UAV-Based Remote Sensing to Evaluate Daily Water Demand Characteristics of Maize: A Case Study from Yuci Lifang Organic Dry Farming Experimental Base in Jinzhong City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Collection and Preprocessing
2.2.1. Acquisition and Processing of Multi-Spectral Data
2.2.2. Determination of Canopy Leaf Water Content
2.2.3. Collection and Measurement of Soil Samples
2.2.4. Crop Water Requirements
- (1)
- Meteorological Data
- (2)
- Crop Coefficients
- (3)
- Reference Crop Water Requirements
- (4)
- Crop Height
- (5)
- Water Consumption
2.3. Selection of Vegetation Indices
2.4. Model Construction and Evaluation
3. Results
3.1. Developing and Validating Models for Vegetation Indices Based on Canopy Leaf Water Content
3.2. Model Development and Validation of Canopy Leaf Water Content with Surface Soil Moisture
3.3. Biswas Soil Moisture Estimation Model and Validation
3.4. Plant Height
3.5. Crop Water Requirements
4. Discussion
4.1. Study of Vegetation Indices, Canopy Leaf Water Content, and Biswas Soil Moisture Estimation Models
4.2. Study on Crop Water Requirements at Different Growth Stages
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Timbal, B.; Power, S.; Colman, R.; Viviand, J.; Lirola, S. Does Soil Moisture Influence Climate Variability and Predictability over Australia? J. Clim. 2002, 15, 1230–1238. [Google Scholar] [CrossRef]
- Jingling, C.; Peishu, W.; Linqi, L.; Qian, W.; Xu, W.; Xitian, Y.; Jinsong, Z.; University, H.A. Impacts of radiation, temperature and soil moisture on hidden heat of transpiration and leaf temperature of Quercus variabilis seedlings. Sci. Soil Water Conserv. 2017, 15, 62. [Google Scholar]
- Wang, A.; Ma, X. An overview of soil moisture drought research in China:Progress and perspective. Atmos. Ocean. Sci. Lett. 2023, 16, 22–27. [Google Scholar]
- Dorigo, W.; Himmelbauer, I.; Aberer, D.; Sabia, R. The International Soil Moisture Network: Serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. 2021, 25, 5749–5804. [Google Scholar] [CrossRef]
- Junying, C.; Xintao, W.; Zhitao, Z.; Jia, H.; Zhihua, Y.; Guangfei, W. Soil Salinization Monitoring Method Based on UAV-Satellite Remote Sensing Scale-up. Trans. Chin. Soc. Agric. Mach. 2019, 50, 161–169. [Google Scholar]
- Xianfeng, Z. Co-Inversion and Validation of Large-Area Soil Moisture Based on Modis and Amsr-E Data. Acta Pedol. Sin. 2012, 49, 205–211. [Google Scholar]
- Singh, A.; Kumar, S.; Duhan, D.; Kumar, N.; Dhaloiya, A.; Kumar, M. Assessment of Soil Water Dynamics and Yield Response of Broccoli Under Subsurface Drip Irrigation in the Semi-Arid Region of India. Commun. Soil Sci. Plant Anal. 2023, 55, 636–652. [Google Scholar] [CrossRef]
- Shahi, T.B.; Xu, C.-Y.; Neupane, A.; Guo, W. Recent Advances in Crop Disease Detection Using UAV and Deep Learning Techniques. Remote Sens. 2023, 15, 2450. [Google Scholar] [CrossRef]
- Shahi, T.B.; Xu, C.-Y.; Neupane, A.; Guo, W. Machine learning methods for precision agriculture with UAV imagery: A review. Electron. Res. Arch. 2022, 30, 4277–4317. [Google Scholar] [CrossRef]
- Ilniyaz, O.; Du, Q.; Shen, H.; He, W.; Feng, L.; Azadi, H.; Kurban, A.; Chen, X. Leaf area index estimation of pergola-trained vineyards in arid regions using classical and deep learning methods based on UAV-based RGB images. Comput. Electron. Agric. 2023, 14, 415. [Google Scholar] [CrossRef]
- Rongqiang, G.; Shifu, F. Principles and applications of modern near infrared spectroscopic techniques. Anal. Instrum. 2002, 3, 9–12. [Google Scholar]
- Sergent, A.S.; Segura, V.; Charpentier, J.P.; Dalla-Salda, G.; Martinez-Meier, A. Assessment of resistance to xylem cavitation in cordilleran cypress using near-infrared spectroscopy. For. Ecol. Manag. 2020, 462, 117943. [Google Scholar] [CrossRef]
- Sun, C.B.; Fan, X.W.; Hu, H.Y.; Liang, Y.; Li, Y.Z. Pivotal metabolic pathways related to water deficit tolerance and growth recovery of whole maize plant. Plant Omics 2013, 6, 377–387. [Google Scholar]
- Zheng, X.J.; Song, L.I.; Yan, L.I. Leaf water uptake strategy of desert plants in the Junggar Basin, China. Chin. J. Plant Ecol. 2011, 35, 893–905. [Google Scholar] [CrossRef]
- Xie, C.; Shao, Y.; Li, X.; He, Y. Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging. Sci. Rep. 2015, 5, 16564. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, F.; Scalenghe, R.; Davino, S.; Panno, S.; Scuderi, G.; Ruisi, P.; Villa, P.; Stroppiana, D.; Boschetti, M.; Goulart, L.R. Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 2015, 35, 1–25. [Google Scholar] [CrossRef]
- Sun, J.; Cong, S.; Mao, H.; Wu, X.; Zhang, X.; Wang, P. CARS-ABC-SVR model for predicting leaf moisture of leaf-used lettuce based on hyperspectral. Trans. Chin. Soc. Agric. Eng. 2017, 33, 178–184. [Google Scholar]
- Jun, S.; Xiao-Hong, W.U.; Xiao-Dong, Z. Research on Lettuce Leaves’ Moisture Prediction Based on Hyperspectral Images. Spectrosc. Spectr. Anal. 2013, 33, 522–526. [Google Scholar]
- Zheng, S.; Lan, Z.; Li, W.; Shao, R.; Shan, Y.; Wan, H.; Taube, F.; Bai, Y. Differential responses of plant functional trait to grazing between two contrasting dominant C3 and C4 species in a typical steppe of Inner Mongolia, China. Plant Soil 2011, 340, 141–155. [Google Scholar] [CrossRef]
- Aslan, F.; Prado-Tarango, D.E.; Mata-González, R.; Godwin, D.; Ochoa, C.G. Soil Water Content and Its Interaction with Plant Water Potential in a Conservation Wetland. In Proceedings of the Society for Range Management Annual Meeting, Denver, CO, USA, 16–20 February 2020. [Google Scholar]
- Amatya, S.; Karkee, M.; Alva, A.K. Identifying Water Stress in Potatoes Using Leaf Reflectance as an Indicator of Soil Water Content. GSTF J. Agric. Eng. 2014, 1, 52–61. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, Y.-m.; Xing-kui, N. Studies on the distribution of maize root characteristics at different soil layers and densities. Acta Agric. BorealiGSinica 2011, 26, 99–103. [Google Scholar]
- Maan, C.; ten Veldhuis, M.C.; van de Wiel, B.J.H. Dynamic root growth in response to depth-varying soil moisture availability: A rhizobox study. Hydrol. Earth Syst. Sci. 2023, 27, 2341–2355. [Google Scholar] [CrossRef]
- Tan, C.; Zhang, Z.; Xu, C.; Ma, Y.; Yao, Z.; Wei, G.; Li, Y. Soil water content inversion model in field maize root zone based on UAV multispectral remote sensing. Trans. Chin. Soc. Agric. Eng. 2020, 36, 63–74. [Google Scholar]
- Yueh, S.H.; Shah, R.; Chaubell, M.J.; Hayashi, A.; Colliander, A. A Semiempirical Modeling of Soil Moisture, Vegetation, and Surface Roughness Impact on CYGNSS Reflectometry Data. IEEE Trans. Geosci. Remote Sens. 2020, 60, 5800117. [Google Scholar] [CrossRef]
- Senyurek, V.; Lei, F.; Boyd, D.; Kurum, M.; Moorhead, R. Machine Learning-Based CYGNSS Soil Moisture Estimates over ISMN sites in CONUS. Remote Sens. 2020, 12, 1168. [Google Scholar] [CrossRef]
- Biswas, B.C.; Dasgupta, S.K. Estimation of soil moisture at deeper depth from surface layer data. Mausam 1979, 30, 511–516. [Google Scholar] [CrossRef]
- Yang, J.; Cai, H.; Wang, S.; Xie, H. Relationship between soil moisture in surface layer and in deeper depth in Yangling. Agric. Res. Arid. Areas 2010, 28, 53–57. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Wu, W.D.; Da, W.H.; Qing, L.S.; Zhi, X.J.; Tai, G.R. Soil Properties and Precipitation Potential Productivity Response to Fertilizer Application in Cold Highland semiarid Region. Acta Tritical Crops 2000, 2, 60–65. [Google Scholar]
- Wang, C.; Lin, Q.; Shi, X.-Y.; Li, S.; Jie, X.-J.; Chu, Q.-Q. Assessment on water requirement of oat in different areas using SIMETAW model. J. Agric. Sci. Technol. 2020, 22, 131–139. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements; Food and Agriculture Organization of the United Nations: Washington, DC, USA, 1977. [Google Scholar]
- Chen, Z.; Cheng, Q.-A.; Xu, H.-G.; Huang, X.-Q. Inversion Model of Summer Maize Plant Height and Biomass under Different Water and Fertilizer Treatments Based on UAV Spectra. Agric. Res. Arid. Areas 2023, 4, 198–207. [Google Scholar]
- Prodhan, F.A.; Zhang, J.; Yao, F.; Shi, L.; Pangali Sharma, T.P.; Zhang, D.; Cao, D.; Zheng, M.; Ahmed, N.; Mohana, H.P. Deep learning for monitoring agricultural drought in South Asia using remote sensing data. Remote Sens. 2021, 13, 1715. [Google Scholar] [CrossRef]
- Zhang, A.; Jia, G. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Bhavani, P.; Roy, P.; Chakravarthi, V.; Kanawade, V.P. Satellite remote sensing for monitoring agriculture growth and agricultural drought vulnerability using long-term (1982–2015) climate variability and socio-economic data set. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2017, 87, 733–750. [Google Scholar] [CrossRef]
- Kasampalis, D.A.; Alexandridis, T.K.; Deva, C.; Challinor, A.; Moshou, D.; Zalidis, G. Contribution of remote sensing on crop models: A review. J. Imaging 2018, 4, 52. [Google Scholar] [CrossRef]
- Li, M.; Sun, H.; Zhao, R. A Review of Root Zone Soil Moisture Estimation Methods Based on Remote Sensing. Remote Sens. 2023, 15, 5361. [Google Scholar] [CrossRef]
- Alijani, Z.; Eyre, R.; Saurette, D.; Laamrani, A.; Lindsay, J.; Western, A.; Berg, A. An efficient soil moisture sampling scheme for the improvement of remotely sensed soil moisture validation over an agricultural field. Geoderma 2024, 442, 116763. [Google Scholar] [CrossRef]
- Paolini, G.; Escorihuela, M.J.; Bellvert, J.; Merlin, O.; Pellarin, T. PrISM at Operational Scale: Monitoring Irrigation District Water Use during Droughts. Remote Sens. 2024, 16, 1116. [Google Scholar] [CrossRef]
- Chang, X.; Chang, G. Advances in research and prospect on soil moisture in arid and semi-arid areas. J. Desert Res. 2021, 41, 156. [Google Scholar]
- Reynolds, S. The gravimetric method of soil moisture determination Part IA study of equipment, and methodological problems. J. Hydrol. 1970, 11, 258–273. [Google Scholar] [CrossRef]
- Zhang, Q.; Min, L.; Wang, Y.; Zhu, Y.; Jia, M.; Sun, K.; Shen, Y. Accuracies of soil moisture sensors in typical soils in the Hebei Plain. Chin. J. Eco-Agric. 2023, 31, 1851–1859. [Google Scholar]
- Eltarabily, M.G.; Mohamed, A.Z.; Begna, S.; Wang, D.; Putnam, D.H.; Scudiero, E.; Bali, K.M. Simulated soil water distribution patterns and water use of Alfalfa under different subsurface drip irrigation depths. Agric. Water Manag. 2024, 293, 108693. [Google Scholar] [CrossRef]
- Sun, T.; Li, Z.; Wu, Q.; Sheng, T.; Du, M. Effects of alfalfa intercropping on crop yield, water use efficiency, and overall economic benefit in the Corn Belt of Northeast China. Field Crops Res. 2018, 216, 109–119. [Google Scholar] [CrossRef]
- Adler, J.; Parmryd, I. Quantifying colocalization by correlation: The Pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytom. Part A 2010, 77, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Deering, D.; Schell, J.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Earth Resources and Remote Sensing, United States. 1974. Available online: https://ntrs.nasa.gov/citations/19750020419 (accessed on 10 March 2024).
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Ranjan, R.; Chopra, U.K.; Sahoo, R.N.; Singh, A.K.; Pradhan, S. Assessment of plant nitrogen stress in wheat (Triticum aestivum L.) through hyperspectral indices. Int. J. Remote Sens. 2012, 33, 6342–6360. [Google Scholar] [CrossRef]
- Cho, D.S.; Chung, C.W.; Kim, J.; Ahn, S.; Park, H.S. Analysis on Reports of Statistical Testings for Correlation and Regression. Korean J. Women Health Nurs. 2008, 14, 213. [Google Scholar] [CrossRef]
- Yinglan, A.; Jiang, X.; Wang, Y.; Wang, L.; Zhang, Z.; Duan, L.; Fang, Q. Study on spatio-temporal simulation and prediction of regional deep soil moisture using machine learning. J. Contam. Hydrol. 2023, 258, 104235. [Google Scholar]
- Zhang, L.; Niu, Y.; Zhang, H.; Han, W.; Tang, J. Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring. Front. Plant Sci. 2019, 10, 461668. [Google Scholar] [CrossRef]
- Sah, S.S.; Maulud, K.N.A.; Sharil, S.; Karim, O.A.; Pradhan, B. Monitoring of three stages of paddy growth using multispectral vegetation index derived from UAV images. Egypt. J. Remote Sens. Space Sci. 2023, 26, 989–998. [Google Scholar]
- Cheng, M.; Sun, C.; Nie, C.; Liu, S.; Yu, X.; Bai, Y.; Liu, Y.; Meng, L.; Jia, X.; Liu, Y. Evaluation of UAV-based drought indices for crop water conditions monitoring: A case study of summer maize. Agric. Water Manag. 2023, 287, 108442. [Google Scholar] [CrossRef]
- Ma, B.; Hou, Z.; Jiang, Y. Application of UAV Remote Sensing in Monitoring Water Use Efficiency and Biomass of Cotton Plants Adjacent to Shelterbelt. Front. Plant Sci. 2022, 13, 894172. [Google Scholar] [CrossRef]
- Zhang, N.; Su, X.; Zhang, X.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Monitoring daily variation of leaf layer photosynthesis in rice using UAV-based multi-spectral imagery and a light response curve model. Agric. For. Meteorol. 2020, 291, 108098. [Google Scholar] [CrossRef]
- Liang, D.; Yang, Q.; Huang, W.; Peng, D.; Song, X. Estimation of leaf area index based on wavelet transform and support vector machine regression in winter wheat. Infrared Laser Eng. 2015, 44, 335–340. [Google Scholar]
- Ye, R. Study on the Growth and Development Patterns of Corn Plants; Shanxi Agricultural University: Shanxi, China, 2019. [Google Scholar]
- Ying, H.; Nan, Y.; Jinzhi, Y.; Jihua, L. Application of UAV remote sensing technology in maize height extraction. Surv. Mapp. Technol. Equip. 2023, 25, 83–88. [Google Scholar]
- Wang, Z.; Zhang, H.; Yin, M.; Wu, Y.; Danyal, A.; Guo, B. Effect of unsaturated soil water transport function li nearization for mulched drip irrigation. Soil Tillage Res. 2024, 237, 105964. [Google Scholar] [CrossRef]
- Du, B.; Qu, Z.; Yu, J.; Sun, G.; Shi, J. Experimental study on crop coefficient under mulched drip irrigation in Hetao Irrigation District of Inner Mongolia. J. Irrig. Drain 2014, 33, 16–20. [Google Scholar]
- Shu-ming, B.; Zhong-yan, H.; Yu, W. Experimental Studies on the Orderliness of Water Requirement and Irrigating Effects of Maize in Yunnan. Chin. J. Agrometeorol. 2003, 24, 4. [Google Scholar]
- Wendt, C.; Onken, A.; Wilke, O.; Hargrove, R.; Bausch, W.; Barnes, L. Effect of irrigation systems on the water requirements of sweet corn. Soil Sci. Soc. Am. J. 1977, 41, 785–788. [Google Scholar] [CrossRef]
- Wang, J.; Cai, H.; Kang, Y.; Chen, F. Ratio of soil evaporation to the evapotranspiration for summer maize field. Trans. CSAE 2007, 23, 17–22. [Google Scholar]
- Wang, H.; Tan, G.; Sun, Q.; Zhou, H. Variation of spring corn water requirement and its relaionship with the meteorological factors in Chengde, Hebei province. J. Meteorol. Environ. 2012, 28, 4. [Google Scholar]
- Junfu, X.; Zhandong, L.; Yumin, C. Study on the water requirement and water requirement regulation of maize in China. J. Maize Sci. 2008, 4, 21–25. [Google Scholar]
- Fan, X. Study on Maize Water Requirement and Optimize Irrigation System under Different Water Stress; Inner Mongolia Agricultural University: Inner Mongolia, China, 2013. [Google Scholar]
Date | Number of Images | Date | Number of Images |
---|---|---|---|
29 June | 5845 | 30 June | 5845 |
3 July | 5840 | 5 July | 8260 |
7 July | 8265 | 9 July | 8260 |
12 July | 8245 | 14 July | 8260 |
16 July | 8260 | 18 July | 8260 |
21 July | 8265 | 25 July | 8265 |
27 July | 8265 | 1 August | 8030 |
15 August | 9745 | 24 August | 9515 |
20 August | 9740 | 29 August | 9395 |
4 September | 9355 | 16 September | 4275 |
20 September | 9640 | 30 September | 9700 |
Vegetation Indices | Formula |
---|---|
Normalized Difference Vegetation Index () | |
Renormalized Difference Vegetation Index () | |
Non-linear Vegetation Index () | |
Green Normalized Difference Vegetation Index () | |
Ratio Vegetation Index () | |
Soil Adjusted Vegetation Index () | |
Normalized Difference Green Index () | |
Wide Dynamic Range Vegetation Index () | |
Optimized Soil Adjusted Vegetation Index () | |
Greenness Index () | |
Modified Simple Ratio () | |
Ratio Vegetation Index 2 () |
Vegetation Index | Correlation | Vegetation Index | Correlation | Vegetation Index | Correlation |
---|---|---|---|---|---|
WDRVI | 0.898 ** | RVI | 0.898 ** | MSR | 0.898 ** |
NDGI | 0.891 ** | NDVI | 0.889 ** | SAVI | 0.889 ** |
RVI2 | 0.882 ** | GI | 0.878 ** | GNDVI | 0.861 ** |
NLI | 0.842 ** | OSAVI | 0.834 ** | RDVI | 0.768 ** |
Vegetation Index | Model | Formula | Adjusted R2 |
---|---|---|---|
NDVI | linear regression non-linear regression | y = 0.8077 x + 0.0680 y = 3.0852 x2 − 3.5396 x + 1.5667 | 0.78430 0.84910 |
RVI | linear regression non-linear regression | y = 0.0282 x + 0.4213 y = −0.0009 x2 + 0.0427 x + 0.3677 | 0.80938 0.80586 |
SAVI | linear regression non-linear regression | y = 0.5386 x + 0.0679 y = 1.3722 x2 − 2.3615 x + 1.5675 | 0.78423 0.84907 |
MSR | linear regression non-linear regression | y = 0.5386 x + 0.0679 y = 1.3722 x2 − 2.3615 x + 1.5675 | 0.83007 0.82761 |
NDGI | linear regression non-linear regression | y = 0.9709 x + 0.4905 y = 0.3919 x2 + 0.8429 x + 0.4982 | 0.81456 0.80780 |
WDRVI | linear regression non-linear regression | y = 0.1695 x + 0.5625 y = −0.0311 x2 + 0.2042 x + 0.5595 | 0.80938 0.80586 |
Depth/cm | Formula | R2 |
---|---|---|
0~10 | y = 0.2953x − 0.0541 | 0.44 |
0~20 | y = 0.3831x − 0.0916 | 0.75 |
Soil layer depth/cm | 10 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 |
Coefficient of variation/% | 43.97 | 21.22 | 19.44 | 17.52 | 14.06 | 11.23 | 11.05 | 13.29 | 11.25 | 12.43 | 12.03 |
d0/cm | Biswas Soil Moisture Estimation Model | R2 |
---|---|---|
0–10 | y = 0.108449 x1 − 0.000033 x2 + 0.673764 | 0.9980 |
0–20 | y = 0.096848 x1 − 0.000036 x2 + 0.816500 | 0.9984 |
Growth Stage | Average Plant Height/m | Crop Coefficient |
---|---|---|
Mid-stage | 1.4188 | 1.2531 |
Late stage | 1.8489 | 0.6342 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Qu, T.; Wang, Y.; Zhao, Q.; Jia, S.; Yin, Z.; Guo, Z.; Wang, G.; Li, F.; Zhang, W. UAV-Based Remote Sensing to Evaluate Daily Water Demand Characteristics of Maize: A Case Study from Yuci Lifang Organic Dry Farming Experimental Base in Jinzhong City, China. Agronomy 2024, 14, 729. https://doi.org/10.3390/agronomy14040729
Li Y, Qu T, Wang Y, Zhao Q, Jia S, Yin Z, Guo Z, Wang G, Li F, Zhang W. UAV-Based Remote Sensing to Evaluate Daily Water Demand Characteristics of Maize: A Case Study from Yuci Lifang Organic Dry Farming Experimental Base in Jinzhong City, China. Agronomy. 2024; 14(4):729. https://doi.org/10.3390/agronomy14040729
Chicago/Turabian StyleLi, Yaoyu, Tengteng Qu, Yuzhi Wang, Qixin Zhao, Shujie Jia, Zhe Yin, Zhaodong Guo, Guofang Wang, Fuzhong Li, and Wuping Zhang. 2024. "UAV-Based Remote Sensing to Evaluate Daily Water Demand Characteristics of Maize: A Case Study from Yuci Lifang Organic Dry Farming Experimental Base in Jinzhong City, China" Agronomy 14, no. 4: 729. https://doi.org/10.3390/agronomy14040729
APA StyleLi, Y., Qu, T., Wang, Y., Zhao, Q., Jia, S., Yin, Z., Guo, Z., Wang, G., Li, F., & Zhang, W. (2024). UAV-Based Remote Sensing to Evaluate Daily Water Demand Characteristics of Maize: A Case Study from Yuci Lifang Organic Dry Farming Experimental Base in Jinzhong City, China. Agronomy, 14(4), 729. https://doi.org/10.3390/agronomy14040729