Combined Application of Chemical and Organic Fertilizers: Effects on Yield and Soil Nutrients in Spring Wheat under Drip Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region-Geoclimatic Characterization
2.2. Experimental Design
2.3. Plant Sampling and Analysis
2.4. Soil Sampling and Analysis
2.5. Data Statistics and Analysis
3. Results
3.1. Climatic Conditions
3.2. Effects of Reduction of Chemical Fertilizer Combined with Organic Fertilizer on the Dry Matter Accumulation of Wheat
3.3. Effects of Reduction of Chemical Fertilizer Combined with Organic Fertilizer on Wheat Yield and Its Constituent Factors
3.4. Effects of Reduction of Chemical Fertilizer Combined with Organic Fertilizer on Nutrient Uptake in Different Organs
3.4.1. Effects of Reduction of Chemical Fertilizer Combined with Organic Fertilizer on Nitrogen Accumulation in Plants
3.4.2. Effects of Reduction of Chemical Fertilizer Combined with Organic Fertilizer on Phosphorus Accumulation in Plants
3.4.3. Effects of Reduction of Chemical Fertilizer Combined with Organic Fertilizer on Potassium Accumulation in Plants
3.5. Effects of Reduction of Chemical Fertilizer Combined with Organic Fertilizer on Soil Nutrient Content
3.6. Effects of Reduction of Chemical Fertilizer Combined with Organic Fertilizer on Nutrient Availability
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- China Statistical Yearbook; China Statistics Press: Beijing, China, 2022.
- Pan, Y.H.; Guo, J.J.; Fan, L.Y.; Ji, Y.; Liu, Z.; Wang, F.; Pu, Z.X.; Ling, N.; Shen, Q.R.; Guo, S.W. The source–sink balance during the grain filling period facilitates rice production under organic fertilizer substitution. Eur. J. Agron. 2022, 134, 126468. [Google Scholar] [CrossRef]
- Wierzbowska, J.; Sienkiewicz, S.; Zalewska, M.; Zarczyński, P.; Krzebietke, S. Phosphorus fractions in soil fertilised with organic waste. Environ. Monit. Assess. 2020, 192, 315. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.Q.; Wang, X.J.; Li, R.; Jia, Z.K.; Liang, L.Y.; Wang, J.P.; Nie, J.F.; Chen, X.; Wang, Z. Effects of different manure application rates on soil properties, nutrient use, and crop yield during dryland maize farming. Soil Res. 2012, 50, 507–514. [Google Scholar] [CrossRef]
- Liu, H.W.; Du, X.F.; Li, Y.B.; Han, X.; Li, B.; Zhang, X.K.; Li, Q.; Liang, W.J. Organic substitutions improve soil quality and maize yield through increasing soil microbial diversity. J. Clean. Prod. 2022, 347, 131323. [Google Scholar] [CrossRef]
- Han, Z.; Wang, J.; Xu, P.; Li, Z.; Liu, S.; Zou, J. Differential responses of soil nitrogen-oxide emissions to organic substitution for synthetic fertilizer and biochar amendment in a subtropical tea plantation. Glob. Chang. Biol. Bioenergy 2021, 13, 1260–1274. [Google Scholar] [CrossRef]
- Cao, H.B.; Wang, Z.H.; Shi, Y.C.; Du, M.Y.; Lei, X.Q.; Zhang, W.Z.; Zhang, L.; Pu, Y.J. Optimization of monitored nitrogen application technology for winter wheat in dryland of northern Wei. Chin. Agric. Sci. 2014, 47, 3826–3838. [Google Scholar]
- Huang, M. Research on Weight Loss and Efficiency of Dryland Wheat Based on Harvest Soil Testing and Fertilizer Application Position Optimization. Ph.D. Thesis, Northwest Agriculture and Forestry University, Xianyang, China, 2017. [Google Scholar]
- Jing, J.; Li, Z.; Qian, F.; Chang, X.; Li, W. Effects of Different Drip Irrigation Patterns on Grain Yield and Population Structure of Different Water- and Fertilizer-Demanding Wheat (Triticum aestivum L.) Varieties. Agronomy 2023, 13, 3018. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Dahunsi, S.O.; Ayeni, J.F.; Aremu, C.; Aboyeji, C.M.; Okunlola, F.; Oyelami, A.E. Organic and in-organic fertilizers effects on the performance of tomato (Solanum lycopersicum) and cucumber (Cucumis sativus) grown on soilless medium. Sci. Rep. 2022, 12, 12212. [Google Scholar] [CrossRef]
- Ullah, N.; Ditta, A.; Imtiaz, M.; Li, X.; Jan, A.U.; Mehmood, S.; Rizwan, M.S.; Rizwan, M. Appraisal for organic amendments and plant growth-promoting rhizobacteria to enhance crop productivity under drought stress: A review. J. Agron. Crop Sci. 2021, 207, 783–802. [Google Scholar] [CrossRef]
- Saudy, H.S.; Hamed, M.F.; Abd El-Momen, W.R.; Hussein, H. Nitrogen use rationalization and boosting wheat productivity by applying packages of humic, amino acids and microorganisms. Commun. Soil Sci. Plant Anal. 2020, 51, 1036–1047. [Google Scholar] [CrossRef]
- Xie, J.; Shi, X.; Zhang, Y.; Wan, Y.; Hu, Q.; Zhang, Y.; Wang, J.; He, X.; Evgenia, B. Improved nitrogen use efficiency, carbon sequestration and reduced environmental contamination under a gradient of manure application. Soil Tillage Res. 2022, 220, 105386. [Google Scholar] [CrossRef]
- Liu, H.J.; Chen, D.D.; Zhang, R.F.; Hang, X.N.; Li, R.; Shen, Q.R. Amino Acids Hydrolyzed from Animal Carcasses Are a Good Additive for the Production of Bio-organic Fertilizer. Front. Microbiol. 2016, 7, 1290. [Google Scholar] [CrossRef]
- Liu, X.Q.; Ko, K.Y.; Kim, S.H.; Lee, K.S. Effect of Amino Acid Fertilization on Nitrate Assimilation of Leafy Radish and Soil Chemical Properties in High Nitrate Soil. Commun. Soil Sci. Plant Anal. 2008, 39, 269–281. [Google Scholar] [CrossRef]
- Li, Y.; Fang, F.; Wei, J.L.; Wu, X.B.; Cui, R.Z.; Li, G.S.; Zheng, F.L.; Tan, D.S. Humic Acid Fertilizer Improved Soil Properties and Soil Microbial Diversity of Continuous Cropping Peanut: A Three-Year Experiment. Sci. Rep. 2019, 9, 12014. [Google Scholar] [CrossRef]
- Hou, S.S.; Zhang, R.F.; Zhang, C.; Wang, L.; Wang, H.; Wang, X.X. Role of vermicompost and biochar in soil quality improvement by promoting Bupleurum falcatum L. nutrient absorption. Soil Use Manag. 2023, 39, 1600–1617. [Google Scholar] [CrossRef]
- Pane, C.; Palese, A.M.; Spaccini, R.; Piccolo, A.; Celano, G.; Zaccardelli, M. Enhancing sustainability of a processing tomato cultivation system by using bioactive compost teas. Sci. Hortic. 2016, 202, 117–124. [Google Scholar] [CrossRef]
- Luo, T.; Li, J.H.; Hua, R.; Luo, Z.W.; Cheng, L.Y. Effects of acid organic fertilizer on soil nutrient activation and utilization efficiency in cotton field. J. Plant Nutr. Fertil. 2018, 24, 1255–1265. [Google Scholar]
- Li, X.Y.; Li, B.; Chen, L.; Liang, J.Y.; Huang, R.; Tang, X.Y.; Zhang, X.; Wang, C.Q. Partial substitution of chemical fertilizer with organic fertilizer over seven years increases yields and restores soil bacterial community diversity in wheat-rice rotation. Eur. J. Agron. 2022, 133, 126445. [Google Scholar] [CrossRef]
- He, H.; Peng, M.W.; Lu, W.D.; Hou, Z.N.; Li, J.H. Commercial organic fertilizer substitution increases wheat yield by improving soil quality. Sci. Total Environ. 2022, 851, 158132. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, M. Effect of bio-organic fertilizers partially substituting chemical fertilizers on labile organic carbon and bacterial community of citrus orchard soils. Plant Soil 2023, 483, 255–272. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Michela, S.; Diego, P.; Adele, M.; Silvia, V.; Ornella, F.; Serenella, N. High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J. Chem. Ecol. 2010, 36, 662–669. [Google Scholar]
- Luziatelli, F.; Ficca, G.A.; Colla, G.; Švecová, B.E.; Ruzzi, M. Foliar Application of Vegetal-Derived Bioactive Compounds Stimulates the Growth of Beneficial Bacteria and Enhances Microbiome Biodiversity in Lettuce. Front. Plant Sci. 2019, 10, 60. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Y.; Xu, W.Y.; Cheng, J.R.; Liu, J.J.; Pei, W.X.; Wang, J.F.; Chuang, S.C. Amino acid fertilizer (AAF) strengthens its fertilizer effects on crop yield and quality by recruiting beneficial rhizosphere microbes, which contributes to improved soil health. J. Sci. Food Agric. 2023, 103, 5970–5980. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, Q.; Huang, J.; Waqas, A.; Li, D.; Liu, S.J.; Zhang, L.; Andong, C.; Liu, L.S.; Xu, Y.M.; Gao, J.S.; et al. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Tillage Res. 2019, 198, 104569. [Google Scholar]
- Wang, X.Q.; Yang, Y.D.; Zhao, J.; Nie, J.W.; Zang, H.D.; Zeng, Z.H.; Olesen, J.E. Yield benefits from replacing chemical fertilizers with manure under water deficient conditions of the winter wheat–summer maize system in the North China Plain. Eur. J. Agron. 2020, 119, 126118. [Google Scholar] [CrossRef]
- Luo, T.; Min, T.; Ru, S.B.; Li, J.H. Response of cotton root growth and rhizosphere soil bacterial communities to the application of acid compost tea in calcareous soil. Appl. Soil Ecol. 2022, 177, 104523. [Google Scholar] [CrossRef]
- Ros, M.; Hurtado-Navarro, M.; Giménez, A.; Fernández, J.A.; Egea-Gilabert, C.; Lozano-Pastor, P.; Pascual, J.A. Spraying Agro-Industrial Compost Tea on Baby Spinach Crops: Evaluation of Yield, Plant Quality and Soil Health in Field Experiments. Agronomy 2020, 10, 440. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Q.; Zhang, G.; Zang, L. Enhancement of Soil Available Nutrients and Crop Growth in Sustainable Agriculture by a Biocontrol Bacterium Lysobacter enzymogenes LE16: Preliminary Results in Controlled Conditions. Agronomy 2023, 13, 1453. [Google Scholar] [CrossRef]
- Wang, J.Z.; Wang, X.J.; Xu, M.G.; Feng, G.; Zhang, W.J.; Lu, C.A. Crop yield and soil organic matter after long-term straw return to soil in China. Nutr. Cycl. Agroecosyst. 2015, 102, 371–381. [Google Scholar] [CrossRef]
- Seddigh, S.; Kiani, L.; Tafaghodinia, B.; Hashemi, B. Using aerated compost tea in comparison with a chemical pesticide for controlling rose powdery mildew. Arch. Phytopathol. Plant Prot. 2014, 47, 658–664. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.L.; Wei, Q.Q.; Liu, L.L.; Gu, X.F.; Gou, J.L.; Wang, M. Chemical Fertilizer Reduction Combined with Biochar Application Ameliorates the Biological Property and Fertilizer Utilization of Pod Pepper. Agronomy 2023, 13, 1616. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, W.; Luo, L.; Li, Y.; Chen, Z.; Gu, Y.; Chen, Q.; Deng, O.; Xu, X.; Lan, T.; et al. Short-term responses of soil nutrients, heavy metals and microbial community to partial substitution of chemical fertilizer with spent mushroom substrates (SMS). Sci. Total Environ. 2022, 844, 157064. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.B.; Gao, P.L.; Zhang, Q.W.; Shi, Y.L.; Guo, X.L.; Lv, Q.X.; Wu, W.; Zhang, X.; Li, M.Z.; Meng, Q.M. Biochar improves soil quality and wheat yield in saline-alkali soils beyond organic fertilizer in a 3-year field trial. Environ. Sci. Pollut. Res. Int. 2022, 30, 19097–19110. [Google Scholar] [CrossRef]
- Ma, X.Y.; Yang, Y.; Huang, D.L.; Wang, Z.H.; Gao, Y.J.; Li, Y.G.; Lv, H. Analysis of annual nutrient balance and economic benefit of wheat fertilizer reduction and different crop rotation methods. Agric. Sci. China 2022, 55, 1589–1603. [Google Scholar]
Year | Treatment | Base Fertilizer (kg ha−1) (Chemical Fertilizer) | Top Dressing | Total Nutrient Content (kg ha−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Chemical Fertilizer (kg ha−1) | Different Organic Fertilizers (L ha−1 or kg ha−1) | ||||||||||
N | P2O5 | K2O | N | P2O5 | K2O | N | P2O5 | K2O | |||
2022 | CK | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CF | 60 | 26.6 | 0 | 240 | 106.4 | 0 | 0 | 300 | 133 | 0 | |
RF | 41.8 | 20 | 6 | 167.2 | 80 | 24 | 0 | 209 | 100 | 30 | |
RPAE | 41.8 | 0 | 6 | 165.6 | 0 | 18.1 | 2710 | 209 | 100 | 30 | |
RAF | 41.8 | 20 | 6 | 167.2 | 80 | 24 | 600 | 209 | 100 | 30 | |
RHF | 41.8 | 20 | 6 | 167.2 | 80 | 24 | 300 | 209 | 100 | 30 | |
2023 | CK | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CF | 60 | 26.6 | 0 | 240 | 106.4 | 0 | 0 | 300 | 133 | 0 | |
RF | 46.2 | 26.2 | 6 | 184.8 | 104.8 | 24 | 0 | 231 | 131 | 30 | |
RPAE | 46.2 | 0 | 6 | 182.7 | 0 | 16.3 | 3550 | 231 | 131 | 30 | |
RAF | 46.2 | 26.2 | 6 | 184.8 | 104.8 | 24 | 600 | 231 | 131 | 30 | |
RHF | 46.2 | 26.2 | 6 | 184.8 | 104.8 | 24 | 300 | 231 | 131 | 30 |
Stages | Seedling | Jointing | Booting | Flowering | Filling |
---|---|---|---|---|---|
2022 | 26 April | 7 May | 22 May | 7 June | 19 June |
2023 | 24 April | 6 May | 22 May | 6 June | 18 June |
Topdressing proportion (%) | 10 | 30 | 20 | 10 | 10 |
Irrigation amount (%) | 20 | 20 | 20 | 15 | 15 |
Year | Treatment | Spike Number (Plant m−2) | 1000-Grain Weight (g) | Kernels per Spike | Yield (kg ha−1) |
---|---|---|---|---|---|
2022 | CK | 439.67 ± 6.43 c | 31.85 ± 0.56 d | 31.37 ± 0.38 b | 4392.37 ± 112.36 c |
CF | 483.00 ± 4.58 a | 35.67 ± 0.35 a | 35.23 ± 0.71 a | 6069.93 ± 165.07 a | |
RF | 458.00 ± 8.19 b | 34.07 ± 0.12 c | 35.67 ± 1.71 a | 5563.86 ± 11.57 b | |
RPAE | 478.67 ± 8.14 a | 35.53 ± 0.42 ab | 35.00 ± 0.17 a | 5952.63 ± 67.41 a | |
RAF | 472.33 ± 11.06 ab | 35.20 ± 0.17 ab | 35.73 ± 0.55 a | 5940.07 ± 103.20 a | |
RHF | 471.00 ± 13.23 ab | 35.03 ± 0.15 b | 35.67 ± 0.38 a | 5884.54 ± 153.58 a | |
2023 | CK | 416.67 ± 2.89 b | 30.23 ± 0.68 c | 32.10 ± 0.89 b | 4042.43 ± 78.36 c |
CF | 458.00 ± 11.27 a | 33.20 ± 0.72 ab | 37.00 ± 0.35 a | 5625.96 ± 18.52 ab | |
RF | 451.33 ± 12.34 a | 32.50 ± 0.71 b | 36.57 ± 0.71 a | 5382.85 ± 147.13 b | |
RPAE | 469.67 ± 10.26 a | 34.37 ± 1.14 a | 36.67 ± 1.66 a | 5842.28 ± 14.17 a | |
RAF | 458.67 ± 15.04 a | 33.97 ± 0.91 a | 36.73 ± 0.55 a | 5736.70 ± 121.51 a | |
RHF | 457.67 ± 14.50 a | 33.63 ± 0.79 ab | 36.40 ± 0.70 a | 5663.48 ± 226.80 a |
Year | Treatment | AN (mg kg−1) | AP (mg kg−1) | AK (mg kg−1) | SOM (g kg−1) |
---|---|---|---|---|---|
2022 | CK | 48.18 ± 0.20 c | 11.12 ± 1.06 c | 200.60 ± 1.14 c | 16.72 ± 0.08 c |
CF | 53.55 ± 0.40 a | 14.70 ± 0.25 ab | 212.92 ± 2.68 b | 17.61 ± 0.11 b | |
RF | 52.73 ± 0.88 b | 14.24 ± 0.06 b | 217.12 ± 3.54 ab | 17.48 ± 0.17 b | |
RPAE | 53.78 ± 0.53 a | 15.49 ± 0.23 a | 226.52 ± 9.74 a | 18.99 ± 0.76 a | |
RAF | 53.72 ± 0.35 a | 15.21 ± 0.17 ab | 225.51 ± 2.54 a | 18.44 ± 0.33 a | |
RHF | 53.67 ± 0.20 a | 15.31 ± 0.49 ab | 226.27 ± 8.22 a | 18.79 ± 0.14 a | |
2023 | CK | 47.57 ± 1.48 c | 10.23 ± 0.06 c | 194.06 ± 7.10 d | 15.93 ± 0.18 d |
CF | 53.46 ± 0.20 a | 15.17 ± 0.04 b | 222.51 ± 2.48 c | 17.89 ± 0.49 c | |
RF | 52.22 ± 0.20 b | 15.16 ± 0.10 b | 226.26 ± 2.48 bc | 17.74 ± 0.16 c | |
RPAE | 54.60 ± 0.59 a | 15.92 ± 0.23 a | 239.70 ± 5.33 a | 20.16 ± 0.20 a | |
RAF | 54.26 ± 0.20 a | 15.68 ± 0.44 ab | 234.07 ± 1.95 ab | 19.40 ± 0.10 b | |
RHF | 53.58 ± 0.34 a | 15.82 ± 0.44 ab | 239.70 ± 8.66 a | 19.73 ± 0.69 ab |
Year | Treatment | RE (%) | AUE (kg kg−1) | PEP (kg kg−1) | |||
---|---|---|---|---|---|---|---|
N | P | N | P | N | P | ||
2022 | CF | 28.64 ± 1.36 c | 17.89 ± 0.54 d | 5.59 ± 0.83 b | 12.61 ± 1.87 b | 20.23 ± 0.55 c | 45.64 ± 1.24 c |
RF | 37.72 ± 1.69 b | 22.10 ± 0.32 c | 5.61 ± 0.59 b | 11.72 ± 1.23 b | 26.62 ± 0.06 b | 55.64 ± 0.12 b | |
RPAE | 42.21 ± 2.20 a | 25.47 ± 0.17 a | 7.47 ± 0.82 a | 15.60 ± 1.72 a | 28.48 ± 0.32 a | 59.53 ± 0.67 a | |
RAF | 41.54 ± 0.94 a | 24.10 ± 0.77 b | 7.41 ± 1.03 a | 15.48 ± 2.15 a | 28.42 ± 0.49 a | 59.40 ± 1.03 a | |
RHF | 41.69 ± 1.85 a | 24.99 ± 0.26 ab | 7.14 ± 1.10 a | 14.92 ± 2.30 a | 28.16 ± 0.73 a | 58.85 ± 1.54 a | |
2023 | CF | 27.98 ± 1.09 b | 18.16 ± 2.47 b | 5.28 ± 0.74 b | 11.91 ± 1.68 ab | 18.75 ± 0.49 c | 42.30 ± 1.10 ab |
RF | 30.47 ± 0.68 b | 16.44 ± 1.20 c | 5.80 ± 0.53 b | 10.23 ± 0.94 b | 23.30 ± 0.71 b | 41.09 ± 1.26 b | |
RPAE | 39.30 ± 1.81 a | 19.92 ± 3.19 a | 7.79 ± 0.28 a | 13.74 ± 0.49 a | 25.29 ± 0.06 a | 44.60 ± 0.11 a | |
RAF | 38.97 ± 0.94 a | 19.24 ± 1.66 a | 7.34 ± 0.19 a | 12.93 ± 0.34 a | 24.83 ± 0.53 a | 43.79 ± 0.93 a | |
RHF | 38.46 ± 1.61 a | 19.41 ± 2.84 a | 7.02 ± 0.69 a | 12.37 ± 1.21 ab | 24.52 ± 0.98 a | 43.23 ± 1.73 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, X.; He, H.; Cheng, L.; Yang, X.; Li, S.; Yu, M.; Zhang, J.; Li, J. Combined Application of Chemical and Organic Fertilizers: Effects on Yield and Soil Nutrients in Spring Wheat under Drip Irrigation. Agronomy 2024, 14, 655. https://doi.org/10.3390/agronomy14040655
Chang X, He H, Cheng L, Yang X, Li S, Yu M, Zhang J, Li J. Combined Application of Chemical and Organic Fertilizers: Effects on Yield and Soil Nutrients in Spring Wheat under Drip Irrigation. Agronomy. 2024; 14(4):655. https://doi.org/10.3390/agronomy14040655
Chicago/Turabian StyleChang, Xiangjie, Hao He, Liyang Cheng, Xiaojuan Yang, Shuai Li, Mengmeng Yu, Jifeng Zhang, and Junhua Li. 2024. "Combined Application of Chemical and Organic Fertilizers: Effects on Yield and Soil Nutrients in Spring Wheat under Drip Irrigation" Agronomy 14, no. 4: 655. https://doi.org/10.3390/agronomy14040655
APA StyleChang, X., He, H., Cheng, L., Yang, X., Li, S., Yu, M., Zhang, J., & Li, J. (2024). Combined Application of Chemical and Organic Fertilizers: Effects on Yield and Soil Nutrients in Spring Wheat under Drip Irrigation. Agronomy, 14(4), 655. https://doi.org/10.3390/agronomy14040655