Sunflower Growth and Grain Yield under Different Tillage Systems and Sources of Organic Manure on Contrasting Soil Types in Limpopo Province of South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites Description
2.2. Field Layout
2.3. Tillage System
2.4. Manure Source, Analysis and Application
2.5. Agronomic Data Collection
2.5.1. Plant Density and Spacing
2.5.2. Grain Yield
2.5.3. Leaf Area Index and Aboveground Dry Matter
2.6. Statistical Analysis
3. Results
3.1. Pre-Cropping Selected Soil Properties of the Experimental Sites
3.2. Chemical Properties of the Organic Manure
3.3. Meteorological Conditions at the Experimental Sites
3.4. Analysis of Variance (ANOVA) on the Effect of Cropping Season, Tillage System, Manure Rate and Their Interactions on Sunflower Grain Yield and Yield Components at Syferkuil
3.5. ANOVA on the Effect of Cropping Season, Tillage System, Manure Rate and Their Interactions on Sunflower Grain Yield and Yield Components at UNIVEN
3.6. Effect of Tillage System on Grain Yield, Head Diameter, Head Dry Matter and 100 Seed Weight
3.7. Effect of Manure Rate on Grain Yield, Head Diameter, Head Dry Matter and 100 Seed Weight
3.8. Effect of Tillage System on Aboveground Dry Matter and Leaf Area Index (LAI) of Sunflower under Three Growing Stages
3.9. Effect of Manure Rate on Aboveground Dry Matter and Leaf Area Index (LAI) of Sunflower under Three Growing Stages
3.10. Effect of Tillage System on Plant Height and Stem Girth of Sunflower under Three Growing Stages
3.11. Effect of Manure Rate on Plant Height and Stem Girth of Sunflower under Three Growing Stages
4. Discussion
4.1. Effect of Tillage System and Manure Rate on Grain Yield, Head Diameter, Head Dry Matter and 100 Seed Weight
4.2. Effect of Tillage and Manure Rate on Aboveground Biomass, LAI, Plant Height and Stem Girth
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meyer, F.; van der Burgh, G. The competitiveness of the South African sunflower value chain. Oilseeds Focus 2015, 1, 28–31. [Google Scholar]
- Department of Agriculture, Forestry and Fisheries (DAFF). South Africa Yearbook 2017/18; Department of Agriculture, Forestry and Fisheries: Pretoria, South Africa, 2017. [Google Scholar]
- Southern African Grain Laboratory (SAGL). South African Sunflower Crop, Quality Report 2019/2020 Season; The Southern African Grain Laboratory NPC: Pretoria, South Africa, 2020. [Google Scholar]
- Grain, S.A. Science Supports Sunflower Production; Pula/Imvula: Pretoria, South Africa, 2017. [Google Scholar]
- Department of Agriculture, Land Reform and Rural Development (DALRRD). A Profile of the South African Market Value Chain 2021; Department of Agriculture, Land Reform and Rural Development: Pretoria, South Africa, 2021. [Google Scholar]
- Mathagu, H.T.; Belete, A.; Oluwatayo, I.B.; Nesamvuni, A.E. Market Participation of Smallholder Sunflower Farmers in Sekhukhune District of Limpopo Province, South Africa. Agric. Res. Technol. 2018, 5, 1–6. [Google Scholar] [CrossRef]
- Kephe, P.N.; Ayisi, K.K.; Petja, B.M.; Mulaudzi, A.P.; Mabitsela, K.E. Factors Influencing the Production of Oilseed Crops among Smallholder Farmers in Limpopo Province. OCL 2020, 27, 41. [Google Scholar] [CrossRef]
- Hensley, M.; Botha, J.J.; Anderson, J.J.; van Staden, P.P.; du Toit, A. Optimising Rainfall Use Efficiency for Developing Farmers with Limited Access to Irrigation Water; Water Research Commission Report, 878/1/00; Water Research Commission: Pretoria, South Africa, 2000. [Google Scholar]
- Botha, J.J.; van Rensburg, L.D.; Anderson, J.J.; Hensley, M.; Macheli, M.S.; Van Staden, P.P.; Kundhlande, G.; Groenewald, D.G.; Baiphethi, M.N. Water Conservation Techniques on Small Plots in Semi-Arid Areas to Enhance Rainfall Use Efficiency, Food Security, and Sustainable Crop Production; Water Research Commission Report 1176/1/03; Water Research Commission: Pretoria, South Africa, 2003. [Google Scholar]
- Botha, J.J. Evaluation of Maize and Sunflower Production in a Semi-Arid Area Using in-Field Rainwater Harvesting. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2006. [Google Scholar]
- Mzezewa, J.; Gwata, E.T.; Van Rensburg, L.D. Yield and Seasonal Water Productivity of Sunflower as Affected by Tillage and Cropping Systems under Dryland Conditions in the Limpopo Province of South Africa. Agric. Water Manag. 2011, 98, 1641–1648. [Google Scholar] [CrossRef]
- Tesfuhuney, W.; Ravuluma, M.; Dzvene, A.R.; Bello, Z.; Andries, F.; Walker, S.; Cammarano, D. In-Field Rainwater Harvesting Tillage in Semi-Arid Ecosystems: I Maize–Bean Intercrop Performance and Productivity. Plants 2023, 12, 3027. [Google Scholar] [CrossRef] [PubMed]
- Ngwepe, M.R. Evaluating Rainwater Harvesting and Conservation Techniques on the Towoomba/Arcadia Ecotope. Master’s Thesis, University of Limpopo, Turfloop, South Africa, 2015. [Google Scholar]
- Food and Agricultural Organization of the United Nations (FAO). Drought Impact Mitigation and Prevention in the Limpopo River Basin; Land and Water Discussion Paper 4; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004; Available online: http://www.fao.org/docrep/008/y5744e/y5744e00.HTM (accessed on 3 December 2004).
- Jiyane, J.; Simalenga, T.E. Factors Influencing Under-Utilisation of Smallholder Irrigation Schemes and Opportunities to Improve the Schemes’ Productivity in Limpopo Province, Water Research Commission; Report No. TT 787/19, Report to the ISBN 978-0-6392-0100-9; Water Research Commission: Pretoria, South Africa, 2019; ISBN 978-0-6392-0100-9. [Google Scholar]
- Mzezewa, J.; Gwat, E.T. The Nature of Rainfall at a Typical Semi-Arid Tropical Ecotope in Southern Africa and Options for Sustainable Crop Production. In Crop Production Technologies; Sharma, P., Ed.; InTech: Vienna, Austria, 2012. [Google Scholar] [CrossRef]
- Ubisi, N.R.; Mafongoya, P.L.; Kolanisi, U.; Jiri, O. Smallholder farmer’s perceived effects of climate change on crop production and household livelihoods in rural Limpopo province, South Africa. Chang. Adapt. Socio-Ecol. Syst. 2017, 3, 27–38. [Google Scholar] [CrossRef]
- Mupangwa, W.; Love, D.; Twomlow, S. Soil–Water Conservation and Rainwater Harvesting Strategies in the Semi-Arid Mzingwane Catchment, Limpopo Basin, Zimbabwe. Phys. Chem. Earth Parts A/B/C 2006, 31, 893–900. [Google Scholar] [CrossRef]
- Zougmoré, R.; Jalloh, A.; Tioro, A. Climate-Smart Soil Water and Nutrient Management Options in Semiarid West Africa: A Review of Evidence and Analysis of Stone Bunds and Zaï Techniques. Agric. Food Secur. 2014, 3, 16. [Google Scholar] [CrossRef]
- Soil Classification Working Group. Soil Classification. A Taxonomic System for South Africa; Department of Agricultural Development: Pretoria, South Africa, 1991. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; Rome, Italy. 2015. Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 4 January 2016).
- Van Huyssteen, C.W. Relating the South African Soil Taxonomy to the World Reference Base for Soil Resources; SunBonani Scholar: Bloemfontein, South Africa, 2020. [Google Scholar]
- Mzezewa, J.; Van Rensburg, L. Effects of Tillage on Runoff from a Bare Clayey Soil on a Semi-Arid Ecotope in the Limpopo Province of South Africa. Water SA 2011, 37, 165–172. [Google Scholar] [CrossRef]
- Mokgolo, M.J. Organic Manure Effects on Selected Soil Properties, Water Use Efficiency and Grain Yield of Sunflower. Master’s Thesis, University of Venda, Thohoyandou, South Africa, 2016. [Google Scholar]
- Nyamangara, J.; Mudhara, M.; Giller, K.E. Effectiveness of cattle manure and nitrogen fertilizer application on the agronomic and economic performance of maize. S. Afr. J. Plant Soil. 2005, 22, 59–63. [Google Scholar] [CrossRef]
- Eleduma, A.; Aderibigbe, A.; Obabire, S. Effect of Cattle Manure on the Performances of Maize (Zea mays L) Grown in Forest-Savannah Transition Zone Southwest Nigeria. Int. J. Agric. Sc. Food Technol. 2020, 6, 110–114. [Google Scholar] [CrossRef]
- Odhiambo, J.J.O.; Nemadodzi, L.E. Soil fertility management practices by smallholder farmers in Vhembe district, Limpopo Province. S. Afr. J. Agric. Ext. 2007, 36, 53–61. [Google Scholar]
- Azeez, J.O.; Van Averbeke, W. Nitrogen Mineralization Potential of Three Animal Manures Applied on a Sandy Clay Loam Soil. Bioresour. Technol. 2010, 101, 5645–5651. [Google Scholar] [CrossRef] [PubMed]
- Okorogbona, A.O.M.; Adebisi, L.O. Animal manure for smallholder agriculture in South Africa. In Farming for Food and Water Security; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 201–242. [Google Scholar] [CrossRef]
- Ayuba, S.A.; John, C.; Obasi, M.O. Effects of organic manure on soil chemical properties and yield of ginger. Niger. J. Soil Sci. 2005, 15, 136–138. [Google Scholar]
- Akparobi, S.O. Effect of farmyard manures on the growth and yield of Amaranthus cruentus. Agric. Trop. Subtrop. 2009, 42, 1–4. [Google Scholar]
- Adebisi, L.O. Safe Rate of Application and Fertiliser Value of Cattle Kraal Manure and Promis® Poultry Manure. Master’s Thesis, Department of Crop Sciences at Tshwane University of Technology, Pretoria, South Africa, 2015. [Google Scholar]
- Mokgolo, M.J.; Mzezewa, J.; Odhiambo, J.J.O. Poultry and Cattle Manure Effects on Sunflower Performance, Grain Yield and Selected Soil Properties in Limpopo Province, South Africa. S. Afr. J. Sci. 2019, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Okorogbona, A.O.M.; Van Averbeke, W.; Ramusandiwa, T.D. Growth and yield response of chinese cabbage (Brassica rapa L. subsp. chinensis) as affected by nutrient availability in air-dried and pulverized different types of animal manure using low biological activity soil. World J. Agric. Sci. 2011, 7, 1–12. [Google Scholar]
- Mehdizadeh, M.; Darbandi, E.I.; Naseri-Rad, H.; Tobeh, A. Growth and yield of tomato (Lycopersicon esculentum Mill.) as influenced by different organic fertilizers. Int. J. Agron. Plant Prod. 2013, 4, 734–738. [Google Scholar]
- Van Averbeke, W.; Yoganathan, S. Using Kraal Manure as a Fertilizer, 2nd ed.; Department of Agriculture: Pretoria, South Africa, 2003. [Google Scholar]
- Nel, A.A.; Loubser, H.L.; Hammes, P.S. The effect of plant population on the quality of sunflower seed for processing. S. Afr. J. Plant Soil 2000, 17, 6–9. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Fanasca, S.; Karam, F. Leaf Area Estimation of Sunflower Leaves from Simple Linear Measurements. Photosynt. 2007, 45, 306–308. [Google Scholar] [CrossRef]
- SPSS Corp. IBM SPSS Statistics for Windows, Version 20.0; IBM Corp.: Armonk, NY, USA, 2011. [Google Scholar]
- Landon, J.R. Booker Tropical Soil Manual. A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics, 1st ed.; Routledge: London, UK; New York, NY, USA, 1991; pp. 61–98. [Google Scholar] [CrossRef]
- Fertilizer Association of Southern Africa (FERTASA). Fertilizer Handbook, 7th ed.; Lynnwood Ridge: Pretoria, South Africa, 2016. [Google Scholar]
- Chuene, M.M. Response of Maize to Rainwater Harvesting and Conservation Techniques on the Glen/Oakleaf Ecotope. Master’s Thesis, University of the Free State, Bloemfontein, South Africa, 2016. [Google Scholar]
- Joseph, L.F. Maize Response to In-Field Rainwater Harvesting on the Fort Hare/Oakleaf Ecotope. Master’s Thesis, University of the Free State, Bloemfontein, South Africa, 2007. [Google Scholar]
- Naba, W.; Moges, A.; Gebremichael, A. Evaluating the Effect of In-Situ Rainwater Harvesting Techniques on Maize Production in Moisture Stress Areas of Humbo Woreda, Wolaita Zone, Southern Ethiopia. Int. J. Agril. Res. Innov. Technol. 2020, 10, 71–79. [Google Scholar] [CrossRef]
- Zerizghy, M.G. Integrating Rainfall Runoff and Evaporation Models for Estimating Soil Moisture Storage during Fallow under In-Field Rainwater Harvesting. Ph.D. Thesis, Department of Soil, Crop and Climate Sciences at the University of the Free State, Bloemfontein, South Africa, 2016. [Google Scholar]
- Wang, X.; Jia, Z.; Liang, L.; Yang, B.; Ding, R.; Nie, J.; Wang, J. Impacts of Manure Application on Soil Environment, Rainfall Use Efficiency and Crop Biomass under Dryland Farming. Sci. Rep. 2016, 6, 20994. [Google Scholar] [CrossRef] [PubMed]
- Bakayoko, S.; Soro, D.; Nindjin, C.; Dao, D.; Tschannen, A.; Girardin, O.; Assa, A. Effects of cattle and poultry manures on organic matter content and adsorption complex of a sandy soil under cassava cultivation (Manihot esculenta, Crantz). Afr. J. Sci. Technol. 2009, 3, 190–197. [Google Scholar]
- Kulkarni, S.S.; Babu, R.; Pujari, B.T. Growth, yield and yield parameters of sunflower as influenced by organic manures, biofertilizers and micronutrients under irrigation. Kamataka J. Agric. Sci. 2002, 15, 253–255. [Google Scholar]
- Helmy, A.M.; Ramadan, M.F. Agronomic Performance and Chemical Response of Sunflower (Helianthus annuus L.) to Some Organic Nitrogen Sources and Conventional Nitrogen Fertilizers under Sandy Soil Conditions. Grasas Y Aceites 2009, 60, 55–67. [Google Scholar] [CrossRef]
- Ahmad, S.; Hussain, I.; Ghaffar, A.; Rahman, M.H.U.; Saleem, M.Z.; Yonas, M.W.; Hussnain, H.; Ikram, R.M.; Arslan, M. Organic Amendments and Conservation Tillage Improve Cotton Productivity and Soil Health Indices under Arid Climate. Sci. Rep. 2022, 12, 14072. [Google Scholar] [CrossRef]
- Vaidya, M.M.; Shivaprasad, D.; Lamani, N.; Swamy, K.R.; Kotresh, S. Effect of In-Situ Moisture Conservation Measures and Application of Organic Manures on Soil Properties in Simarouba Glauca Plantation. Proc. Int. Acad. Ecol. Environ. Sci. 2016, 6, 84–96. [Google Scholar]
- Tesfuhuney, W.; Walker, S.; Fouri, A. Uptake of Knowledge, Technology and Practices for Improving Water Productivity in Rainfed Cropping Systems in Eastern Free State; Report 2020, Report No. K/2821/4; Water Research Commission: Pretoria, South Africa, 2020. [Google Scholar]
- Ibraimo, N.A. Rainwater Harvesting: Management Strategies in Semi-Arid Areas. Master’s Thesis, Faculty of Natural and Agricultural Sciences at the University of Pretoria, Pretoria, South Africa, 2011. [Google Scholar]
- Kugedera, A.T.; Mandumbu, R.; Nyamadzawo, G. Rainwater harvesting and Leucaena leucocephala biomass rates effects on soil moisture, water use efficiency and Sorghum bicolor [(L.) Moench] productivity in a semi-arid area in Zimbabwe. J. Sci. Food Agric. 2022, 102, 6443–6453. [Google Scholar] [CrossRef] [PubMed]
- Kubiku, F.N.M.; Nyamadzawo, G.; Nyamangara, J.; Mandumbu, R. Effect of contour rainwater-harvesting and integrated nutrient management on sorghum grain yield in semi-arid farming environments of Zimbabwe. Acta Agric. Scand. B Soil. Plant Sci. 2022, 72, 364–374. [Google Scholar] [CrossRef]
- Tesfuhuney, W.A. Optimising Runoff to Basin Ratios for Maize Production with In-Field Rainwater Harvesting. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2012. [Google Scholar]
- Hati, K.; Mandal, K.G.; Misra, A.K.; Ghosh, P.K.; Bandyopadhyay, K.K. Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution, and water-use efficiency of soybean in Vertisols of central India. Bioresour. Technol. 2006, 97, 2182–2188. [Google Scholar] [CrossRef]
- Mansouri-Far, C.; Sanavy, S.A.M.M.; Saberali, S.F. Maize yield response to deficit irrigation during low sensitive growth stages and nitrogen rate under semi-arid climatic conditions. Agric. Water Manag. 2010, 97, 12–22. [Google Scholar] [CrossRef]
- Asfaw, M.D. Effects of animal manures on growth and yield of maize (Zea mays L.). J. Plant Sci. Phytopathol. 2022, 6, 033–039. [Google Scholar] [CrossRef]
- Sani, M.; Babayo, A.; Ahmad, B.A.; Sani, S. Effects of Manure Types on The Emergence and Seedlings Growth of Amaranths in a Sahelian Savanna Region of Nigeria. IRE J. 2022, 5, 563–570. [Google Scholar]
- Alamzeb, M.; Anwar, S.; Iqbal, A.; Meizhen, S.; Iqbal, M.; Sara, S.; Ramzan, M.; Tabassum, A. Application of Organic Sources and Nitrogen Affect Dry Matter Partitioning in Wheat under Tillage Systems. Pak. J. Agric. Res. 2018, 31, 106–115. [Google Scholar] [CrossRef]
- Usman, M. Cow Dung, Goat and Poultry Manure and Their Effects on the Average Yields and Groth Parameters of Tomato Crop. J. Biol. Agric. Healthc. 2015, 5, 7–11. [Google Scholar]
- Mayele, J.M.; Abu, F.R. Determining the Effects of Selected Organic Fertilizer on Growth and Yields of Tomato (Lycopersicon esculentum: Var. Rio Grande Tomatoes) in Mundri West County, Western Equatoria State, South Sudan. Agric. Sci. 2023, 14, 1343–1374. [Google Scholar] [CrossRef]
- Akash, S.; Dalavi, P.N.; Srikanth, H.; Bonthagorla, U. Effects of organic manure and fertilizers on physicochemical properties of the soil: A review. J. Pharm. Innov. 2022, 11, 1856–1860. [Google Scholar]
Soil Properties | Depth (cm) | Syferkuil | UNIVEN |
---|---|---|---|
Soil physical properties | |||
Sand (%) | 0–20 | 67 | 23 |
20–40 | 68 | 24 | |
Silt (%) | 0–20 | 18 | 17 |
20–40 | 15 | 18 | |
Clay (%) | 0–20 | 15 | 60 |
20–40 | 17 | 58 | |
Bulk density (g/cm3) | 0–20 | 1.35 | 1.17 |
20–40 | 1.35 | 1.22 | |
Aggregate stability (g/g) | 0–20 | 0.2911 | 0.6241 |
20–40 | 0.2108 | 0.4629 | |
Soil chemical properties | |||
pH (H2O) | 0–20 | 7.30 | 5.90 |
20–40 | 7.34 | 5.52 | |
Organic carbon (%) | 0–20 | 0.74 | 1.70 |
20–40 | 0.66 | 1.12 | |
Total N (%) | 0–20 | 0.070 | 0.067 |
20–40 | 0.061 | 0.042 | |
Available P (mg/kg) | 0–20 | 14.93 | 4.77 |
20–40 | 8.04 | 1.86 | |
Ca (mg/kg) | 0–20 | 890 | 980 |
20–40 | 902 | 884 | |
Mg (mg/kg) | 0–20 | 441.6 | 247.2 |
20–40 | 469.2 | 229.2 | |
K (mg/kg) | 0–20 | 226.2 | 113.1 |
20–40 | 218.4 | 93.6 | |
Na (mg/kg) | 0–20 | 36.8 | 23.0 |
20–40 | 39.1 | 20.7 |
Organic Manure Sources | pH (H2O) | Total C (%) | Total N (%) | P (g kg−1) | K (g kg−1) | Na (g kg−1) | Ca (g kg−1) | Mg (g kg−1) | C/N Ratio |
---|---|---|---|---|---|---|---|---|---|
CM | 8.54 | 28.3 | 2.10 | 4.27 | 14.6 | 2.53 | 18.80 | 13.30 | 13.5:1 |
PM | 7.42 | 30.4 | 2.31 | 12.28 | 17.8 | 3.89 | 35.90 | 10.2 | 13.2:1 |
Syferkuil | UNIVEN | |||||||
---|---|---|---|---|---|---|---|---|
2021/2022 cropping season | ||||||||
Date | Rainfall (mm) | Rainy days c | Temperature (max) | Temperature (min) | Rainfall (mm) | Rainy days c | Temperature (max) | Temperature (min) |
22 January | 53.08 a | 5 | 27.33 | 15.64 | ||||
22-February | 49.02 | 8 | 30.18 | 15.13 | 17.77 a | 7 | 31.18 | 32.30 |
22-March | 8.86 | 8 | 27.21 | 13.87 | 102.6 | 11 | 29.51 | 30.03 |
22-April | 3.8 | 4 | 25.45 | 11.94 | 241.03 | 13 | 26.78 | 27.53 |
22-May | 0.0 b | 0 | 25.14 | 6.02 | 0.0 b | 0 | 26.94 | 27.97 |
Total/average | 114.76 | 25 | 27.06 | 12.52 | 361.40 | 31 | 28.60 | 29.46 |
2022/2023 cropping season | ||||||||
23 January | 10.67 a | 2 | 29.52 | 16.73 | 7.36 a | 2 | 33.24 | 19.37 |
23 February | 175.95 | 14 | 27.07 | 17.10 | 434.9 | 21 | 29.88 | 20.43 |
23 March | 17.02 | 5 | 28.04 | 13.58 | 31.24 | 9 | 30.09 | 18.14 |
23 April | 1.27 | 2 | 29.89 | 14.30 | 19.6 | 1 | 30.8 | 15.24 |
23 May | 9.90 b | 4 | 26.00 | 10.16 | 0.51 b | 1 | 28.76 | 14.82 |
Total/average | 214.81 | 27 | 28.10 | 14.37 | 493.61 | 34 | 30.55 | 17.60 |
Treatment | GY (kg ha−1) | HD (cm) | HDM (g Plant−1) | 100 Seed Weight (g) |
---|---|---|---|---|
Tillage System (TS) | 2021/2022 cropping season | |||
CON | 1746.51 a | 17.47 a | 50.01 a | 5.91 a |
IRWH | 3390.97 b | 21.43 b | 77.43 b | 6.01 a |
Manure rate (MR) | ||||
0 | 1943.87 a | 15.17 a | 33.53 a | 5.74 a |
20PM | 2514.76 ab | 20.64 b | 66.31 b | 5.90 a |
35PM | 3261.64 b | 22.56 c | 89.50 c | 6.15 a |
20CM | 2236.10 a | 17.78 d | 57.04 d | 5.92 a |
35CM | 2887.32 b | 21.11 b | 72.21 b | 6.07 a |
TS | p < 0.05 | p < 0.05 | p < 0.05 | ns |
MR | ns | p < 0.05 | p < 0.05 | ns |
TS × MR | ns | p < 0.05 | ns | ns |
Tillage system (TS) | 2022/2023 cropping season | |||
CON | 2731.67 a | 26.21 a | 32.80 a | 5.98 |
IRWH | 3816.75 b | 28.12 b | 37.72 b | 6.15 |
Manure rate (MR) | ||||
0 | 1941.75 a | 21.39 a | 28.95 a | 6.01 |
20PM | 3213.15 ab | 29.78 bc | 37.91 bc | 6.14 |
35PM | 4945.60 c | 31.03 b | 39.42 c | 6.03 |
20CM | 2447.21 ab | 26.06 d | 34.43 d | 6.03 |
35CM | 3823.35 bc | 27.58 dc | 35.59 bd | 6.12 |
TS | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 |
MR | p < 0.05 | p < 0.05 | p < 0.05 | ns |
TS ×MR | ns | ns | ns | ns |
Treatment | GY (kg ha−1) | HD (cm) | HDM (g Plant−1) | 100 Seed Weight (g) |
---|---|---|---|---|
Tillage system (TS) | 2021/2022 cropping season | |||
CON | 1357.54 a | 19.15 a | 44.17 a | 6.00 a |
IRWH | 1821.99 b | 20.75 b | 40.67 b | 6.024 a |
Manure rate (MR) | ||||
0 | 1108.70 a | 16.22 a | 27.90 a | 5.88 a |
20PM | 1685.48 b | 19.58 b | 36.36 ab | 6.07 a |
35PM | 1850.48 b | 22.09 c | 56.27 c | 6.14 a |
20CM | 1486.68 ab | 20.00 b | 41.55 db | 5.99 a |
35CM | 1817.49 b | 21.83 c | 50.04 dc | 5.99 a |
TS | p < 0.05 | p < 0.05 | ns | ns |
MR | p < 0.05 | p < 0.05 | p < 0.05 | ns |
TS × MR | ns | p < 0.05 | ns | ns |
Tillage System (TS) | 2022/2023 cropping season | |||
CON | 1715.45 a | 19.67 a | 32.60 a | 6.08 a |
IRWH | 2302.54 b | 21.38 b | 37.84 b | 6.05 a |
Manure rate (MR) (t ha−1) | ||||
0 | 1319.81 a | 17.14 a | 27.02 a | 6.05 a |
20PM | 2237.38 b | 19.97 b | 32.84 b | 6.05 a |
35PM | 2443.32 b | 22.64 c | 42.54 c | 6.10 a |
20CM | 1823.94 ab | 21.08 bd | 34.84 bd | 6.09 a |
35CM | 2220.53 b | 21.78 cd | 38.87 cd | 6.04 a |
TS | p < 0.05 | p < 0.05 | p < 0.05 | ns |
MR | p < 0.05 | p < 0.05 | p < 0.05 | ns |
TS × MR | ns | ns | ns | ns |
Treatment | Aboveground Dry Matter (kg ha−1) | LAI | Plant Height (cm) | Stem Girth (cm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FBS | FS | MS | FBS | FS | MS | FBS | FS | MS | FBS | FS | MS | |
Tillage System (TS) | 2021/2022 cropping season | |||||||||||
CON | 936.10 a | 3453.23 a | 4948.37 a | 0.799 a | 0.953 a | 1.269 a | 82.12 a | 129.57 a | 135.17 a | 7.20 a | 10.83 a | 10.69 a |
IRWH | 1298.57 b | 3711.20 b | 5574.10 b | 0.834 b | 0.964 a | 1.078 a | 91.37 b | 127.50 a | 134.93 a | 7.93 a | 10.82 a | 10.92 a |
Manure rate (MR) | ||||||||||||
0 | 756.00 b | 3345.83 a | 4884.33 a | 0.754 a | 0.916 a | 1.053 a | 65.33 a | 103.33 a | 110.58 a | 5.75 a | 8.58 a | 8.63 a |
20PM | 1098.27 a | 3583.50 b | 5116.73 a | 0.817 bc | 0.974 a | 1.075 a | 88.88 bc | 136.67 b | 143.42 b | 8.33 bc | 11.50 bc | 11.46 b |
35PM | 1406.40 c | 3886.07 c | 5752.33 b | 0.857 b | 0.976 a | 1.102 a | 100.38 c | 146.42 b | 153.08 b | 9.42 b | 12.54 b | 11.92 b |
20CM | 989.10 a | 3436.33 a | 5104.90 a | 0.811 c | 0.969 a | 1.069 a | 84.75 b | 122.17 ba | 130.08 ba | 6.83 a | 9.96 ac | 10.25 ab |
35CM | 1286.93 c | 3659.40 b | 5447.93 c | 0.843 bc | 0.960 a | 1.068 a | 94.38 bc | 134.08 b | 138.08 b | 7.50 ac | 11.54 b | 11.75 b |
TS | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | ns | ns | p < 0.05 | ns | ns | ns | ns | ns |
MR | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | ns | ns | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 |
TS × MR | ns | p < 0.05 | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Tillage System (TS) | 2022/2023 cropping season | |||||||||||
CON | 1208.77 a | 4340.37 a | 5274.23 a | 0.835 a | 0.972 a | 1.096 a | 86.233 a | 174.767 a | 194.883 a | 8.017 a | 9.517 a | 11.083 a |
IRWH | 1444.17 b | 5547.17 b | 6896.67 b | 0.851 a | 1.042 b | 1.094 a | 86.700 a | 202.717 b | 215.117 b | 8.250 a | 10.283 a | 11.800 b |
Manure rate (MR) | ||||||||||||
0 | 1206.00 a | 3746.60 a | 5354.67 a | 0.830 a | 0.877 a | 1.092 a | 60.88 a | 164.58 a | 188.71 a | 6.13 a | 8.04 a | 9.58 a |
20PM | 1349.90 b | 5037.00 b | 6087.17 b | 0.837 a | 0.991 b | 1.095 a | 101.25 bc | 187.75 b | 204.21 b | 9.38 bc | 10.58 b | 12.21 b |
35PM | 1423.33 c | 5493.43 c | 6560.6 c | 0.850 a | 1.082 c | 1.089 a | 119.08 c | 205.54 c | 220.71 c | 10.54 c | 11.96 c | 13.21 c |
20CM | 1262.40 a | 5047.43 b | 6111.6 bc | 0.834 a | 0.987 b | 1.097 a | 76.25 ab | 181.92 b | 198.08 b | 6.72 a | 8.83 a | 10.38 a |
35CM | 1390.67 bc | 5394.40 bc | 6313.23 bc | 0.863 a | 1.098 c | 1.102 a | 74.88 ab | 203.92 c | 213.29 c | 7.92 ab | 10.08 b | 11.83 b |
TS | p < 0.05 | p < 0.05 | p < 0.05 | ns | p < 0.05 | ns | ns | p < 0.05 | p < 0.05 | ns | ns | p < 0.05 |
MR | p < 0.05 | p < 0.05 | p < 0.05 | ns | p < 0.05 | ns | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 |
TS × MR | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Treatment | Aboveground Dry Matter (kg ha−1) | LAI | Plant Height (cm) | Stem Girth (cm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FBS | FS | MS | FBS | FS | MS | FBS | FS | MS | FBS | FS | MS | |
Tillage system (TS) | 2021/2022 cropping season | |||||||||||
CON | 1077.23 a | 4129.97 a | 5295.43 a | 0.882 a | 1.820 a | 2.243 a | 76.93 a | 187.00 a | 189.63 a | 7.40 a | 9.61 a | 9.97 a |
IRWH | 1206.77 b | 5414.97 b | 6826.90 b | 0.981 b | 2.357 b | 3.040 b | 89.27 b | 198.63 b | 203.50 b | 8.48 b | 11.17 b | 11.42 b |
Manure rate (MR) | ||||||||||||
0 | 925.57 a | 4077.23 a | 5633.40 a | 0.703 a | 1.659 a | 2.344 a | 72.42 a | 183.42 a | 187.75 a | 6.86 a | 9.69 a | 9.93 a |
20PM | 1118.93 bd | 4372.33 ab | 5995.00 ab | 0.937 b | 1.822 a | 2.554 ab | 80.33 b | 187.75 a | 192.75 a | 7.68 b | 9.95 a | 10.07 a |
35PM | 1359.50 c | 5662.73 c | 6678.93 c | 1.154 c | 2.571 c | 2.948 c | 92.50 c | 205.50 b | 208.58 b | 8.77 c | 11.01 b | 11.17 b |
20CM | 1076.40 d | 4661.57 ab | 5858.43 ab | 0.890 b | 2.120 b | 2.576 ab | 79.92 b | 187.67 a | 191.33 a | 7.86 bd | 10.52 c | 10.82 ab |
35CM | 1229.57 bc | 5088.50 bc | 6140.10 b | 0.973 b | 2.271 b | 2.787 bc | 90.33 c | 199.75 b | 202.42 b | 8.53 dc | 10.78 bc | 11.49 b |
TS | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 |
MR | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 |
TS × MR | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Tillage System (TS) | 2022/2023 cropping season | |||||||||||
CON | 1117.03 a | 3975.53 a | 6502.97 a | 0.900 a | 2.152 a | 2.364 a | 78.35 a | 174.92 a | 183.40 a | 5.53 a | 7.77 a | 9.45 a |
IRWH | 1283.67 b | 4771.50 b | 7702.97 b | 0.999 b | 2.237 a | 3.543 b | 93.70 b | 193.52 b | 202.27 b | 6.95 b | 10.12 b | 11.40 b |
Manure rate (MR) (t ha−1) | ||||||||||||
0 | 962.43 a | 3652.23 a | 6603.43 a | 0.838 a | 2.147 a | 2.385 a | 72.38 a | 171.29 a | 176.75 a | 4.83 a | 7.25 a | 8.13 a |
20PM | 1161.33 b | 4363.90 bd | 7049.93 b | 1.002 b | 2.212 a | 2.489 a | 85.04 b | 184.29 bd | 192.63 b | 6.17 b | 8.67 b | 9.96 b |
35PM | 1410.67 c | 5087.10 c | 7524.73 c | 1.001 b | 2.316 a | 2.502 a | 94.96 c | 193.08 c | 202.00 c | 7.25 c | 10.17 c | 11.92 c |
20CM | 1109.10 b | 4063.27 b | 7039.07 b | 0.944 b | 2.193 a | 2.378 a | 86.17 b | 182.58 b | 194.25 b | 6.17 b | 8.88 b | 10.88 bc |
35CM | 1358.23 c | 4701.07 d | 7297.67 bc | 0.965 b | 2.102 a | 2.515 a | 91.58 c | 189.83 bd | 198.54 bc | 6.79 bc | 9.75 c | 11.25 c |
TS | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | ns | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 |
MR | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | ns | ns | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 |
TS × MR | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokgolo, M.J.; Zerizghy, M.G.; Mzezewa, J. Sunflower Growth and Grain Yield under Different Tillage Systems and Sources of Organic Manure on Contrasting Soil Types in Limpopo Province of South Africa. Agronomy 2024, 14, 857. https://doi.org/10.3390/agronomy14040857
Mokgolo MJ, Zerizghy MG, Mzezewa J. Sunflower Growth and Grain Yield under Different Tillage Systems and Sources of Organic Manure on Contrasting Soil Types in Limpopo Province of South Africa. Agronomy. 2024; 14(4):857. https://doi.org/10.3390/agronomy14040857
Chicago/Turabian StyleMokgolo, Matome J., Mussie G. Zerizghy, and Jestinos Mzezewa. 2024. "Sunflower Growth and Grain Yield under Different Tillage Systems and Sources of Organic Manure on Contrasting Soil Types in Limpopo Province of South Africa" Agronomy 14, no. 4: 857. https://doi.org/10.3390/agronomy14040857
APA StyleMokgolo, M. J., Zerizghy, M. G., & Mzezewa, J. (2024). Sunflower Growth and Grain Yield under Different Tillage Systems and Sources of Organic Manure on Contrasting Soil Types in Limpopo Province of South Africa. Agronomy, 14(4), 857. https://doi.org/10.3390/agronomy14040857