Soil Amendment Combining Bentonite and Maize Straw Improves Soil Quality Cropped to Oat in a Semi-Arid Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Climate
2.2. Experimental Design and Management
2.3. Crop Biomass Measurements and Carbon Input Estimates
2.4. Soil Sampling
2.5. Aggregate Size Distribution
2.6. Analysis of Soil Characteristics
2.7. Statistical Analysis
3. Results
3.1. Soil Bulk Density
3.2. C Input, SOC Stock, SOC Sequestration Rate, and SOC Sequestration Efficiency
3.3. Aggregate Size Distribution
3.4. Aggregate-Associated C Concentration and Stock
3.5. Relationships between Annual Average C Input and Aggregate C Stock
3.6. Correlation and PCA
4. Discussion
4.1. Effect of Maize Straw Combined with Bentonite on Soil Bulk Density and Porosity
4.2. Effect of Maize Straw Combined with Bentonite on C Input and ΔSOC
4.3. Effect of Maize Straw Combined with Bentonite on the Distribution, SOC Concentration, and C Stock of Soil Aggregates
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shangguano, Z.P.; Lei, T.W.; Shao, M.A.; Jia, Z.K. Water management and grain production in dryland farming areas in China. Int. J. Sustain. Dev. World Ecol. 2001, 8, 41–45. [Google Scholar] [CrossRef]
- Zhang, D.; Yao, Z.; Chen, J.; Yao, P.; Zhao, N.; He, W.; Li, Y.; Zhang, S.; Zhai, B.; Wang, Z.; et al. Improving soil aggregation, aggregate-associated C and N, and enzyme activities by green manure crops in the Loess Plateau of China. Eur. J. Soil Sci. 2019, 70, 1267–1279. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Zhang, D.; Zhao, Y.; Wang, Y.; Liu, Q.; Dong, E.; Wang, J.; Jiao, X. Long-term organic fertilization combined with deep ploughing enhances carbon sequestration in a rainfed sorghum-maize rotation system. Geoderma 2024, 442, 116778. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Lin, N.; Fang, Y.; Dong, Q.; Zhang, T.; Siddique, K.H.M.; Wang, N.; Feng, H. Ammoniated straw returning: A win-win strategy for increasing crop production and soil carbon sequestration. Agric. Ecosyst. Environ. 2024, 363, 108879. [Google Scholar] [CrossRef]
- Tagar, A.A.; Adamowski, J.; Memon, M.S.; Do, M.C.; Mashori, A.S.; Soomro, A.S.; Bhayo, W.A. Soil fragmentation and aggregate stability as affected by conventional tillage implements and relations with fractal dimensions. Soil Tillage Res. 2020, 197, 104494. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Wang, Z.; Yan, X.; Feng, M.; Xiao, L.; Song, X.; Zhang, M.; Li, G.; Shafiq, F.; et al. Interactive effects of conservation tillage on the aggregate stability and soil organic carbon. J. Plant Nutr. Soil Sci. 2022, 185, 505–512. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Totsche, K.U.; Amelung, W.; Gerzabek, M.H.; Guggenberger, G.; Klumpp, E.; Knief, C.; Lehndorff, E.; Mikutta, R.; Peth, S.; Prechtel, A.; et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 2017, 181, 104–136. [Google Scholar] [CrossRef]
- Krause, L.; Klumpp, E.; Nofz, I.; Missong, A.; Amelung, W.; Siebers, N. Colloidal iron and organic carbon control soil aggregate formation and stability in arable Luvisols. Geoderma 2020, 374, 114421. [Google Scholar] [CrossRef]
- Bi, X.; Chu, H.; Fu, M.; Xu, D.; Zhao, W.; Zhong, Y.; Wang, M.; Li, K.; Zhang, Y. Distribution characteristics of organic carbon (nitrogen) content, cation exchange capacity, and specific surface area in different soil particle sizes. Sci. Rep. 2023, 13, 12242. [Google Scholar] [CrossRef]
- Yang, X.; Shao, M.; Li, T.; Gan, M.; Chen, M.; Li, Z. Soil macroaggregates determine soil organic carbon in the natural grasslands of the Loess Plateau. Catena 2022, 218, 106533. [Google Scholar] [CrossRef]
- Niu, Z.; An, F.; Su, Y.; Li, J.; Liu, T. Effects of cropping patterns on the distribution, carbon contents, and nitrogen contents of aeolian sand soil aggregates in Northwest China. Sci. Rep. 2024, 14, 1498. [Google Scholar] [CrossRef] [PubMed]
- Doblas-Rodrigo, Á.; Gallejones, P.; Artetxe, A.; Merino, P. Role of livestock-derived amendments in soil organic carbon stocks in forage crops. Sci. Total Environ. 2023, 901, 165931. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Cao, Y.; Lu, J.; Ren, T.; Cong, R.; Lu, Z.; Zhu, J.; Li, X. Response of soil aggregation and associated organic carbon to organic amendment and its controls: A global meta-analysis. Catena 2024, 237, 107774. [Google Scholar] [CrossRef]
- Fan, W.; Wu, J.; Ahmed, S.; Hu, J.; Chen, X.; Li, X.; Zhu, W.; Opoku-Kwanowaa, Y. Short-term effects of different straw returning methods on the soil physicochemical properties and quality index in dryland farming in NE China. Sustainability 2020, 12, 2631. [Google Scholar] [CrossRef]
- Wang, J.; Sun, X.; Du, L.; Sun, W.; Wang, X.; Gaafar, A.R.Z.; Zhang, P.; Cai, T.; Liu, T.; Jia, Z.; et al. Appropriate fertilization increases carbon and nitrogen sequestration and economic benefit for straw-incorporated upland farming. Geoderma 2024, 441, 116743. [Google Scholar] [CrossRef]
- Su, Y.; Wang, X.; Yang, R.; Lee, J. Effects of sandy desertified land rehabilitation on soil carbon sequestration and aggregation in an arid region in China. J. Environ. Manag. 2010, 91, 2109–2116. [Google Scholar] [CrossRef] [PubMed]
- Greenland, D.J.; Rimmer, D.; Payne, D. Determination of the structural stability class of English and Welsh soils, using a water coherence test. Eur. J. Soil Sci. 1975, 26, 294–303. [Google Scholar] [CrossRef]
- Loveland, P.; Webb, J. Is there a critical level of organic matter in the agricultural soils of temperate regions: A review. Soil Tillage Res. 2003, 70, 1–18. [Google Scholar] [CrossRef]
- Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P.S. Chapter one—Mineral–organic associations: Formation, properties, and relevance in soil environments. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2015; Volume 130, pp. 1–140. ISBN 0065-2113. [Google Scholar]
- Kang, J.; Qu, C.; Chen, W.; Cai, P.; Chen, C.; Huang, Q. Organo–organic interactions dominantly drive soil organic carbon accrual. Global Chang. Biol. 2024, 30, e17147. [Google Scholar] [CrossRef]
- Xiao, K.; Zhao, Y.; Liang, C.; Zhao, M.; Moore, O.W.; Otero-Fariña, A.; Zhu, Y.; Johnson, K.; Peacock, C.L. Introducing the soil mineral carbon pump. Nat. Rev. Earth Environ. 2023, 4, 135–136. [Google Scholar] [CrossRef]
- Mikutta, R.; Kaiser, K. Organic matter bound to mineral surfaces: Resistance to chemical and biological oxidation. Soil Biol. Biochem. 2011, 43, 1738–1741. [Google Scholar] [CrossRef]
- Churchman, G.J.; Singh, M.; Schapel, A.; Sarkar, B.; Bolan, N. Clay minerals as the key to the sequestration of carbon in soils. Clays Clay Miner. 2020, 68, 135–143. [Google Scholar] [CrossRef]
- Barré, P.; Fernandez-Ugalde, O.; Virto, I.; Velde, B.; Chenu, C. Impact of phyllosilicate mineralogy on organic carbon stabilization in soils: Incomplete knowledge and exciting prospects. Geoderma 2014, 235–236, 382–395. [Google Scholar] [CrossRef]
- Denef, K.; Six, J. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization. Eur. J. Soil Sci. 2005, 56, 469–479. [Google Scholar] [CrossRef]
- Wang, R.; Xu, Y.; Li, R. Effects of bentonite on the characteristics of aggregate structure and organic carbon content in Cd-contaminated soils. J. Agro-Environ. Sci. 2018, 2018, 2701–2710. [Google Scholar]
- Mi, J.; Gregorich, E.G.; Xu, S.; McLaughlin, N.B.; Ma, B.; Liu, J. Changes in soil biochemical properties following application of bentonite as a soil amendment. Eur. J. Soil Biol. 2021, 102, 103251. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, S.; Monreal, C.M.; McLaughlin, N.B.; Zhao, B.; Liu, J.; Hao, G. Bentonite-humic acid improves soil organic carbon, microbial biomass, enzyme activities and grain quality in a sandy soil cropped to maize (Zea mays L.) in a semi-arid region. J. Integr. Agric. 2022, 21, 208–221. [Google Scholar] [CrossRef]
- Żołnowski, A.C.; Bakuła, T.; Rolka, E.; Klasa, A. Effect of mineral–microbial deodorizing preparation on the value of poultry manure as soil amendment. Int. J. Environ. Res. Public Health 2022, 19, 16639. [Google Scholar] [CrossRef]
- Mi, J.; Gregorich, E.G.; Xu, S.; McLaughlin, N.B.; Liu, J. Effect of bentonite as a soil amendment on field water-holding capacity, and millet photosynthesis and grain quality. Sci. Rep. 2020, 10, 18282. [Google Scholar] [CrossRef]
- Mi, J.; Gregorich, E.G.; Xu, S.; McLaughlin, N.B.; Ma, B.; Liu, J. Effect of bentonite amendment on soil hydraulic parameters and millet crop performance in a semi-arid region. Field Crop. Res. 2017, 212, 107–114. [Google Scholar] [CrossRef]
- Zayani, K.; Bousnina, H.; Mhiri, A.; Hartmann, R.; Cherif, H. Evaporation in layered soils under different rates of clay amendment. Agric. Water Manag. 1996, 30, 143–154. [Google Scholar] [CrossRef]
- Zhou, L.; Monreal, C.M.; Xu, S.; McLaughlin, N.B.; Zhang, H.; Hao, G.; Liu, J. Effect of bentonite-humic acid application on the improvement of soil structure and maize yield in a sandy soil of a semi-arid region. Geoderma 2019, 338, 269–280. [Google Scholar] [CrossRef]
- Czaban, J.; Siebielec, G.; Czyż, E.; Niedźwiecki, J. Effects of bentonite addition on sandy soil chemistry in a long-term plot experiment (I); effect on organic carbon and total nitrogen. Pol. J. Environ. Stud. 2013, 22, 1661–1667. [Google Scholar]
- Thomas, R.P.; Harper, H.J. The use of oat straw in a system of soil fertility. Soil Sci. 1926, 21, 393. [Google Scholar] [CrossRef]
- Bolinder, M.; Angers, D.; Dubuc, J. Estimating shoot to root ratios and annual carbon inputs in soils for cereal crops. Agr Ecosyst Environ. 1997, 63, 61–66. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, H.; Chen, Y.; Hu, J. Response of oat to drought stress at different growth stages. Chin. J. Grassl. 2021, 43, 58–67. [Google Scholar] [CrossRef]
- Thivierge, M.-N.; Angers, D.A.; Chantigny, M.H.; Seguin, P.; Vanasse, A. Root traits and carbon input in field-grown sweet pearl millet, sweet sorghum, and grain corn. Agron. J. 2016, 108, 459–471. [Google Scholar] [CrossRef]
- Bolinder, M.A.; Janzen, H.H.; Gregorich, E.G.; Angers, D.A.; VandenBygaart, A.J. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agric. Ecosyst. Environ. 2007, 118, 29–42. [Google Scholar] [CrossRef]
- Zhao, H.; Shar, A.G.; Li, S.; Chen, Y.; Shi, J.; Zhang, X.; Tian, X. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil Tillage Res. 2018, 175, 178–186. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agro-chemical Analysis, 3rd ed.; Agriculture Press: Beijing, China, 2000; pp. 34–35. (In Chinese) [Google Scholar]
- Garbowski, T.; Bar-Michalczyk, D.; Charazińska, S.; Grabowska-Polanowska, B.; Kowalczyk, A.; Lochyński, P. An overview of natural soil amendments in agriculture. Soil Tillage Res. 2023, 225, 105462. [Google Scholar] [CrossRef]
- Kang, M.; Yibeltal, M.; Kim, Y.H.; Oh, S.J.; Lee, J.C.; Kwon, E.E.; Lee, S.S. Enhancement of soil physical properties and soil water retention with biochar-based soil amendments. Sci. Total Environ. 2022, 836, 155746. [Google Scholar] [CrossRef]
- Shaygan, M.; Reading, L.P.; Baumgartl, T. Effect of physical amendments on salt leaching characteristics for reclamation. Geoderma 2017, 292, 96–110. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, P.; Feng, Y.; Zhang, W.; Njoroge, B.; Long, F.; Zhou, Q.; Qu, C.; Gan, X.; Liu, X. Changes in soil physico-chemical and microbiological properties during natural succession: A case study in lower subtropical China. Front. Plant Sci. 2022, 13, 878908. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Gong, X.; Niu, Y.; Chen, Y.; Shi, X.; Li, W. Storage, pattern and driving factors of soil organic carbon in an ecologically fragile zone of northern China. Geoderma 2019, 343, 155–165. [Google Scholar] [CrossRef]
- Li, X.; Li, F.; Zed, R.; Zhan, Z.; Bhupinderpal, S. Soil physical properties and their relations to organic carbon pools as affected by land use in an alpine pastureland. Geoderma 2007, 139, 98–105. [Google Scholar] [CrossRef]
- Vidal, A.; Lenhart, T.; Dignac, M.F.; Biron, P.; Hoeschen, C.; Barthod, J.; Vedere, C.; Vaury, V.; Bariac, T.; Rumpel, C. Promoting plant growth and carbon transfer to soil with organic amendments produced with mineral additives. Geoderma 2020, 374, 114454. [Google Scholar] [CrossRef]
- Karbout, N.; Brahim, N.; Mlih, R.; Moussa, M.; Bousnina, H.; Weihermuller, L.; Bol, R. Bentonite clay combined with organic amendments to enhance soil fertility in oasis agrosystem. Arab. J. Geosci. 2021, 14, 428. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Q.; Gao, W.; Luo, Y.; Wu, L.; Rui, Y.; Huang, Y.; Xiao, Q.; Li, X.; Zhang, W. Organic amendments facilitate soil carbon sequestration via organic carbon accumulation and mitigation of inorganic carbon loss. Land Degrad. Dev. 2022, 33, 1423–1433. [Google Scholar] [CrossRef]
- Okolo, C.C.; Gebresamuel, G.; Zenebe, A.; Haile, M.; Eze, P.N. Accumulation of organic carbon in various soil aggregate sizes under different land use systems in a semi-arid environment. Agric. Ecosyst. Environ. 2020, 297, 106924. [Google Scholar] [CrossRef]
- Wu, X.; Yuan, P.; Peng, C. The development status, main problems and suggestions of bentonite industry in China. World Build. Mater. 2016, 3, 27–30. [Google Scholar]
- Zhao, X.; Li, R.; Liu, W.; Liu, W.; Xue, Y.; Sun, R.; Wei, Y.; Chen, Z.; Lal, R.; Dang, Y.; et al. Conservation. Estimation of crop residue production and its contribution to carbon neutrality in China. Resour. Conserv. Recycl. 2024, 203, 107450. [Google Scholar] [CrossRef]
- Naresh, R.K.; Singh, P.K.; Bhatt, R.; Chandra, M.S.; Kumar, Y.; Mahajan, N.C.; Gupta, S.K.; Al-Ansari, N.; Mattar, M.A. Long-term application of agronomic management strategies effects on soil organic carbon, energy budgeting, and carbon footprint under rice–wheat cropping system. Sci. Rep. 2024, 14, 337. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Su, Y.; Li, J.; An, F.; Liu, T. Effect of attapulgite application on aggregate formation and carbon and nitrogen content in sandy soil. Sustainability 2023, 15, 12511. [Google Scholar] [CrossRef]
- Plaza, C.; Zaccone, C.; Sawicka, K.; Mendez, A.M.; Tarquis, A.; Gasco, G.; Heuvelink, G.B.M.; Schuur, E.A.G.; Maestre, F.T. Soil resources and element stocks in drylands to face global issues. Sci. Rep. 2018, 8, 13788. [Google Scholar] [CrossRef]
- Su, Y.; Yang, R.; Liu, W.; Wang, X. Evolution of soil structure and fertility after conversion of native sandy desert soil to irrigated cropland in arid region, China. Soil Sci. 2010, 175, 246–254. [Google Scholar] [CrossRef]
- Wattel-Koekkoek, E.J.W.; van Genuchten, P.P.L.; Buurman, P.; van Lagen, B. Amount and composition of clay-associated soil organic matter in a range of kaolinitic and smectitic soils. Geoderma 2001, 99, 27–49. [Google Scholar] [CrossRef]
- Hati, K.M.; Jha, P.; Dalal, R.C.; Jayaraman, S.; Dang, Y.P.; Kopittke, P.M.; Kirchhof, G.; Menzies, N.W. 50 years of continuous no-tillage, stubble retention and nitrogen fertilization enhanced macro-aggregate formation and stabilisation in a Vertisol. Soil Tillage Res. 2021, 214, 105163. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. Eur. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Mustafa, A.; Minggang, X.; Ali Shah, S.A.; Abrar, M.M.; Nan, S.; Baoren, W.; Zejiang, C.; Saeed, Q.; Naveed, M.; Mehmood, K.; et al. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J. Environ. Manag. 2020, 270, 110894. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Zhang, Y.; Chen, G.; Li, Z.; Zhang, M. Straw return drives soil microbial community assemblage to change metabolic processes for soil quality amendment in a rice-wheat rotation system. Soil Biol. Biochem. 2023, 185, 109131. [Google Scholar] [CrossRef]
- Zhang, M.; Song, X.; Wu, X.; Zheng, F.; Li, S.; Zhuang, Y.; Man, X.; Degré, A. Microbial regulation of aggregate stability and carbon sequestration under long-term conservation tillage and nitrogen application. Sustain. Prod. Consum. 2024, 44, 74–86. [Google Scholar] [CrossRef]
- Suzuki, S.; Noble, A.D.; Ruaysoongnern, S.; Chinabut, N. Improvement in water-holding capacity and structural stability of a sandy soil in northeast Thailand. Arid Land Res. Manag. 2007, 21, 37–49. [Google Scholar] [CrossRef]
- Olagoke, F.K.; Bettermann, A.; Nguyen, P.T.B.; Redmile-Gordon, M.; Babin, D.; Smalla, K.; Nesme, J.; Sorensen, S.J.; Kalbitz, K.; Vogel, C. Importance of substrate quality and clay content on microbial extracellular polymeric substances production and aggregate stability in soils. Biol. Fertil. Soils 2022, 58, 435–457. [Google Scholar] [CrossRef]
Soil Properties | Value |
---|---|
pH | 7.62 |
Sand content (%) | 72.8 |
Silt content (%) | 13.8 |
Clay content (%) | 13.4 |
Total nitrogen (g kg−1) | 0.43 |
Available nitrogen (mg kg−1) | 42.2 |
Available phosphorus (mg kg−1) | 7.20 |
Available potassium (mg kg−1) | 106.5 |
Treatment | Maize Straw 1 | Bentonite 2 | Oat Straw | Root 3 | Stubble 4 | Rhizodeposition 5 | Total |
---|---|---|---|---|---|---|---|
Biomass (Mg ha−1) | |||||||
CK | 0.00 | ― | 9.24 ± 0.11 c | 1.85 ± 0.02 c | 0.92 ± 0.27 c | ― | 2.77 ± 0.03 d |
T1 | 6.00 | ― | 10.32 ± 0.29 b | 2.06 ± 0.06 b | 0.85 ± 0.30 b | ― | 9.10 ± 0.09 b |
T2 | 0.00 | ― | 11.87 ± 0.24 a | 2.37 ± 0.05 a | 0.98 ± 0.35 a | ― | 3.56 ± 0.07 c |
T3 | 6.00 | ― | 12.55 ± 0.66 a | 2.51 ± 0.13 a | 1.04 ± 0.37 a | ― | 9.77 ± 0.20 a |
C input (Mg ha−1) 6 | |||||||
CK | 0.00 | 0.00 | 0.00 | 0.74 ± 0.01 c | 0.41 ± 0.00 d | 0.74 ± 0.01 c | 1.85 ± 0.02 d |
T1 | 2.40 | 0.00 | 0.00 | 0.83 ± 0.02 b | 0.45 ± 0.01 c | 0.83 ± 0.02 b | 4.46 ± 0.06 b |
T2 | 0.00 | 0.072 | 0.00 | 0.95 ± 0.02 a | 0.52 ± 0.01 b | 0.95 ± 0.02 a | 2.45 ± 0.05 c |
T3 | 2.40 | 0.072 | 0.00 | 1.00 ± 0.05 a | 0.55 ± 0.03 a | 1.00 ± 0.05 a | 4.98 ± 0.13 a |
Treatment | SOC Stock (Mg ha−1) | ∆SOC 2 (Mg ha−1) | SOC Stock Sequestration Rate (Mg ha−1 y−1) | |||
---|---|---|---|---|---|---|
2018 1 | 2019 | 2020 | 2021 | |||
CK | 10.62 ± 0.18 a | 11.27 ± 0.02 c | 10.85 ± 0.45 c | 10.54 ± 0.20 c | −0.08 ± 0.12 b | −0.03 |
T1 | 10.11 ± 0.62 a | 11.79 ± 0.07 b | 11.33 ± 0.07 ab | 11.1 ± 0.04 b | 0.98 ± 0.58 a | 0.33 |
T2 | 10.52 ± 0.19 a | 11.63 ± 0.18 b | 11.2 ± 0.11 bc | 10.94 ± 0.25 b | 0.42 ± 0.21 ab | 0.14 |
T3 | 10.25 ± 0.81 a | 12.11 ± 0.12 a | 11.72 ± 0.10 a | 11.62 ± 0.14 a | 1.37 ± 0.85 a | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Mi, J.; Zhao, B.; Cui, X.; Hu, K.; McLaughlin, N.B.; Liu, J. Soil Amendment Combining Bentonite and Maize Straw Improves Soil Quality Cropped to Oat in a Semi-Arid Region. Agronomy 2024, 14, 1012. https://doi.org/10.3390/agronomy14051012
Zhang L, Mi J, Zhao B, Cui X, Hu K, McLaughlin NB, Liu J. Soil Amendment Combining Bentonite and Maize Straw Improves Soil Quality Cropped to Oat in a Semi-Arid Region. Agronomy. 2024; 14(5):1012. https://doi.org/10.3390/agronomy14051012
Chicago/Turabian StyleZhang, Lanying, Junzhen Mi, Baoping Zhao, Xuemei Cui, Kexin Hu, Neil B. McLaughlin, and Jinghui Liu. 2024. "Soil Amendment Combining Bentonite and Maize Straw Improves Soil Quality Cropped to Oat in a Semi-Arid Region" Agronomy 14, no. 5: 1012. https://doi.org/10.3390/agronomy14051012
APA StyleZhang, L., Mi, J., Zhao, B., Cui, X., Hu, K., McLaughlin, N. B., & Liu, J. (2024). Soil Amendment Combining Bentonite and Maize Straw Improves Soil Quality Cropped to Oat in a Semi-Arid Region. Agronomy, 14(5), 1012. https://doi.org/10.3390/agronomy14051012