Alfalfa Cultivation Patterns in the Yellow River Irrigation Area on Soil Water and Nitrogen Use Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Experimental Site
2.2. Experimental Design and Field Management
2.3. Indicators and Methods for Measurement
2.3.1. Soil Moisture Content (%)
2.3.2. Soil Temperature
2.3.3. Soil Nutrient
2.3.4. Plant Height and Stem Diameter
2.3.5. Yield and Quality
- (1)
- Yield (kg·ha−1)
- (2)
- Quality
2.3.6. Water-Nitrogen Use Efficiency [43]
- (1)
- Evapotranspiration (ET, mm)
- (2)
- Water use efficiency (WUE, kg·ha−1·mm−1)
- (3)
- Irrigation water use efficiency (IWUE, kg·ha−1·mm−1)
- (4)
- Partial factor productivity of nitrogen (PFPN, kg·kg−1)
2.3.7. Economic Benefits
- (1)
- The formula for total revenue (TR, Dollar·ha−1) is:
- (2)
- The calculation of net revenue (NR, Dollar·ha−1) can be expressed as:
2.4. Data Analysis
3. Results
3.1. The Impact of Cultivation Patterns on Soil Microenvironment
3.1.1. Soil Moisture Content
3.1.2. Soil Temperature
3.1.3. Soil Nutrients
3.2. The Impact of Cultivation Patterns on the Growth of Lucerne
3.3. The Impact of Cultivation Patterns on Lucerne Production
3.3.1. Yield
3.3.2. Quality
3.3.3. Water Use Efficiency
3.3.4. Economic Benefits
3.4. Correlation Analysis
4. Discussion
4.1. The Impact of Cultivation Patterns on Soil Microenvironment
4.2. Effects of Cultivation Patterns on the Growth, Yield, and Quality of Lucerne
4.3. Effects of Cultivation Patterns on Water and Nitrogen Use Efficiency of Lucerne
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seppanen, M.M.; Alitalo, V.; Backstrom, H.K.; Makiniemi, K.; Jokela, V.; Falghera-Winseman, L.; Khazaei, H. Growth, freezing tolerance, and yield performance of lucerne (Medicago sativa L.) cultivars grown under controlled and field conditions in northern latitudes. Can. J. Plant Sci. 2018, 98, 1109–1118. [Google Scholar] [CrossRef]
- Osterholz, W.R.; Renz, M.J.; Jokela, W.E.; Grabber, J.H. Interseeded lucerne reduces soil and nutrient runoff losses during and after corn silage production. J. Soil Water Conserv. 2019, 74, 85–90. [Google Scholar] [CrossRef]
- Gu, Y.; Han, C.; Kong, M.; Shi, X.; Zdruli, P.; Li, F. Plastic film mulch promotes high lucerne production with phosphorus-saving and low risk of soil nitrogen loss. Field Crops Res. 2018, 229, 44–54. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Xie, J.H.; Yu, L.Q.; Wang, Y.T.; Sun, Z.; Li, J. Research progress and prospect of lucerne breeding in China. J. Grassl. Forage Sci. 2023, 4, 1–7. [Google Scholar] [CrossRef]
- Rahman, M.A.; Yong-Goo, K.; Iftekhar, A.; Liu, G.; Hyoshin, L.; Joo, L.J.; Byung-Hyun, L. Proteome analysis of lucerne roots in response to water deficit stress. J. Integr. Agric. 2016, 15, 1275–1285. [Google Scholar] [CrossRef]
- Ziada, M.E.A.; Al-Shamy, M.M.A.; Jalal, M.J. Ecological Study on Vegetation of Abu Tartur Plateau, the New Valley, Egypt. J. Environ. Sci. Technol. 2016, 9, 88–99. [Google Scholar] [CrossRef]
- Araki, H.; Ishimoto, M.; Matsuo, Y.; Ito, M. Soil Hardness in No-tilled Field with Cover Crop Residue Mulch and Early Growth of Machine-planted Soybean. Jpn. J. Farm Work Res. 2010, 41, 180–184. [Google Scholar] [CrossRef]
- Admasu, R.; Tamiru, Z. Integrated Effect of mulching and furrow methods on tomato (Lycopersiumesculentum L) yield and water productivity at West Wellega, Ethiopia. J. Nat. Sci. Res. 2019, 9, 1–6. [Google Scholar] [CrossRef]
- Mebrahtu, Y.; Mehamed, A. Effect of different type of mulching and furrow irrigation methods on maize (Zea mays L.) yield and water productivity at Raya Valley, Northern Ethiopia. J. Biol. Agric. Healthc. 2019, 9, 6–13. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, R.; Liu, B.; Wang, Y.; Yang, L.; Zhao, J.; Xu, J.; Li, Z.; Zhang, X.; Han, Q. Optimization of ridge–furrow mulching ratio enhances precipitation collection before silking to improve maize yield in a semi–arid region. Agric. Water Manag. 2023, 275, 108041. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Z.; Malhi, S.S.; Vera, C.L.; Zhang, Y.; Guo, Z. Effects of gravel–sand mulch, plastic mulch and ridge and furrow rainfall harvesting system combinations on water use efficiency, soil temperature and watermelon yield in a semi–arid Loess Plateau of northwestern China. Agric. Water Manag. 2011, 101, 88–92. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Jia, Z.K.; Zhang, T.; Hou, X.Q.; Zhang, P. Effect of different mulching materials on arid–field soil moisture and spring maize yield in Weibei arid fields. Agric. Res. Arid. Areas 2012, 30, 93–100. [Google Scholar]
- Ren, X.L. Effects of Ridge and Furrow Harvesting Rainfall on Soil Temperature and Moisture in Farmland and on Eco-Physiological Characteristics of Corn under Simulated Rainfalls. Master’s Thesis, Northwest A&F University, Xianyang, China, 2008. [Google Scholar]
- Zhao, Z.; He, W.; Chen, G.; Yan, C.; Gao, H.; Liu, Q. Dry direct–seeded rice yield and water use efficiency as affected by biodegradable film mulching in the northeastern region of China. Agriculture 2024, 14, 170. [Google Scholar] [CrossRef]
- Gholamhoseini, M.; Dolatabadian, A.; Habibzadeh, F. Ridge-furrow planting system and wheat straw mulching effects on dryland sunflower yield, soil temperature, and moisture. Agron. J. 2019, 111, 3383–3392. [Google Scholar] [CrossRef]
- Huang, W. Study on System of High Effective Cultivation Technology of Water Catchment and Water Saving in Arid Farming of the South of Ningxia. Master’s Thesis, Northwest A&F University, Xianyang, China, 2009. [Google Scholar]
- Song, Z.; Guo, J.; Zhang, Z.; Kou, T.; Deng, A.; Zheng, C.; Ren, J.; Zhang, W. Impacts of planting systems on soil moisture, soil temperature and corn yield in rainfed area of Northeast China. Eur. J. Agron. 2013, 50, 66–74. [Google Scholar] [CrossRef]
- Roy, S.; Arunachalam, K.; Dutta, B.K.; Arunachalam, A. Effect of organic amendments of soil on growth and productivity of three common crops viz. Zea mays, Phaseolus vulgaris and Abelmoschus esculentus. Appl. Soil. Ecol. 2010, 45, 78–84. [Google Scholar] [CrossRef]
- Li, F.M.; Li, X.G.; Javaid, M.M.; Ashraf, M.; Zhang, F. Ridge–furrow plastic film mulching farming for sustainable dryland agriculture on the Chinese loess plateau. Agron. J. 2020, 112, 3284–3294. [Google Scholar] [CrossRef]
- Li, H.; Zeng, S.; Luo, X.; Fang, L.; Liang, Z.; Yang, W. Effects of small ridge and furrow mulching degradable film on dry direct seeded rice. Sci. Rep. 2021, 11, 317. [Google Scholar] [CrossRef]
- Saglam, M.; Sintim, H.Y.; Bary, A.I.; Miles, C.A.; Ghimire, S.; Inglis, D.A.; Flury, M. Modeling the effect of biodegradable paper and plastic mulch on soil moisture dynamics. Agric. Water Manag. 2017, 193, 240–250. [Google Scholar] [CrossRef]
- Sun, T.; Li, G.; Ning, T.; Zhang, Z.; Mi, Q.; Lal, R. Suitability of mulching with biodegradable film to moderate soil temperature and moisture and to increase photosynthesis and yield in peanut. Agric. Water Manag. 2018, 208, 214–223. [Google Scholar] [CrossRef]
- Zhou, C.M.; Li, Y.N.; Yin, M.H.; Gu, X.B.; Zhao, X. Effects of cropping patterns on soil moisture and maize growth under liquid film mulching. Trans. Chin. Soc. Agric. Mach. 2016, 47, 49–58. [Google Scholar] [CrossRef]
- Bai, X.M.; Zhang, Y.; Zhang, Y.; Du, Y. Effects of liquid film mulching on the soil structure and infiltration characteristics of drylands. Arid. Zone Res. 2021, 38, 665–671. [Google Scholar] [CrossRef]
- Yin, M.H.; Li, Y.N.; Li, H.; Xu, Y.B.; Zhang, T.L.; Gu, X.B. Effects of mulching patterns on farmland soil environment and winter wheat growth. Trans. Chin. Soc. Agric. Mach. 2016, 47, 127–135. [Google Scholar] [CrossRef]
- Vukadinović, V.; Jug, D.; Jug, I.; Đurđević, B.; Brozović, B.; Stipešević, B. Effect of climate on some soil properties and crop production. In Proceedings of the 2nd PannEx Workshop on the Climate System of the Pannonian Basin, Abstract Book Pannex Workshop, Budapest, Hungary, 1–3 June 2016. [Google Scholar]
- Li, Y.; Ding, M.; Wang, J.; Xu, G.; Zhao, F. A novel thermoacidophilic endoglucanase, Ba–EGA, from a new cellulose-degrading bacterium, Bacillus sp. AC–1. Appl. Microbiol. Biot. 2006, 70, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, H.; Sun, X.; Fan, J.; Zhang, F.; Zheng, J.; Li, Y. Effects of farming practices on yield and crop water productivity of wheat, maize and potato in China: A meta–analysis. Agric. Water Manag. 2021, 243, 106444. [Google Scholar] [CrossRef]
- Zhao, H.; Xiong, Y.; Li, F.; Wang, R.; Qiang, S.; Yao, T.; Mo, F. Plastic film mulch for half growing–season maximized WUE and yield of potato via moisture–temperature improvement in a semi–arid agroecosystem. Agric. Water Manag. 2012, 104, 68–78. [Google Scholar] [CrossRef]
- Masvaya, E.N.; Nyamangara, J.; Descheemaeker, K.; Giller, K.E. Tillage, mulch and fertiliser impacts on soil nitrogen availability and maize production in semi–arid Zimbabwe. Soil Tillage Res. 2017, 168, 125–132. [Google Scholar] [CrossRef]
- Oroka, F.O. Mulching Effects and Nitrogen Application on the Performance of Zea mays L.: Crop Growth and Nutrient Accumulation. Int. Lett. Nat. Sci. 2016, 51, 36–42. [Google Scholar] [CrossRef]
- Jing, Y.Y.; Xu, C.L.; Jin, L.; Yu, X.J. Effects of planting methods on the above-and below–ground growth characters of the lucerne in the second year in alpine semiarid area. Chin. J. Grassl. 2018, 40, 56–61. [Google Scholar] [CrossRef]
- Hu, Y.; Ma, P.; Wu, S.; Sun, B.; Feng, H.; Pan, X.; Zhang, B.; Chen, G.; Duan, C.; Lei, Q.; et al. Spatial-temporal distribution of winter wheat (Triticum aestivum L.) roots and water use efficiency under ridge–furrow dual mulching. Agric. Water Manag. 2020, 240, 106301. [Google Scholar] [CrossRef]
- Yin, M.H.; Li, Y.N.; Shen, S.L.; Ren, Q.M.; Xu, L.Q.; Wang, X.Y. Meta-analysis on effect of degradable film mulching on maize yield in China. Trans. Chin. Soc. Agric. Eng. 2017, 33, 1–9. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Q.; Zhou, X.; Liu, Q.; Wang, X.; Zhao, X.; Zhao, W.; He, C.; Li, X.; Li, G.; et al. Suitable furrow mulching material for maize and sorghum production with ridge–furrow rainwater harvesting in semiarid regions of China. Agric. Water Manag. 2020, 228, 105928. [Google Scholar] [CrossRef]
- Li, T.L.; Xie, Y.H.; Ren, M.M.; Deng, S.Y.; Shan, J.; Lei, Z.Y.; Hong, J.P.; Wang, Z.H. Effects of fertilization and plastic film mulched ridge-furrow cultivation on yield and water and nitrogen utilization of winter wheat on dryland. Acta Ecol. Sin. 2011, 31, 0212–0220. [Google Scholar]
- Tian, Y.; Su, D.; Li, F.; Li, X. Effect of rainwater harvesting with ridge and furrow on yield of potato in semiarid areas. Field Crops Res. 2003, 84, 385–391. [Google Scholar] [CrossRef]
- Ren, X.L.; Jia, Z.K.; Chen, X.L.; Han, Q.F.; Li, R. Effects of rainwater-harvested furrow/ridge system on spring corn productivity under different simulated rainfalls. Acta Ecol. Sin. 2008, 28, 1006–1015. [Google Scholar]
- Li, C.; Li, C.; Ma, B.; Wu, W. The role of ridge–furrow with plastic film mulching system on stem lodging resistance of winter wheat in a dry semi-humid region. Agron. J. 2020, 112, 885–898. [Google Scholar] [CrossRef]
- Chen, D.D.; Wang, Y.R.; Han, Y.H. Effects of irrigation frequency and fertilizer rate on alfafa seed yileds in the Yellow River irrigated region. Acta Pratacult. Sin. 2016, 25, 154–163. [Google Scholar] [CrossRef]
- Song, X.Y.; Wang, Q.; Li, F.C.; Hu, G.R.; Zhang, D.K.; Zhang, E.H.; Liu, Q.L.; Wang, H.L. Effects of mulching materials and furrow-to-ridge ratios on soil moisture and lucerne forage yield. Acta Ecol. Sin. 2017, 37, 798–809. [Google Scholar] [CrossRef]
- Moore, J.E.; Undersander, D. Relative Forage Quality: An Alternative to Relative Feed Value and Quality Index. In Proceedings of the 13th Annual Florida Ruminant Nutrition Symposium, Gainesville, FL, USA, 11–12 January 2002; pp. 16–32. [Google Scholar]
- Wang, A.; Ma, Y.; Qing, G.; Kang, Y.; Yin, M.; Wang, J.; Jia, Q.; Tang, Z.; Jiang, Y. Water and Nitrogen Regulation Patterns for Productivity Improvement of Bromus inermis and Lucerne Mixed Grassland. J. Soil Water Conserv. 2022, 32, 321–330. [Google Scholar] [CrossRef]
- Hu, Q.; Pan, F.; Pan, X.; Zhang, D.; Yang, N.; Pan, Z.; Zhao, P.; Tuo, D. Effects of a ridge–furrow micro–field rainwater-harvesting system on potato yield in a semi–arid region. Field Crops Res. 2014, 166, 92–101. [Google Scholar] [CrossRef]
- Unger, P.W. Ridge height and furrow blocking effects on water use and grain yield. Soil Sci. Soc. Am. J. 1992, 56, 1609–1614. [Google Scholar] [CrossRef]
- Jia, Q.; Sun, L.; Wang, J.; Li, J.; Ali, S.; Liu, T.; Zhang, P.; Lian, Y.; Ding, R.; Ren, X.; et al. Limited irrigation and planting densities for enhanced water productivity and economic returns under the ridge–furrow system in semi–arid regions of China. Field Crops Res. 2018, 221, 207–218. [Google Scholar] [CrossRef]
- Kou, J.T.; Shi, S.L. Effect of rainwater harvesting via plastic film-covered ridge on soil moisture in Medicago sativa grassland and water use efficiency. Chin. J. Eco-Agric. 2011, 19, 47–53. [Google Scholar] [CrossRef]
- Meng, X.C.; Ma, P.C.; Ma, J.; Duan, Z.; Han, Y.Y.; Zhang, J.Y. Study on the effect of mulching furrow and fertilization of alfafa in semi-arid areas of Loess Plateau. Acta Agrestia Sin. 2021, 29, 2098–2106. [Google Scholar] [CrossRef]
- Li, R.; Wang, Y.; Wu, P.; Sun, R.; Qiu, J.; Su, M.; Hou, X. Ridge and furrow mulching improving soil water–temperature condition and increasing potato yield in dry-farming areas of south Ningxia. Trans. Chin. Soc. Agric. Eng. 2017, 33, 168–175. [Google Scholar] [CrossRef]
- Mo, F.; Wang, J.; Xiong, Y.; Nguluu, S.N.; Li, F. Ridge-furrow mulching system in semiarid Kenya: A promising solution to improve soil water availability and maize productivity. Eur. J. Agron. 2016, 80, 124–136. [Google Scholar] [CrossRef]
- Li, R.; Zhang, R.; Jia, Z.K. Effects of different covering materials on tilth soil temperature and maize emergence. Agric. Res. Arid. Areas 2009, 27, 13–26. [Google Scholar]
- Yin, T.; Yao, Z.; Yan, C.; Liu, Q.; Ding, X.; He, W. Maize yield reduction is more strongly related to soil moisture fluctuation than soil temperature change under biodegradable film vs plastic film mulching in a semi–arid region of northern China. Agric. Water Manag. 2023, 287, 108351. [Google Scholar] [CrossRef]
- Zhou, L.; Li, F.; Jin, S.; Song, Y. How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crops Res. 2009, 113, 41–47. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Q.; Zhou, X.; Wang, X.; Zhao, X.; Zhao, W.; Lei, J. Effects of ridge–furrow rainwater harvesting with biochar–soil crust mulching on ridge runoff, soil hydrothermal properties, and sainfoin yield. Chin. J. Eco-Agric. 2020, 28, 272–285. [Google Scholar] [CrossRef]
- Ren, X.L.; Jia, Z.K.; Chen, X.L.; Han, J.; Han, Q.F. Effect of ridge and furrow planting of rainfall harvesting on soil available nutrient distribution and root growth of summer corn under simulated rainfall conditions. Trans. CSAE 2007, 23, 94–99. [Google Scholar]
- Song, Q.H.; Li, F.M.; Liu, H.S.; Wang, J.; Li, S.Q. Effects of plastic film mulching on soil microbial biomass in spring wheat field in semi-arid loess area. Chin. J. Appl. Ecol. 2003, 14, 1512–1516. [Google Scholar] [CrossRef]
- Gao, H.; Liu, Q.; Gong, D.; Liu, H.; Luo, L.; Cui, J.; Qi, H.; Ma, F.; He, W.; Mancl, K.; et al. Biodegradable film mulching reduces the climate cost of saving water without yield penalty in dryland rice production. Resour. Conserv. Recycl. 2023, 197, 107071. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, Y.; Long, B.; Wang, F.; Li, F.; Xie, D. Biodegradable mulch films improve yield of winter potatoes through effects on soil properties and nutrients. Ecotoxicol. Environ. Saf. 2023, 264, 115402. [Google Scholar] [CrossRef] [PubMed]
- Somanathan, H.; Sathasivam, R.; Sivaram, S.; Mariappan Kumaresan, S.; Muthuraman, M.S.; Park, S.U. An update on polyethylene and biodegradable plastic mulch films and their impact on the environment. Chemosphere 2022, 307, 135839. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Yang, X.; Lai, S.; Ding, Y.; Wei, J.; Zhang, J.; Zhang, L.; Li, C.; Tong, J.; Lei, Z. Design and synthesis of biodegradable nonconjugated SSPAMAM dendrimers with unexpected Deep–red/NIR emission and cell membrane targeting ability for biological imaging. Mater. Des. 2022, 221, 110982. [Google Scholar] [CrossRef]
- Wang, H.-L.; Zhang, X.-C.; Song, S.-Y.; Ma, Y.-F.; Yu, X.-F.; Liu, Y.-L. Effects of whole field–surface plastic mulching and planting in furrow on soil temperature, soil moisture, and corn yield in arid area of Gansu Province, Northwest China. Yingyong Shengtai Xuebao 2011, 22, 2609–2614. [Google Scholar] [CrossRef] [PubMed]
- Song, X.Y.; Wang, Q.; Hu, G.R.; Li, F.C.; Wang, H.L. Effects of ridge-furrow rainfall harvesting on soil moisture and alfafa growth characteristics. Grassl. Turf 2017, 37, 60–67. [Google Scholar] [CrossRef]
- Zhang, D.K.; Wang, K. Effects of ridge-furrow rainfall harvesting with ridge mulching on soil moisture condition and growth characteristics of sainfoin. Grassl. Turf. 2019, 39, 26–34. [Google Scholar] [CrossRef]
- Huo, H.L.; Wang, Q.; Zhang, E.H.; Shi, S.L.; Ren, X.; Wang, H.l.; Wang, T.T.; Liu, Q.L. Effects of different water harvesting modes on lucerne planting in semi-arid areas of North–west China. Chin. J. Appl. Ecol. 2013, 24, 2770–2778. [Google Scholar] [CrossRef]
- Gao, H.; Yang, D.; Yang, L.; Han, S.; Liu, G.; Tang, L.; Chen, J.; Wang, D.; Guo, C. Co–inoculation with Sinorhizobium meliloti and Enterobacter ludwigii improves the yield, nodulation, and quality of lucerne (Medicago sativa L.) under saline–alkali environments. Ind. Crops Prod. 2023, 199, 116818. [Google Scholar] [CrossRef]
- Zhang, J.; Iwaasa, A.D.; Han, G.; Gu, C.; Wang, H.; Jefferson, P.G.; Kusler, J. Utilizing a multi–index decision analysis method to overall assess forage yield and quality of C3 grasses in the western Canadian prairies. Field Crops Res. 2018, 222, 12–25. [Google Scholar] [CrossRef]
- Tang, Z.X.; Qi, G.P.; Yin, M.H.; Kang, Y.X.; Ma, Y.L.; Wang, J.H.; Jia, Q.; Wang, A.X.; Jiang, Y.B. Effects of water and nitrogen regulation on nitrogen, phosphorus and potassium accumulation, quality, water and N utilization of Bromus inermis. Chin. J. Grassl. 2022, 45, 60–70. [Google Scholar] [CrossRef]
- Sha, B.P.; Xie, Y.Z.; Gao, X.Q.; Cai, W.; Fu, B.Z. Effects of coupling of drip irrigation water and fertilizer on yield and quality of lucerne in the yellow river irrigation district. Acta Pratacult. Sin. 2021, 30, 102–114. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Z.; Miao, F.; Wang, G. Dryland maize yield and water-use efficiency responses to mulching and tillage practices. Agron. J. 2017, 109, 1196–1209. [Google Scholar] [CrossRef]
- Ma, H.; Jiang, P. Effects of nitrogen fertilization combined with subsurface irrigation on lucerne yield, water and nitrogen use efficiency, quality, and economic benefits. Front. Plant Sci. 2024, 15, 1339417. [Google Scholar] [CrossRef]
- Gao, Y.; Qi, G.; Ma, Y.; Yin, M.; Wang, J.; Wang, C.; Tian, R.; Xiao, F.; Lu, Q.; Wang, J. Regulation effects of water and nitrogen on yield, water, and nitrogen use efficiency of wolfberry. J. Arid Land 2024, 16, 29–45. [Google Scholar] [CrossRef]
- Meng, W.H. Effects of Ridge-Furrow Plastic-Film Mulching Planting and Nitrogen Application Rate on Lodging Resistance and Water and Nitrogen Use Efficiency of Spring Maize. Master’s Thesis, Northwest A&F University, Xianyang, China, 2023. [Google Scholar] [CrossRef]
Treatments | OM (g·kg−1) | TN (g·kg−1) | TP (g·kg−1) | TK (g·kg−1) | AN (mg·kg−1) | AP (mg·kg−1) | AK (mg·kg−1) |
---|---|---|---|---|---|---|---|
PM | 6.8 ± 0.1 b | 1.8 ± 0.0 a | 1.4 ± 0.0 a | 34.2 ± 0.0 ab | 90.2 ± 1.1 a | 31.8 ± 1.0 b | 188.6 ± 1.7 b |
BM | 7.5 ± 0.1 a | 1.8 ± 0.0 a | 1.4 ± 0.0 a | 34.2 ± 0.0 a | 91.0 ± 0.7 a | 32.3 ± 0.8 a | 196.2 ± 1.2 a |
FP | 6.3 ± 0.0 c | 1.8 ± 0.0 a | 1.4 ± 0.0 a | 34.1 ± 0.0 a | 89 ± 0.6 a | 31.3 ± 0.6 b | 178.5 ± 1.8 c |
Treatments | 2021 | 2022 | |||||
---|---|---|---|---|---|---|---|
First Cut | Second Cut | Yearly Yield | First Cut | Second Cut | Third Cut | Yearly Yield | |
PM | 5948 ± 18 a | 2411 ± 137 a | 8360 ± 245 a | 11,954 ± 70 a | 6270 ± 62 a | 2429 ± 66 a | 20,653 ± 134 a |
BM | 5655 ± 72 a | 2255 ± 96 ab | 7910 ± 166 a | 11,489 ± 65 b | 5837 ± 72 b | 2251 ± 68 ab | 19,577 ± 72 b |
FP | 4713 ± 73 b | 1956 ± 95 b | 6669 ± 46 b | 10,234 ± 63 c | 5359 ± 60 c | 2054 ± 60 b | 17,646 ± 57 c |
Index | 2021 | 2022 | ||||||
---|---|---|---|---|---|---|---|---|
First Cut | Second Cut | Average | First Cut | Second Cut | Third Cut | Average | ||
CP | PM | 16.5 ± 0.1 a | 18.7 ± 0.4 a | 17.6 ± 0.2 a | 18.5 ± 0.7 a | 18.7 ± 0.2 a | 23.5 ± 0.4 a | 20.3 ± 0.2 a |
BM | 16.2 ± 0.5 a | 17.0 ± 0.1 b | 16.6 ± 0.2 b | 17.9 ± 0.4 a | 18.2 ± 0.3 ab | 21.8 ± 0.5 a | 19.3 ± 0.2 b | |
FP | 15.5 ± 0.7 a | 16.4 ± 0.1 b | 16.0 ± 0.4 b | 16.0 ± 0.2 b | 17.2 ± 0.5 b | 19.0 ± 0.9 b | 17.4 ± 0.4 c | |
ADF | PM | 32.6 ± 0.4 a | 27.0 ± 2.8 a | 29.8 ± 1.2 b | 32.6 ± 0.3 b | 29.0 ± 1.6 a | 26.7 ± 0.3 a | 29.5 ± 0.5 b |
BM | 34.0 ± 1.7 a | 30.0 ± 0.2 a | 32.0 ± 1.0 ab | 34.5 ± 0.8 a | 29.7 ± 1.1 a | 27.0 ± 0.3 a | 30.4 ± 0.3 ab | |
FP | 35.1 ± 1.0 a | 32.0 ± 0.5 a | 33.5 ± 0.8 a | 34.6 ± 0.5 a | 31.7 ± 0.6 a | 28.3 ± 0.8 a | 31.5 ± 0.2 a | |
NDF | PM | 52.7 ± 0.5 c | 47.0 ± 0.8 a | 49.9 ± 0.1 c | 51.7 ± 1.4 a | 47.9 ± 0.7 a | 45.0 ± 0.8 b | 48.2 ± 0.4 a |
BM | 54.4 ± 0.1 b | 47.9 ± 0.3 a | 51.1 ± 0.1 b | 51.8 ± 0.2 a | 48.4 ± 0.5 a | 46.65 ± 0.6 ab | 48.9 ± 0.0 a | |
FP | 56.4 ± 0.4 a | 49.1 ± 1.5 a | 52.8 ± 0.6 a | 52.6 ± 1.2 a | 49.9 ± 1.6 a | 47.7 ± 0.7 a | 50.1 ± 1.1 a | |
RFV | PM | 111.0 ± 1.7 a | 133.4 ± 6.6 a | 122.2 ± 2.5 a | 113.3 ± 3.4 a | 127.7 ± 0.6 a | 139.7 ± 3.1 a | 126.9 ± 0.1 a |
BM | 105.6 ± 2.0 ab | 126.2 ± 1.3 a | 115.9 ± 1.7 ab | 110.2 ± 0.7 a | 125.3 ± 0.4 a | 134.3 ± 2.1 ab | 123.3 ± 0.6 ab | |
FP | 100.4 ± 0.6 b | 120.2 ± 4.5 a | 110.3 ± 2.6 b | 108.5 ± 3.0 a | 118.7 ± 2.8 b | 129.3 ± 3.2 b | 118.8 ± 3.0 b |
A Given Year | Handle | ET (mm) | IWUE (kg·ha−1·mm−1) | WUE (kg·ha−1·mm−1) | PFPN (kg·kg−1) |
---|---|---|---|---|---|
2021 | PM | 563.7 ± 7.2 c | 2.8 ± 0.1 a | 1.5 ± 0.1 a | 52.3 ± 1.5 a |
BM | 618.9 ± 7.9 b | 2.6 ± 0.1 a | 1.2 ± 0.0 b | 49.4 ± 1.0 a | |
FP | 677.1 ± 23.3 a | 2.2 ± 0.0 b | 1.0 ± 0.0 c | 41.7 ± 0.3 b | |
2022 | PM | 648.5 ± 23.4 b | 5.2 ± 0.0 a | 3.2 ± 0.1 a | 129.1 ± 0.8 a |
BM | 662.9 ± 21.2 b | 5.0 ± 0.0 b | 2.8 ± 0.1 b | 122.4 ± 0.5 b | |
FP | 761.8 ± 15.8 a | 4.5 ± 0.0 c | 2.3 ± 0.0 c | 110.3 ± 0.4 c |
Factors | 2021 | 2022 | |||||
---|---|---|---|---|---|---|---|
PM | BM | FP | PM | BM | FP | ||
Total revenue (Dollar·ha−1) | 2425.2 | 2292.4 | 1932.1 | 6277.0 | 5950.2 | 5363.4 | |
Input cost (Dollar·ha−1) | Seed | 73 | 73 | 73 | 73 | 73 | 73 |
Controlled release nitrogen fertilizer | 133 | 133 | 133 | 133 | 133 | 133 | |
Rotary tillage | 207 | 207 | 207 | 0 | 0 | 0 | |
Insecticide | 117 | 117 | 117 | 117 | 117 | 117 | |
Mulching film | 89 | 61 | 0 | 89 | 61 | 0 | |
Total input cost | 619 | 591 | 530 | 412 | 384 | 323 | |
Labor cost (Dollar·ha−1) | Mulching and residue removal | 225 | 124 | 124 | 225 | 124 | 124 |
Others (planting, fertilization, etc) | 156 | 156 | 156 | 156 | 156 | 156 | |
Total labor cost | 381 | 280 | 280 | 381 | 280 | 280 | |
Net revenue (Dollar·ha−1) | 1424.9 a | 1422.9 a | 1123.8 b | 5485.4 a | 5285.6 b | 4759.5 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.; Qi, G.; Yin, M.; Kang, Y.; Ma, Y.; Jia, Q.; Wang, J.; Jiang, Y.; Wang, C.; Gao, Y.; et al. Alfalfa Cultivation Patterns in the Yellow River Irrigation Area on Soil Water and Nitrogen Use Efficiency. Agronomy 2024, 14, 874. https://doi.org/10.3390/agronomy14040874
Lu Q, Qi G, Yin M, Kang Y, Ma Y, Jia Q, Wang J, Jiang Y, Wang C, Gao Y, et al. Alfalfa Cultivation Patterns in the Yellow River Irrigation Area on Soil Water and Nitrogen Use Efficiency. Agronomy. 2024; 14(4):874. https://doi.org/10.3390/agronomy14040874
Chicago/Turabian StyleLu, Qiang, Guangping Qi, Minhua Yin, Yanxia Kang, Yanlin Ma, Qiong Jia, Jinghai Wang, Yuanbo Jiang, Chen Wang, Yalin Gao, and et al. 2024. "Alfalfa Cultivation Patterns in the Yellow River Irrigation Area on Soil Water and Nitrogen Use Efficiency" Agronomy 14, no. 4: 874. https://doi.org/10.3390/agronomy14040874
APA StyleLu, Q., Qi, G., Yin, M., Kang, Y., Ma, Y., Jia, Q., Wang, J., Jiang, Y., Wang, C., Gao, Y., Tian, R., Xiao, F., Chen, X., & Zhang, R. (2024). Alfalfa Cultivation Patterns in the Yellow River Irrigation Area on Soil Water and Nitrogen Use Efficiency. Agronomy, 14(4), 874. https://doi.org/10.3390/agronomy14040874