | 0.20 ± 0.01 ab | 2.55 ± 0.14 b | 0.16 ± 0.01 b |
OW + GW 5% | 0.83 ± 0.01 ab | 91.16 ± 15.85 | 1.01 ± 0.06 a | 0.36 ± 0.02 a | 1.37 ± 0.08 a | 0.21 ± 0.01 a | 2.96 ± 0.03 a | 0.16 ± 0.00 b |
OW + GW 10% | 0.85 ± 0.01 a | 82.92 ± 7.10 | 0.81 ± 0.08 ab | 0.27 ± 0.02 b | 1.10 ± 0.10 bc | 0.17 ± 0.02 ab | 3.08 ± 0.11 a | 0.16 ± 0.00 ab |
OW + GW 20% | 0.83 ± 0.00 ab | 83.06 ± 7.70 | 0.73 ± 0.01 b | 0.24 ± 0.01 b | 0.97 ± 0.01 c | 0.16 ± 0.00 b | 3.05 ± 0.03 a | 0.17 ± 0.01 a |
N | K | P | Ca | Mg | Na | |
---|---|---|---|---|---|---|
Peat 100% | 29.91 ± 0.56 a | 34.01 ± 2.40 c | 6.79 ± 0.22 ab | 13.29 ± 1.12 b | 3.44 ± 0.33 b | 11.34 ± 0.78 ab |
OW 5% | 28.49 ± 0.56 a | 42.71 ± 0.47 a | 6.84 ± 0.15 a | 15.84 ± 0.29 a | 4.12 ± 0.10 a | 12.65 ± 0.16 a |
OW 10% | 18.17 ± 0.63 b | 39.88 ± 0.53 ab | 6.26 ± 0.13 b | 14.00 ± 0.35 ab | 3.64 ± 0.03 ab | 12.22 ± 0.16 a |
OW 20% | 12.56 ± 0.76 c | 37.66 ± 0.52 bc | 4.61 ± 0.14 c | 8.86 ± 0.15 c | 2.01 ± 0.06 c | 10.45 ± 0.11 b |
Peat 100% | 29.91 ± 0.56 b | 34.01 ± 2.40 c | 6.79 ± 0.22 b | 13.29 ± 1.12 | 3.44 ± 0.33 b | 11.34 ± 0.78 |
GW 5% | 30.10 ± 0.39 b | 39.02 ± 0.43 b | 6.75 ± 0.21 b | 16.80 ± 1.88 | 4.11 ± 0.14 a | 11.62 ± 0.34 |
GW 10% | 32.33 ± 0.18 a | 40.99 ± 0.46 b | 6.87 ± 0.11 b | 14.64 ± 0.27 | 4.06 ± 0.04 ab | 11.91 ± 0.13 |
GW 20% | 28.78 ± 0.56 b | 47.51 ± 0.26 a | 7.50 ± 0.19 a | 13.98 ± 0.41 | 3.99 ± 0.02 ab | 12.24 ± 0.20 |
Peat 100% | 29.91 ± 0.56 a | 34.01 ± 2.40 c | 6.79 ± 0.22 a | 13.29 ± 1.12 ab | 3.44 ± 0.33 ab | 11.34 ± 0.78 |
OW + GW 5% | 28.26 ± 0.14 b | 45.94 ± 0.52 ab | 6.56 ± 0.15 a | 13.85 ± 0.13 a | 3.66 ± 0.02 a | 12.05 ± 0.05 |
OW + GW 10% | 25.06 ± 0.24 c | 44.67 ± 0.41 b | 5.75 ± 0.25 b | 11.64 ± 0.17 bc | 3.01 ± 0.05 bc | 10.99 ± 0.16 |
OW + GW 20% | 23.85 ± 0.18 c | 49.96 ± 0.24 a | 6.61 ± 0.25 a | 10.70 ± 0.19 c | 2.81 ± 0.05 c | 10.98 ± 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrysargyris, A.; Xylia, P.; Tzortzakis, N. Oliviculture and Viticulture Crop Byproducts Use for Peat Partial Substitution for Carnation Production. Agronomy 2024, 14, 605. https://doi.org/10.3390/agronomy14030605
Chrysargyris A, Xylia P, Tzortzakis N. Oliviculture and Viticulture Crop Byproducts Use for Peat Partial Substitution for Carnation Production. Agronomy. 2024; 14(3):605. https://doi.org/10.3390/agronomy14030605
Chicago/Turabian StyleChrysargyris, Antonios, Panayiota Xylia, and Nikolaos Tzortzakis. 2024. "Oliviculture and Viticulture Crop Byproducts Use for Peat Partial Substitution for Carnation Production" Agronomy 14, no. 3: 605. https://doi.org/10.3390/agronomy14030605
APA StyleChrysargyris, A., Xylia, P., & Tzortzakis, N. (2024). Oliviculture and Viticulture Crop Byproducts Use for Peat Partial Substitution for Carnation Production. Agronomy, 14(3), 605. https://doi.org/10.3390/agronomy14030605