The Use of Spectroscopic Methods to Study Organic Matter in Virgin and Arable Soils: A Scoping Review
Abstract
:1. Introduction
2. Methods
- (1)
- Question—(i) the atoms studied within the SOM and (ii) the techniques (phases and multidimensional) used in the NMR;
- (2)
- Question—(i) interpretation of the NMR spectra and (ii) the SOM pools studied;
- (3)
- Question—(i) nature of SOM paramagnetism and (ii) the SOM pools of virgin and arable soils and parameters of the EPR spectra.
3. NMR Spectroscopy
3.1. Atoms in the Composition of SOM Studied by NMR
3.2. NMR Spectroscopy Techniques
3.3. Multidimensional NMR Techniques
3.4. Interpretation of the NMR Spectra
3.5. NMR Investigations of SOM Pools
4. EPR Spectroscopy
4.1. The Nature of SOM Paramagnetism
4.2. Investigations of the SOM Pools and Parameters of the EPR Spectra
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cuniasse, P.; Tavares, P.; Orlova, E.V.; Zinn-Justin, S. Structures of biomolecular complexes by combination of NMR and cryoEM methods. Curr. Opin. Struc. Biol. 2017, 43, 104–113. [Google Scholar] [CrossRef]
- Lodygin, E. Frontier studies in composition of humic substances and soil organic matter. Agronomy 2023, 13, 188. [Google Scholar] [CrossRef]
- Mao, J.; Cao, X.; Olk, D.C.; Chu, W.; Schmidt-Rohr, K. Advanced solid-state NMR spectroscopy of natural organic matter. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 100, 17–51. [Google Scholar] [CrossRef]
- Preston, C.M. Environmental NMR—The early years. Magn. Reson. Chem. 2015, 53, 635–647. [Google Scholar] [CrossRef]
- Zavyalova, N.E.; Vasbieva, M.T. Elemental composition and structure of humic acids in virgin and arable soddy-podzolic soils of the Cis-Urals. Eurasian Soil Sci. 2021, 54, 1575–1580. [Google Scholar] [CrossRef]
- Zhang, H.; Ni, J.; Wei, R.; Chen, W. Water-soluble organic carbon (WSOC) from vegetation fire and its differences from WSOC in natural media: Spectral comparison and self-organizing maps (SOM) classification. Sci. Total Environ. 2023, 895, 165180. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, N. (Ed.) Carbon-13 NMR Spectroscopy of Biological Systems; Academic Press: San Diego, CA, USA, 1995; 334p. [Google Scholar] [CrossRef]
- Chukov, S.N.; Lodygin, E.D.; Abakumov, E.V. Application of 13C NMR spectroscopy to the study of soil organic matter: A review of publications. Eurasian Soil Sci. 2018, 51, 889–900. [Google Scholar] [CrossRef]
- Keeler, J. Understanding NMR Spectroscopy, 3rd ed.; Wiley: Hoboken, NJ, USA, 2010; 526р. [Google Scholar]
- Preston, C.M. NMR of Humic Substances and Coal. Techniques, Problems and Solutions; Wershaw, R.L., Mikita, M.A., Eds.; Lewis Publishers Inc.: Chelsea, MI, USA, 1987; 241p. [Google Scholar]
- Emsley, J.W.; Feeney, J.; Sutcliffe, L.H. High Resolution Nuclear Magnetic Resonance Spectroscopy; Pergamon Press: Oxford, UK, 1966; Volume 2, 1154p. [Google Scholar] [CrossRef]
- Barton, D.H.R.; Schnitzer, M. A new experimental approach to the humic acid problem. Nature 1963, 198, 217–218. [Google Scholar] [CrossRef]
- Preston, C.M. Applications of NMR to soil organic matter analysis: History and prospects. Soil Sci. 1996, 161, 144–166. [Google Scholar] [CrossRef]
- Bharti, S.K.; Roy, R. Quantitative 1H NMR spectroscopy. TrAC—Trend. Anal. Chem. 2012, 35, 5–26. [Google Scholar] [CrossRef]
- López-Martínez, V.G.; Guerrero-Álvarez, J.A.; Ronderos-Lara, J.G.; Murillo-Tovar, M.A.; Solá-Pérez, J.E.; León-Rivera, I.; Saldarriaga-Noreña, H. Spectral characteristics related to chemical substructures and structures indicative of organic precursors from fulvic acids in sediments by NMR and HPLC-ESI-MS. Molecules 2021, 26, 4051. [Google Scholar] [CrossRef]
- Lodygin, E.D.; Beznosikov, V.A.; Vanchikova, E.V. Functional groups of fulvic acids from gleyic peaty-podzolic soil. Eurasian Soil Sci. 2001, 34, 382–386. [Google Scholar]
- Schaefer, J.; Stejskal, E.O. Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle. J. Am. Chem. Soc. 1976, 98, 1031–1032. [Google Scholar] [CrossRef]
- Zavoisky, E. Paramagnetic relaxation of liquid solutions for perpendicular fields. J. Phys. USSR 1945, 9, 211–216. [Google Scholar]
- Commoner, B.; Townsend, J.; Pake, G.E. Free radicals in biological materials. Nature 1954, 174, 689–691. [Google Scholar] [CrossRef]
- Keeler, C.; Maciel, G.E. Quantitation in the solid-state 13C NMR analysis of soil and organic soil fractions. Anal. Chem. 2003, 75, 2421–2432. [Google Scholar] [CrossRef]
- Wilson, M.A. Application of nuclear magnetic resonance spectroscopy to the study of the structure of soil organic matter. Eur. J. Soil Sci. 1981, 32, 167–186. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Kulikova, N.A.; Volikov, A.B.; Filippova, O.I.; Kholodov, V.A.; Yaroslavtseva, N.V.; Farkhodov, Y.R.; Yudina, A.V.; Roznyatovsky, V.A.; Grishin, Y.K.; Zhilkibayev, O.T.; et al. Modified humic substances as soil conditioners: Laboratory and field trials. Agronomy 2021, 11, 150. [Google Scholar] [CrossRef]
- Knicker, H. Solid state CPMAS 13C and 15N NMR spectroscopy in organic geochemistry and how spin dynamics can either aggravate or improve spectra interpretation. Org. Geochem. 2011, 42, 867–890. [Google Scholar] [CrossRef]
- Rennert, T.; Eusterhues, K.; Hiradate, S.; Breitzke, H.; Buntkowsky, G.; Totsche, K.U.; Mansfeldt, T. Characterisation of Andosols from Laacher See tephra by wet-chemical and spectroscopic techniques (FTIR, 27Al-, 29Si-NMR). Chem. Geol. 2014, 363, 13–21. [Google Scholar] [CrossRef]
- Wang, L.; Amelung, W.; Prietzel, J.; Willbold, S. Transformation of organic phosphorus compounds during 1500 years of organic soil formation in Bavarian Alpine forests—A 31P NMR study. Geoderma 2019, 340, 192–205. [Google Scholar] [CrossRef]
- Keshari, K.R.; Wilson, D.M. Chemistry and biochemistry of 13C hyperpolarized magnetic resonance using dynamic nuclear polarization. Chem. Soc. Rev. 2014, 43, 1627–1659. [Google Scholar] [CrossRef] [PubMed]
- Vasilevich, R.; Lodygin, E.; Abakumov, E. The molecular composition of humic acids in permafrost peats in the European Arctic as paleorecord of the environmental conditions of the Holocene. Agronomy 2022, 12, 2053. [Google Scholar] [CrossRef]
- Mao, J.; Chen, N.; Cao, X. Characterization of humic substances by advanced solid state NMR spectroscopy: Demonstration of a systematic approach. Org. Geochem. 2011, 42, 891–902. [Google Scholar] [CrossRef]
- Mitchell, P.J.; Simpson, A.J.; Soong, R.; Simpson, M.J. Nuclear magnetic resonance analysis of changes in dissolved organic matter composition with successive layering on clay mineral surfaces. Soil Syst. 2018, 2, 8. [Google Scholar] [CrossRef]
- Luz, Z.; Tekely, P.; Reichert, D. Slow exchange involving equivalent sites in solids by one-dimensional MAS NMR techniques. Prog. Nucl. Magn. Reson. Spectrosc. 2002, 41, 83–113. [Google Scholar] [CrossRef]
- Peuravuori, J.; Ingman, P.; Pihlaja, K. Critical comments on accuracy of quantitative determination of natural humic matter by solid state 13C NMR spectroscopy. Talanta 2003, 59, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Klein, O.I.; Kulikova, N.A.; Konstantinov, A.I.; Zykova, M.V.; Perminova, I.V. A Systematic study of the antioxidant capacity of humic substances against peroxyl radicals: Relation to structure. Polymers 2021, 13, 3262. [Google Scholar] [CrossRef]
- Nebiosso, A.; Mazzei, P.; Savy, D. Reduced complexity of multidimensional and diffusion NMR spectra of soil humic fractions as simplified by Humeomics. Chem. Biol. Technol. Agric. 2014, 1, 24. [Google Scholar] [CrossRef]
- Mylotte, R.; Verheyen, V.; Reynolds, A.; Hayes, M.H.B. Isolation and characterisation of recalcitrant organic components from an estuarine sediment core. J. Soils Sediments 2015, 15, 211–224. [Google Scholar] [CrossRef]
- DiDonato, N.; Hatcher, P.G. Alicyclic carboxylic acids in soil humic acid as detected with ultrahigh resolution mass spectrometry and multi-dimensional NMR. Org. Geochem. 2017, 112, 33–46. [Google Scholar] [CrossRef]
- Soucémarianadin, L.N.; Erhagen, B.; Nilsson, M.B.; Öquist, M.G.; Immerzeel, P.; Schleucher, J. Two dimensional NMR spectroscopy for molecular characterization of soil organic matter: Application to boreal soils and litter. Org. Geochem. 2017, 113, 184–195. [Google Scholar] [CrossRef]
- Tadini, A.M.; Goranov, A.I.; Martin-Neto, L.; Bernardi, A.C.C.; Oliveira, P.P.A.; Pezzopane, J.R.M.; Hatcher, P.G. Structural characterization using 2D NMR spectroscopy and TMAH-GC × GC-MS: Application to humic acids from soils of an integrated agricultural system and an Atlantic native forest. Sci. Total Environ. 2022, 815, 152605. [Google Scholar] [CrossRef] [PubMed]
- Polyakov, V.; Loiko, S.; Istigechev, G.; Lapidus, A.; Abakumov, E. Elemental and molecular composition of humic acids isolated from soils of tallgrass temperate rainforests (Chernevaya taiga) by 1H-13C HECTCOR NMR spectroscopy. Agronomy 2021, 11, 1998. [Google Scholar] [CrossRef]
- Chen, X.; Mejia, J.; Chu, W.; Mao, J.; Viar, S.; Gao, H. Advanced two-dimensional solid-state NMR spectroscopy and its application in environmental sciences. In Multidimensional Analytical Techniques in Environmental Research; Elsevier: Amsterdam, The Netherlands, 2020; pp. 57–69. [Google Scholar] [CrossRef]
- Cao, X.; Lattao, C.; Pignatello, J.J.; Mao, J.; Schmidt-Rohr, K. Sorption selectivity in natural organic matter probed with fully deuterium-exchanged and carbonyl-13C-labeled benzophenone and 1H–13C NMR spectroscopy. Environ. Sci. Technol. 2014, 48, 8645–8652. [Google Scholar] [CrossRef] [PubMed]
- Lodygin, E.; Vasilevich, R. Environmental aspects of molecular composition of humic substances from soils of northeastern European Russia. Pol. Polar Res. 2020, 41, 115–135. [Google Scholar] [CrossRef]
- Preston, C.M. Environmental NMR: Solid-state methods. In eMagRes; John Wiley & Sons, Ltd.: Chichester, UK, 2014; Volume 3. [Google Scholar] [CrossRef]
- Simpson, A.J.; Simpson, M.J.; Soong, R. Nuclear magnetic resonance spectroscopy and its key role in environmental research. Environ. Sci. Technol. 2012, 46, 11488–11496. [Google Scholar] [CrossRef]
- Vasilevich, R.; Lodygin, E.; Abakumov, E. Molecular composition of humic substances isolated from permafrost peat soils of the eastern European Arctic. Pol. Polar Res. 2018, 39, 481–503. [Google Scholar] [CrossRef]
- Aquino, A.M.; Canellas, L.P.; Silva, A.P.S.; Canellas, N.O.; Lima, L.S.; Olivares, F.L.; Piccolo, A.; Spaccini, R. Evaluation of molecular properties of humic acids from vermicompost by 13 C-CPMAS-NMR spectroscopy and thermochemolysis–GC–MS. J. Anal. Appl. Pyrol. 2019, 141, 104634. [Google Scholar] [CrossRef]
- Harris, R.K.; Becker, E.D.; Menezes, S.M.C.; Granger, P.; Hoffman, R.E.; Zilm, K.W. Further conventions for NMR shielding and chemical shifts IUPAC recommendations 2008. Solid State Nucl. Magn. Res. 2008, 33, 41–56. [Google Scholar] [CrossRef]
- Chien, P.H.; Griffith, K.J.; Liu, H.; Gan, Z.; Hu, Y.Y. Recent advances in solid-state nuclear magnetic resonance techniques for materials research. Annu. Rev. Mater. Res. 2020, 50, 493–520. [Google Scholar] [CrossRef]
- Keeler, C.; Kelly, E.F.; Maciel, G.E. Chemical-structural information from solid-state 13C NMR studies of a suite of humic materials from a lower montane forest soil, Colorado, USA. Geoderma 2006, 130, 124–140. [Google Scholar] [CrossRef]
- Kholodov, V.A.; Konstantinov, A.I.; Kudryavtsev, A.V.; Perminova, I.V. Structure of humic acids in zonal soils from 13C NMR data. Eurasian Soil Sci. 2011, 44, 976–983. [Google Scholar] [CrossRef]
- Lodygin, E.; Abakumov, E. The impact of agricultural use of Retisols on the molecular structure of humic substances. Agronomy 2022, 12, 144. [Google Scholar] [CrossRef]
- Ware, S.A.; Hartman, B.E.; Waggoner, D.C.; Vaughn, D.R.; Bianchi, T.S.; Hatcher, P.G. Molecular evidence for the export of terrigenous organic matter to the north Gulf of Mexico by solid-state 13C NMR and Fourier transform ion cyclotron resonance mass spectrometry of humic acids. Geochim. Cosmochim. Acta 2022, 317, 39–52. [Google Scholar] [CrossRef]
- Busman, N.A.; Maie, N.; Sangok, F.E.; Melling, L.; Watanabe, A. Impacts of agricultural drainage on the quantity and quality of tropical peat soil organic matter in different types of forests. Geoderma 2023, 439, 116670. [Google Scholar] [CrossRef]
- Tadini, A.M.; Pantano, G.; Toffoli, A.L.; Fontaine, B.; Spaccini, R.; Piccolo, A.; Moreira, A.B.; Bisinoti, M.C. Off-line TMAH-GC/MS and NMR characterization of humic substances extracted from river sediments of northwestern São Paulo under different soil uses. Sci. Total Environ. 2015, 506–507, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Kovaleva, N.O.; Kovalev, I.V. Lignin phenols in soils as biomarkers of paleovegetation. Eurasian Soil Sci. 2015, 48, 946–958. [Google Scholar] [CrossRef]
- Duarte, R.M.B.O.; Silva, A.M.S.; Duarte, A.C. Two-dimensional NMR studies of water-soluble organic matter in atmospheric aerosols. Environ. Sci. Technol. 2008, 42, 8224–8230. [Google Scholar] [CrossRef]
- Brotto, J.O.; Cruz, T.A.; Pereira, I.O.; Ienczak, J.L.; Peralta, R.A.; Lázaro-Martínez, J.M.; José, H.J.; Rodríguez-Castellón, E.; Moreira, R.F.P.M. Mechanistic insights and kinetics of torrefaction of pine wood biomasses using solid-state NMR. J. Anal. Appl. Pyrol. 2023, 172, 106019. [Google Scholar] [CrossRef]
- Ryazanov, M.A.; Lodygin, E.D.; Beznosikov, V.A.; Zlobin, D.A. Evaluation of the acid-base properties of fulvic acids using pK spectroscopy. Eurasian Soil Sci. 2001, 34, 830–836. [Google Scholar]
- Liang, B.C.; Gregorich, E.G.; Schnitzer, M.; Schulten, H.R. Characterization of water extracts of two manures and their absorption on soils. Soil Sci. Soc. Am. J. 1996, 60, 1758–1763. [Google Scholar] [CrossRef]
- García, A.C.; Tavares, O.C.H.; Balmori, D.M.; Almeida, V.S.; Canellas, L.P.; García-Mina, J.M.; Berbara, R.L.L. Structure-function relationship of vermicompost humic fractions for use in agriculture. J. Soils Sediments 2018, 18, 1365–1375. [Google Scholar] [CrossRef]
- Dymov, A.A.; Zhangurov, E.V.; Hagedorn, F. Soil organic matter composition along altitudinal gradients in permafrost affected soils of the Subpolar Ural Mountains. Catena 2015, 131, 140–148. [Google Scholar] [CrossRef]
- Cervantes-Arista, J.I.; Herbert-Pucheta, J.E.; Suárez-Toriello, V.A.; Toledo-Antonio, J.A.; López-Salinas, E. Characterization of petcoke and derived oxygen-functionalized products accompanied by XRD, FT-MIR and SS-NMR. Fuel 2024, 357, 129969. [Google Scholar] [CrossRef]
- Prietzel, J.; Müller, S.; Kögel-Knabner, I.; Thieme, J.; Jaye, C.; Fischer, D. Comparison of soil organic carbon speciation using C NEXAFS and CPMAS 13C NMR spectroscopy. Sci. Total Environ. 2018, 628–629, 906–918. [Google Scholar] [CrossRef] [PubMed]
- Chukov, S.N.; Ryumin, A.G.; Golubkov, M.S. Intrahorizon differentiation of the structural-functional parameters of the humic acids from a typical chernozem. Eurasian Soil Sci. 2010, 43, 1255–1262. [Google Scholar] [CrossRef]
- Jafarzadeh-Haghighi, A.H.; Shamshuddin, J.; Hamdan, J.; Zainuddin, N. Structural composition of organic matter in particle-size fractions of soils along a climo-biosequence in the main range of Peninsular Malaysia. Open Geosci. 2016, 8, 503–513. [Google Scholar] [CrossRef]
- Zolotareva, B.N.; Demkin, V.A. Humus in paleosols of archaeological monuments in the dry steppes of the Volga-Don interfluve. Eurasian Soil Sci. 2013, 46, 262–272. [Google Scholar] [CrossRef]
- Kida, M.; Kondo, M.; Tomotsune, M.; Kinjo, K.; Ohtsuka, T.; Fujitake, N. Molecular composition and decomposition stages of organic matter in a mangrove mineral soil with time. Estuar. Coast. Shelf Sci. 2019, 231, 106478. [Google Scholar] [CrossRef]
- Abakumov, E.; Alekseev, I. Stability of soil organic matter in Cryosols of the maritime Antarctic: Insights from 13C NMR and electron spin resonance spectroscopy. Solid Earth 2018, 9, 1329–1339. [Google Scholar] [CrossRef]
- Diniz, Y.V.F.G.; Oliveira, A.P.P.; Silva, T.P.; Neto, E.C.S.; Garcia, A.C.; Pereira, M.G.; Motta, M.S.; Fagundes, H.S.; Santos, O.A.Q.; Anjos, L.H.C. Prescribed fire application in a Brazilian mountain environment: Changes in soil organic matter quality in the short and medium term. Catena 2023, 232, 107418. [Google Scholar] [CrossRef]
- Certini, G.; Nocentini, C.; Knicker, H. Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests. Geoderma 2011, 167–168, 148–155. [Google Scholar] [CrossRef]
- Bravo-Escobar, A.V.; O’Donnell, A.J.; Middleton, J.A.; Grierson, P.F. Differences in dissolved organic matter (DOM) composition of soils from native eucalypt forests and exotic pine plantations impacted by wildfire in Southwest Australia. Geoderma Reg. 2024, 37, e00793. [Google Scholar] [CrossRef]
- Dymov, A.A. Soils of post-pyrogenic forests. Eurasian Soil Sci. 2023, 56, 84–113. [Google Scholar] [CrossRef]
- Dymov, A.A.; Gorbach, N.M.; Goncharova, N.N.; Gabov, D.N.; Kutyavin, I.N.; Startsev, V.V.; Karpenko, L.V.; Grodnitskaya, I.D.; Mazur, A.S. Holocene and recent fires influence on soil organic matter, microbiological and physico-chemical properties of peats in the European North-East of Russia. Catena 2022, 217, 106449. [Google Scholar] [CrossRef]
- Dymov, A.A.; Startsev, V.V.; Milanovsky, E.Y.; Valdes-Korovkin, I.A.; Farkhodov, Y.R.; Yudina, A.V.; Donnerhack, O.; Guggenberger, G. Soils and soil organic matter transformations during the two years after a low-intensity surface fire (Subpolar Ural, Russia). Geoderma 2021, 404, 115278. [Google Scholar] [CrossRef]
- Alexis, M.A.; Rumpel, C.; Knicker, H. Thermal alteration of organic matter during a shrubland fire: A field study. Org. Geochem. 2010, 41, 690–697. [Google Scholar] [CrossRef]
- Hishinuma, T.; Osono, T.; Fukasawa, Y.; Azuma, J.I.; Takeda, H. Application of C-13 NMR spectroscopy to characterize organic chemical components of decomposing coarse woody debris from different climatic regions. Ann. Forest Res. 2015, 58, 3–13. [Google Scholar] [CrossRef]
- Kovaleva, N.O.; Kovalev, I.V. Transformation of lignin in surface and buried soils of mountainous landscapes. Eurasian Soil Sci. 2009, 42, 1270–1281. [Google Scholar] [CrossRef]
- Criquet, S.; Clouard, M.; Borschneck, D.; Ziarelli, F.; Keller, C. Pedobiological properties of a lignite spoil heap in the Provence coal mine basin (south-east of France). Geoderma Reg. 2023, 35, e00711. [Google Scholar] [CrossRef]
- Hannam, K.D.; Quideau, S.A.; Kishchuk, B.E.; Oh, S.-W.; Wasylishen, R.E. Forest-floor chemical properties are altered by clear-cutting in boreal mixedwood forest stands dominated by trembling aspen and white spruce. Can. J. Forest Res. 2005, 35, 2457–2468. [Google Scholar] [CrossRef]
- Lorenz, K.; Preston, C.M.; Kandeler, E. Soil organic matter in urban soils: Estimation of elemental carbon by thermal oxidation and characterization of organic matter by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Geoderma 2006, 130, 312–323. [Google Scholar] [CrossRef]
- Amoah-Antwi, C.; Kwiatkowska-Malina, J.; Szara, E.; Fenton, O.; Thornton, S.F.; Malina, G. Assessing factors controlling structural changes of humic acids in soils amended with organic materials to improve soil functionality. Agronomy 2022, 12, 283. [Google Scholar] [CrossRef]
- Farrell, M.; Kuhn, T.K.; Macdonald, L.M.; Maddern, T.M.; Murphy, D.V.; Hall, P.A.; Singh, B.P.; Baumann, K.; Krull, E.S.; Baldock, J.A. Microbial utilisation of biochar-derived carbon. Sci. Total Environ. 2013, 465, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wei, Y.; Liu, J.; Yuan, J.; Liang, Y.; Ren, J.; Cai, H. Effects of maize straw and its biochar application on organic and humic carbon in water-stable aggregates of a Mollisol in Northeast China: A five-year field experiment. Soil and Tillage Res. 2019, 190, 1–9. [Google Scholar] [CrossRef]
- Wang, C.; Tu, Q.; Dong, D.; Strong, P.J.; Wang, H.; Sun, B.; Wu, W. Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting. J. Hazard. Mater. 2014, 280, 409–416. [Google Scholar] [CrossRef]
- Suleymanov, A.; Suleymanov, R.; Polyakov, V.; Dorogaya, E.; Abakumov, E. Conventional tillage effects on the physico-chemical properties and organic matter of Chernozems using 13C-NMR spectroscopy. Agronomy 2022, 12, 2800. [Google Scholar] [CrossRef]
- Trubetskoi, O.A.; Trubetskaya, O.E. 13C-NMR analysis of components of Chernozem humic acids and their fractions with different molecular sizes and electrophoretic mobilities. Eurasian Soil Sci. 2011, 44, 281–285. [Google Scholar] [CrossRef]
- Danchenko, N.N.; Artemyeva, Z.S.; Kolyagin, Y.G.; Kogut, B.M. Features of the chemical structure of different organic matter pools in Haplic Chernozem of the Streletskaya steppe: 13C MAS NMR study. Environ. Res. 2020, 191, 110205. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Zhang, Y.; Su, Z.; Jiang, T. The NMR and spectral study on the structure of molecular size-fractionated lignite humic acid. Resour. Environ. Sustain. 2020, 2, 100004. [Google Scholar] [CrossRef]
- Zhilkibayev, O.T.; Aitbayev, T.E.; Zhirkova, A.M.; Perminova, I.V.; Popov, A.I.; Shoinbekova, S.A.; Kudaibergenov, M.S.; Shalmaganbetov, K.M. The coal humic product EldORost shows fertilizing and growth stimulating properties on diverse agricultural crops. Agronomy 2022, 12, 3012. [Google Scholar] [CrossRef]
- Chabbi, A.; Rumpel, C.; Kögel-Knabner, I. Stable carbon isotope signature and chemical composition of organic matter in lignite-containing mine soils and sediments are closely linked. Org. Geochem. 2007, 38, 835–844. [Google Scholar] [CrossRef]
- Wershaw, R.L.; Leenheer, J.A.; Kennedy, K.R.; Noyes, T.I. Use of 13C NMR and FTIR for elucidation of degradation pathways during natural litter decomposition and composting. I. Early stage leaf degradation. Soil Sci. 1996, 161, 667–679. [Google Scholar] [CrossRef]
- Gehring, A.U.; Guggenberger, G.; Zech, W.; Luster, J. Combined magnetic, spectroscopic, and analytical-chemical approach to infer genetic information for a Vertisol. Soil Sci. Soc. Am. J. 1997, 61, 78–85. [Google Scholar] [CrossRef]
- Vasilevich, R.S.; Beznosikov, V.A.; Lodygin, E.D. Molecular structure of humus substances in permafrost peat mounds in forest-tundra. Eurasian Soil Sci. 2019, 52, 283–295. [Google Scholar] [CrossRef]
- Vishnyakova, O.; Ubugunov, L. Changes in molecular structure of humic substances in Cambisols under agricultural use. Agronomy 2023, 13, 2299. [Google Scholar] [CrossRef]
- Polyakov, V.; Abakumov, E.; Nizamutdinov, T.; Shevchenko, E.; Makarova, M. Estimation of carbon stocks and stabilization rates of organic matter in soils of the «Ladoga» carbon monitoring site. Agronomy 2023, 13, 807. [Google Scholar] [CrossRef]
- Fragouli, P.G.; Roulia, M.; Vassiliadis, A.A. Macromolecular size and architecture of humic substances used in the dyes’ adsorptive removal from water and soil. Agronomy 2023, 13, 2926. [Google Scholar] [CrossRef]
- Nascimento, A.L.A.; Figueiredo, I.M.; Botero, W.G.; Santos, J.C.C. Interaction between roxarsone, an organic arsenic compound, with humic substances in the soil simulating environmental conditions. Chemosphere 2023, 339, 139688. [Google Scholar] [CrossRef]
- Lodygin, E.; Vasilevich, R.; Abakumov, E. Characterization of humic substances from taiga and tundra soils by EPR spectroscopy. Agronomy 2022, 12, 2806. [Google Scholar] [CrossRef]
- Lodygin, E.; Vasilevich, R.; Abakumov, E. Relating paramagnetic properties to molecular parameters of humic acids isolated from permafrost peatlands in the European Arctic. Molecules 2024, 29, 104. [Google Scholar] [CrossRef]
- Lishtvan, I.I.; Strigutskii, V.P.; Yanuta, Y.G.; Abramets, A.M.; Navosha, Y.Y.; Glukhova, N.S.; Aleinikova, V.N. Transformation of the polyconjugation systems of humic acids in the course of the metamorphism of caustobioliths. Solid Fuel Chem. 2012, 46, 153–158. [Google Scholar] [CrossRef]
- Rosa, A.H.; Simoes, M.L.; Oliveira, L.C.; Rocha, J.C.; Martin-Neto, L.; Milori, D.M.B.P. Multimethod study of the degree of humification of humic substances extracted from different tropical soil profiles in Brazil’s Amazonian region. Geoderma 2005, 127, 1–10. [Google Scholar] [CrossRef]
- Debska, B.; Spychaj-Fabisiak, E.; Szulc, W.; Gaj, R.; Banach-Szott, M. EPR Spectroscopy as a tool to characterize the maturity degree of humic acids. Materials 2021, 14, 3410. [Google Scholar] [CrossRef] [PubMed]
- Jezierski, A.; Czechowski, F.; Jerzkiewicz, M.; Chen, Y.; Drozd, J. Electron paramagnetic resonance (EPR) studies on stable and transient radicals in humic acids from compost, soil, peat and brown coal. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2000, 56, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Kurochkina, G.N.; Gaidalovich, V.G.; Khakimov, F.I. Paramagnetic activity of organic matter in soils of the Ubsu-Nur Depression. Eurasian Soil Sci. 2006, 39, 727–737. [Google Scholar] [CrossRef]
- Lodygin, E.D.; Beznosikov, V.A.; Chukov, S.N. Paramagnetic properties of humus acids of podzolic and bog-podzolic soils. Eurasian Soil Sci. 2007, 40, 726–728. [Google Scholar] [CrossRef]
- Lodygin, E.D.; Beznosikov, V.A.; Vasilevich, R.S. Paramagnetic properties of humic substances in taiga and tundra soils of the European Northeast of Russia. Eurasian Soil Sci. 2018, 51, 921–928. [Google Scholar] [CrossRef]
- Jezierski, A.; Czechowski, F.; Jerzykiewicz, M.; Golonka, I.; Drozd, J.; Bylinska, E.; Chen, Y.; Seaward, M.R.D. Quantitative EPR study on free radicals in the natural polyphenols interacting with metal ions and other environmental pollutants. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2002, 58, 1293–1300. [Google Scholar] [CrossRef]
- Chukov, S.N.; Ejarque, E.; Abakumov, E.V. Characterization of humic acids from tundra soils of Northern Western Siberia by electron paramagnetic resonance spectroscopy. Eurasian Soil Sci. 2017, 50, 30–33. [Google Scholar] [CrossRef]
- Gonzalez-Perez, M.; Martin-Neto, L.; Saab, S.C.; Novotny, E.H.; Milori, D.M.B.P.; Bagnato, V.S.; Colnago, L.A.; Melo, W.J.; Knicker, H. Characterization of humic acids from a Brazilian Oxisol under different tillage systems by EPR, 13C NMR, FTIR and fluorescence spectroscopy. Geoderma 2004, 118, 181–190. [Google Scholar] [CrossRef]
- Saab, S.C.; Martin-Neto, L. Studies of semiquinone free radicals by ESR in the whole soil, HA, FA and humin substances. J. Braz. Chem. Soc. 2004, 15, 34–37. [Google Scholar] [CrossRef]
- Barančíková, G.; Senesi, N.; Brunetti, G. Chemical and spectroscopic characterization of humic acids isolated from different Slovak soil types. Geoderma 1997, 78, 251–266. [Google Scholar] [CrossRef]
- Venezia, V.; Pota, G.; Silvestri, B.; Vitiello, G.; Donato, P.D.; Landi, G.; Mollo, V.; Verrillo, M.; Cangemi, S.; Piccolo, A.; et al. A study on structural evolution of hybrid humic Acids-SiO2 nanostructures in pure water: Effects on physico-chemical and functional properties. Chemosphere 2022, 287, 131985. [Google Scholar] [CrossRef]
- Sun, R.; Fu, M.; Ma, L.; Zhou, Y.; Li, Q. Iron reduction in composting environment synergized with quinone redox cycling drives humification and free radical production from humic substances. Bioresour. Technol. 2023, 384, 129341. [Google Scholar] [CrossRef] [PubMed]
- Tadini, A.M.; Bernardi, A.C.C.; Milori, D.M.B.P.; Oliveira, P.P.A.; Pezzopane, J.R.M.; Martin-Neto, L. Spectroscopic characteristics of humic acids extracted from soils under different integrated agricultural production systems in tropical regions. Geoderma Reg. 2022, 28, e00476. [Google Scholar] [CrossRef]
- Baltrėnaitė-Gedienė, E.; Lomnicki, S.; Guo, C. Impact of biochar, fertilizers and cultivation type on environmentally persistent free radicals in agricultural soil. Environ. Technol. Innov. 2022, 28, 102755. [Google Scholar] [CrossRef]
- Sartakov, M.P.; Komissarov, D.; Shundrin, L.A. The peat humic acids electronic paramagnetism research for Ob-Irtysh flood plains. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 1685–1692. [Google Scholar]
Chemical Shift, ppm | Type of Molecular Fragments | |
---|---|---|
Range Start | Range End | |
0 | 45–52 | C,H-substituted aliphatic fragments |
45–47 | 60–2 | methoxyl and O-, N-substituted aliphatic fragments |
52–62 | 95–120 | aliphatic fragments, twice-substituted heteroatoms (including carbohydrates) and methine carbon of esters and ethers |
95–120 | 140–145 | C,H-substituted aromatic fragments |
140–145 | 160–170 | O,N-substituted aromatic fragments |
160–170 | 183–185 | carboxylic groups, amides and their derivatives |
183 | 190 | quinone groups |
185–190 | 204–220 | aldehyde and ketone groups |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lodygin, E.; Abakumov, E. The Use of Spectroscopic Methods to Study Organic Matter in Virgin and Arable Soils: A Scoping Review. Agronomy 2024, 14, 1003. https://doi.org/10.3390/agronomy14051003
Lodygin E, Abakumov E. The Use of Spectroscopic Methods to Study Organic Matter in Virgin and Arable Soils: A Scoping Review. Agronomy. 2024; 14(5):1003. https://doi.org/10.3390/agronomy14051003
Chicago/Turabian StyleLodygin, Evgeny, and Evgeny Abakumov. 2024. "The Use of Spectroscopic Methods to Study Organic Matter in Virgin and Arable Soils: A Scoping Review" Agronomy 14, no. 5: 1003. https://doi.org/10.3390/agronomy14051003
APA StyleLodygin, E., & Abakumov, E. (2024). The Use of Spectroscopic Methods to Study Organic Matter in Virgin and Arable Soils: A Scoping Review. Agronomy, 14(5), 1003. https://doi.org/10.3390/agronomy14051003