Effects of Cultivation Years on the Distribution of Nitrogen and Base Cations in 0–7 m Soil Profiles of Plastic-Greenhouse Pepper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Production Management of Plastic Greenhouses and Wheat-Maize Fields
2.3. Soil Sampling and Analysis
2.4. Statistical Analysis
3. Results
3.1. Effects of Cultivation Years and Soil Depth on Different Forms of N
3.2. N Balance of Plastic-Greenhouse Pepper Planting System for 10 and 20 Years
3.3. Accumulation and Distribution of K, Ca, Mg in Soil Profiles
4. Discussion
4.1. Analysis of N Balance in Plastic-Greenhouse Pepper Planting System
4.2. The Leaching of N, K, Ca, Mg and Soil Acidification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, J.; Xia, X.J.; Hu, Z.J.; Fan, P.X.; Shi, K.; Zhou, Y.H.; Yu, J.Q. Progress in Protected Vegetable Production and Research during China’s 13th Five-Year Plan. China Veg. 2021, 10, 20–34. (In Chinese) [Google Scholar]
- Guo, S.R.; Sun, J.; Su, S.; Lu, X.M.; Tian, J.; Wang, J.W. Analysis of general situation, characteristics, existing problems and devel opment trend of protected horticulture in China. China Veg. 2012, 18, 1–14. [Google Scholar]
- Gao, L.H.; Qu, M.; Ren, H.Z.; Chen, Q.Y.; Zhang, Z.X. Structure, function, application, and ecological benefit of a single-slope, energy-efficient solar greenhouse in China. Hort Technol. 2010, 20, 626–631. [Google Scholar] [CrossRef]
- Song, H.; Guo, J.H.; Ren, T.; Chen, Q.; Li, B.G.; Wang, J.G. Increase of soil pH in a solar greenhouse vegetable production system. Soil Sci. Soc. Am. J. 2012, 76, 2074–2082. [Google Scholar] [CrossRef]
- Qasim, W.; Xia, L.L.; Shan, L.; Wan, L.; Zhao, Y.M.; Butterbach-Bahl, K. Global greenhouse vegetable production systems are hotspots of soil N2O emissions and nitrogen leaching: A meta-analysis. Environ. Pollut. 2021, 272, 116372. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Bi, Z.; Xiong, Z. Dynamic responses of nitrous oxide emission and nitrogen use efficiency to nitrogen and biochar amend ment in an intensified vegetable field in southeastern China. GCB Bioenergy 2017, 9, 400–413. [Google Scholar] [CrossRef]
- Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.S.; Carpena, R.M.; Icerman, J. Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agric. Water Manag. 2009, 96, 1247–1258. [Google Scholar] [CrossRef]
- Qu, Z.; Wang, J.; Almoy, T.; Bakken, L. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils. Glob. Chang. Biol. 2014, 20, 1685–1698. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.B.; Lin, S.; Zhang, X.M.; Jiang, Z.M.; Yang, K.C.; Jian, D.D.; Chen, Y.Z.; Li, J.L.; Chen, Q.; Wang, J.G. Conventional flooding irrigation causes an overuse of nitrogen fertilizer and low nitrogen use efficiency in intensively used solar greenhouse vegetable production. Agric. Water Manag. 2014, 144, 11–19. [Google Scholar] [CrossRef]
- Ju, X.T.; Kou, C.L.; Zhang, F.S.; Christie, P. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environ. Pollut. 2006, 143, 117–125. [Google Scholar] [CrossRef]
- Kou, X.Y.; Ding, J.J.; Li, Y.Z.; Li, Q.Z.; Ma, L.L.; Xu, C.Y.; Zheng, Q.; Zhuang, S. Tracing nitrate sources in the groundwater of an intensive agricultural region. Agric. Water Manag. 2021, 250, 106826. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.Q.; Gao, L.H.; Tian, Y.Q. Irrigation has more influence than fertilization on leaching water quality and the potential environmental risk in excessively fertilized vegetable soils. PLoS ONE 2018, 13, e0204570. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.F.; Zhou, W.W.; Dong, J.; He, S.P.; Chen, F.; Bi, M.H.; Wang, Q.Y.; Li, J.L.; Liang, B. Irrigation amount dominates soil mineral nitrogen leaching in plastic shed vegetable production systems. Agric. Ecosyst. Environ. 2021, 317, 107474. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, K.L.; Fan, Z.B.; Wei, Y.P.; Lin, S.; Wang, J.G. Simulating the fate of nitrogen and optimizing water and nitrogen management of greenhouse tomato in North China using the EU-Rotate_N model. Agric. Water Manag. 2013, 128, 72–84. [Google Scholar] [CrossRef]
- Min, J.; Zhang, H.L.; Shi, W.M. Optimizing nitrogen input to reduce nitrate leaching loss in greenhouse vegetable production. Agric. Water Manag. 2012, 111, 53–59. [Google Scholar] [CrossRef]
- Min, J.; Shi, W.M.; Xing, G.X.; Zhang, H.L.; Zhu, Z.L. Effects of a catch crop and reduced nitrogen fertilization on nitrogen leaching in greenhouse vegetable production systems. Nutr. Cycl. Agroecosyst. 2011, 91, 31–39. [Google Scholar] [CrossRef]
- Ren, T.; Christie, P.; Wang, J.G.; Chen, Q.; Zhang, F.S. Root zone soil nitrogen management to maintain high tomato yields and minimum nitrogen losses to the environment. Sci. Hortic. 2010, 125, 25–33. [Google Scholar] [CrossRef]
- Lv, H.F.; Lin, S.; Wang, Y.F.; Lian, X.J.; Zhao, Y.M.; Li, Y.J.; Du, J.Y.; Wang, Z.X.; Wang, J.G.; Butterbach-Bahl, K. Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system. Environ. Pollut. 2019, 245, 694–701. [Google Scholar] [CrossRef]
- Hong, E.M.; Choi, J.Y.; Nam, W.H.; Kang, M.S.; Jang, J.R. Monitoring nutrient accumulation and leaching in plastic greenhouse cultivation. Agric. Water Manag. 2014, 146, 11–23. [Google Scholar] [CrossRef]
- Xu, Y.H.; Liu, X.H.; Jing, Y.P.; Luo, J.; Guo, D.J.; Ma, Y. Dissolved N and C leaching losses mitigated by optimized fertilization management in intensive greenhouse system: Insights from DOM characteristics via EEM-PARAFAC. J. Soils Sediments 2023, 23, 657–671. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT Database-Resources. Food and Agriculture Organization of the United Nations. In FAO Statistical Yearbook; World Food and Agriculture: Rome, Italy, 2013. [Google Scholar]
- Norman, R.J.; Edberg, J.C.; Stucki, J.W. Determination of nitrate in soil extracts by dual-wavelength ultraviolet spectrophotom etry. Soil Sci. Soc. Am. J. 1985, 49, 1182–1185. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agricultural Press: Beijing, China, 2000; pp. 106–109. (In Chinese) [Google Scholar]
- Wang, X.Z.; Liu, B.; Wu, G.; Sun, Y.X.; Guo, X.S.; Jin, Z.H.; Xu, W.N.; Zhao, Y.Z.; Zhang, F.S.; Zhou, C.Q.; et al. Environmental costs and mitigation potential in plastic-greenhouse pepper production system in China: A life cycle assessment. Agric. Syst. 2018, 167, 186–194. [Google Scholar] [CrossRef]
- Zhang, C.; Ju, X.T.; Powlson, D.; Oenema, O.; Smith, P. Nitrogen surplus benchmarks for controlling N pollution in the main cropping systems of China. Environ. Sci. Technol. 2019, 53, 6678–6687. [Google Scholar] [CrossRef] [PubMed]
- Ruan, W.B.; Ren, T.; Che, Q.; Zhu, X.; Wang, J.G. Effects of conventional and reduced N inputs on nematode communities and plant yield under intensive vegetable production. Appl. Soil Ecol. 2013, 66, 48–55. [Google Scholar] [CrossRef]
- Tian, Y.Q.; Wang, J.G.; Gao, L.H. Research progress on vegetable soil microbial obstacles in protected cropping systems. China Veg. 2013, 20, 1–9. (In Chinese) [Google Scholar]
- Gao, J.B.; Wang, S.M.; Li, Z.Q.; Wang, L.; Chen, Z.J.; Zhou, J.B. High nitrate accumulation in vadose zone after land use change from cropland to orchards. Environ. Sci. Technol. 2021, 55, 5782–5790. [Google Scholar] [CrossRef] [PubMed]
- Van Meter, K.J.; Van Cappellen, P.; Basu, N.B. Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico. Science 2018, 360, 427–430. [Google Scholar] [CrossRef] [PubMed]
- Vero, S.E.; Basu, N.B.; Van Meter, K.; Richards, K.G.; Mellander, P.E.; Healy, M.G.; Fenton, O. Review: The environmental status and implications of the nitrate time lag in Europe and North America. Hydrogeol. J. 2018, 26, 7–22. [Google Scholar] [CrossRef]
- Yao, Z.S.; Yan, G.X.; Wang, R.; Zheng, X.H.; Liu, C.Y.; Butterbach-Bahl, K. Drip irrigation or reduced N-fertilizer rate can miti gate the high annual N2O+NO fluxes from Chinese intensive greenhouse vegetable systems. Atmos. Environ. 2019, 212, 183–193. [Google Scholar] [CrossRef]
- Schlesinger, W.H. On the fate of anthropogenic nitrogen. Proc. Natl. Acad. Sci. USA 2009, 106, 203–208. [Google Scholar] [CrossRef]
- Zhu, J.H.; Li, X.L.; Christie, P.; Li, J.L. Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems. Agric. Ecosyst. Environ. 2005, 111, 70–80. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, Z.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.F.; Zhao, Y.M.; Wang, Y.F.; Wan, L.; Wang, J.G.; Butterbach-Bahl, K.; Lin, S. Conventional flooding irrigation and over fertilization drives soil pH decrease not only in the top- but also in subsoil layers in solar greenhouse vegetable production systems. Geoderma 2020, 363, 114156. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, J.L.; Zhao, X.R.; Yang, S.H.; Zhang, G.L. Contribution of different proton sources to the acidification of red soil with maize cropping in subtropical China. Geoderma 2021, 392, 114995. [Google Scholar] [CrossRef]
- Lu, X.K.; Vitousek, P.M.; Mao, Q.G.; Gilliam, F.S.; Luo, Y.Q.; Zhou, G.Y.; Zou, X.M.; Bai, E.; Scanlon, T.M.; Hou, E.Q.; et al. Plant acclimation to long-term high nitrogen deposition in an N rich tropical forest. Proc. Natl. Acad. Sci. USA 2018, 115, 5187–5192. [Google Scholar] [CrossRef]
- Zhu, Q.C.; Liu, X.J.; Hao, T.X.; Zeng, M.F.; Shen, J.B.; Zhang, F.S.; De Vries, W. Modeling soil acidification in typical Chinese cropping systems. Sci. Total Environ. 2018, 613–614, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.S.; Niu, S.L. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 2015, 10, 024019. [Google Scholar] [CrossRef]
- Alves, L.A.; Denardin, L.G.D.; Martins, A.P.; Anghinoni, I.; Carvalho, P.C.D.; Tiecher, T. Soil acidification and P, K, Ca and Mg budget as affected by sheep grazing and crop rotation in a long-term integrated crop-livestock system in southern Brazil. Geoderma 2019, 351, 197–208. [Google Scholar] [CrossRef]
- Yang, Y.H.; Ji, C.J.; Ma, W.H.; Wang, S.F.; Wang, S.P.; Han, W.X.; Mohammat, A.; Robinson, D.; Smith, P. Significant soil acidi fication across northern China’s grasslands during 1980s–2000s. Glob. Chang. Biol. 2012, 18, 2292–2300. [Google Scholar] [CrossRef]
- Slessarev, E.W.; Lin, Y.; Bingham, N.L.; Johnson, J.E.; Dai, Y.; Schimel, J.P.; Chadwick, O.A. Water balance creates a threshold in soil pH at the global scale. Nature 2016, 540, 567–569. [Google Scholar] [CrossRef]
- Yang, J.L.; Zhang, G.L.; Huang, L.M.; Brookes, P.C. Estimating soil acidification rate at watershed scale based on the stoichio metric relations between silicon and base cations. Chem. Geol. 2013, 337, 30–37. [Google Scholar] [CrossRef]
- Zhou, W.W.; Lv, H.F.; Chen, F.; Wang, Q.Y.; Li, J.L.; Chen, Q.; Liang, B. Optimizing nitrogen management reduces mineral nitrogen leaching loss mainly by decreasing water leakage in vegetable fields under plastic-shed greenhouse. Environ. Pollut. 2022, 308, 119616. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yan, Z.J.; Chen, Q. Estimating the potential to reduce potassium surplus in intensive vegetable fields of China. Nutr. Cycl. Agroecosyst. 2017, 107, 265–277. [Google Scholar] [CrossRef]
- Berthrong, S.T.; Jobbagy, E.G.; Jackson, R.B. A global meta-analysis of soil exchangeable base cations, pH, carbon, and nitrogen with afforestation. Ecol. Appl. 2009, 19, 2228–2241. [Google Scholar] [CrossRef]
- Che, S.G.; Yuan, L.; Li, Y.T.; Lin, Z.A.; Shen, B.; Hu, S.W.; Zhao, B.Q. N uptake and yield response of wheat in main wheat production regions of China. J. Plant Nutr. Fertil. 2016, 22, 287–295. (In Chinese) [Google Scholar]
- Cheng, Y.; Liu, P.; Liu, Y.W.; Pang, S.S.; Dong, S.T.; Zhang, J.W.; Zhao, B.; Ren, B.C. Regulation of grain yield and nutrient absorption of modern summer maize varieties in the Yellow-Huaihe-Haihe Rivers region. Acta Agron. Sin. 2019, 45, 1699–1714. (In Chinese) [Google Scholar]
- Yu, H.Y.; Li, T.X.; Zhang, X.Z. Nutrient budget and soil nutrient status in greenhouse system. Sci. Agric. Sin. 2010, 43, 514–522. (In Chinese) [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.Z.; Guan, X.L.; Wu, G.; Sun, Y.X.; Liu, L.; Ge, C.W.; Chen, X.P. Nutrients absorption and distribution rule of pepper grown at autumn-winter season under mulched drop-irrigation system in greenhouse. China Veg. 2017, 5, 50–57. (In Chinese) [Google Scholar]
Factors | Mineral N | SON | STN | TN | Water Soluble K | Water Soluble Ca | Water Soluble Mg |
---|---|---|---|---|---|---|---|
ANOVA, F value | |||||||
Years (Y) | 63.61 *** | 3.40 * | 76.67 *** | 6.26 ** | 2.47 ns | 32.43 *** | 30.81 *** |
Depths (D) | 1.55 ns | 0.46 ns | 1.79 * | 41.61 *** | 12.98 *** | 3.00 *** | 7.06 *** |
Y*D | 1.03 ns | 0.73 ns | 1.08 ns | 3.20 *** | 9.26 *** | 0.48 ns | 0.96 ns |
Cumulative N Input | Cumulative N Uptake | The Basic Amount of TN † | The Basic Amount of STN † | The Detection Amount of TN | The Detection Amount of STN | The Amount of N Removed out 0–7 m Soil ‡ | The Increased Amount of Soil Non-Soluble N in 0–7 m Soil § | |
---|---|---|---|---|---|---|---|---|
(t N ha−1) | (t N ha−1) | (t N ha−1) | (t N ha−1) | (t N ha−1) | (t N ha−1) | (t N ha−1) | (t N ha−1) | |
10 years greenhouses | ||||||||
1 | 26.40 | 8.25 | 36.16 | 4.47 | 42.72 | 6.81 | 11.60 | 4.22 |
2 | 19.08 | 7.50 | 36.16 | 4.47 | 42.32 | 5.88 | 5.42 | 4.76 |
3 | 21.47 | 8.25 | 36.16 | 4.47 | 41.48 | 6.56 | 7.91 | 3.23 |
4 | 24.24 | 8.25 | 36.16 | 4.47 | 44.27 | 6.76 | 7.88 | 5.83 |
5 ¶ | 15.90 | 5.25 | 36.16 | 4.47 | 42.45 | 5.78 | 4.37 | 4.98 |
6 ¶ | 15.03 | 5.78 | 36.16 | 4.47 | 40.89 | 6.34 | 4.53 | 2.86 |
Mean | 20.35 | 7.21 | 36.16 | 4.47 | 42.35 | 6.35 | 6.95 | 4.31 |
SD | 4.53 | 1.36 | 3.57 | 1.05 | 1.16 | 0.44 | 2.76 | 1.12 |
20 years greenhouses | ||||||||
1 | 59.04 | 14.25 | 36.16 | 4.47 | 44.48 | 9.11 | 36.47 | 3.68 |
2 | 47.04 | 13.50 | 36.16 | 4.47 | 42.61 | 8.02 | 27.09 | 2.90 |
3 | 38.12 | 15.00 | 36.16 | 4.47 | 43.72 | 7.69 | 15.56 | 4.35 |
4 | 64.14 | 12.75 | 36.16 | 4.47 | 50.29 | 13.59 | 37.27 | 5.01 |
Mean | 52.09 | 13.88 | 36.16 | 4.47 | 45.28 | 9.60 | 29.10 | 3.99 |
SD | 11.75 | 0.97 | 3.57 | 1.05 | 3.43 | 2.73 | 10.14 | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, H.; Pang, Z.; Chen, F.; Ji, H.; Wang, W.; Zhou, W.; Dong, J.; Li, J.; Liang, B. Effects of Cultivation Years on the Distribution of Nitrogen and Base Cations in 0–7 m Soil Profiles of Plastic-Greenhouse Pepper. Agronomy 2024, 14, 1060. https://doi.org/10.3390/agronomy14051060
Lv H, Pang Z, Chen F, Ji H, Wang W, Zhou W, Dong J, Li J, Liang B. Effects of Cultivation Years on the Distribution of Nitrogen and Base Cations in 0–7 m Soil Profiles of Plastic-Greenhouse Pepper. Agronomy. 2024; 14(5):1060. https://doi.org/10.3390/agronomy14051060
Chicago/Turabian StyleLv, Haofeng, Zhongjun Pang, Fei Chen, Hongxu Ji, Weixuan Wang, Weiwei Zhou, Jing Dong, Junliang Li, and Bin Liang. 2024. "Effects of Cultivation Years on the Distribution of Nitrogen and Base Cations in 0–7 m Soil Profiles of Plastic-Greenhouse Pepper" Agronomy 14, no. 5: 1060. https://doi.org/10.3390/agronomy14051060
APA StyleLv, H., Pang, Z., Chen, F., Ji, H., Wang, W., Zhou, W., Dong, J., Li, J., & Liang, B. (2024). Effects of Cultivation Years on the Distribution of Nitrogen and Base Cations in 0–7 m Soil Profiles of Plastic-Greenhouse Pepper. Agronomy, 14(5), 1060. https://doi.org/10.3390/agronomy14051060