Application of Irrigation Management and Water-Lifting Technologies to Enhance Fodder Productivity in Smallholder Farming Communities: A Case Study in Robit Bata, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Experimental Design and Treatments
2.2.1. Description of Irrigation Treatments
2.2.2. Irrigation Water-Lifting Technology Treatments
2.3. Soil Physiochemical Properties
2.4. Crop Water Requirement (CWR) Computation
2.5. Biomass Yield Measurement
2.6. Water Productivity
2.7. Soil Moisture
2.8. Irrigation Labor Productivity
2.9. WP in Terms of Crude Protein and Metabolizable Energy
2.10. Statistical Analysis
3. Results and Discussion
3.1. Climate Data
3.2. Soil Physiochemical Properties
3.3. Interaction Effects
3.4. Effect of Irrigation Management, Season, and Water-Lifting Technologies on Irrigation Water Applied and Number of Irrigation
3.4.1. Amount of Irrigation Water Applied (IWA)
3.4.2. Number of Irrigation (Frequency) Applications
3.5. Effect of Water-Lifting Technologies on Soil Moisture Dynamics
3.6. Effect of Irrigation Management, Season, and Water-Lifting Technologies on DMY
3.6.1. Effect of Irrigation Water Management and Season on DMY
3.6.2. Effect of Water-Lifting Technologies and Irrigation Season on DMY
3.6.3. Effect of Irrigation Management and Water-Lifting Technologies on DMY
3.7. Water Productivity
3.7.1. Effect of Irrigation Management and Season on WP
3.7.2. Effect of Water-Lifting Technologies on WP
3.8. Effect of Water-Lifting Technologies on Irrigation Labor Productivity
3.9. WP in Terms of Crude Protein and Metabolizable Energy
3.9.1. WP in Terms of Crude Protein (WP.CP)
3.9.2. WP in Terms of Metabolizable Energy (WP.ME)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, S.; Teng, P.; Chew, P.; Smith, G.; Copeland, L. Food system resilience and COVID-19–Lessons from the Asian experience. Glob. Food Secur. 2021, 28, 100501. [Google Scholar] [CrossRef] [PubMed]
- Coluccia, B.; Agnusdei, G.P.; Miglietta, P.P.; De Leo, F. Effects of COVID-19 on the Italian agri-food supply and value chains. Food Control. 2021, 123, 107839. [Google Scholar] [CrossRef] [PubMed]
- Haile, M. Weather patterns, food security and humanitarian response in sub-Saharan Africa. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 2169–2182. [Google Scholar] [CrossRef] [PubMed]
- Rosegrant, M.W.; Cline, S.A. Global food security: Challenges and policies. Science 2003, 302, 1917–1919. [Google Scholar] [CrossRef]
- Sekaran, U.; Lai, L.; Ussiri, D.A.; Kumar, S.; Clay, S. Role of integrated crop-livestock systems in improving agriculture production and addressing food security—A review. J. Agric. Food Res. 2021, 5, 100190. [Google Scholar] [CrossRef]
- Frelat, R.; Lopez-Ridaura, S.; Giller, K.E.; Herrero, M.; Douxchamps, S.; Djurfeldt, A.A.; Erenstein, O.; Henderson, B.; Kassie, M.; Paul, B.K. Drivers of household food availability in sub-Saharan Africa based on big data from small farms. Proc. Natl. Acad. Sci. USA 2016, 113, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Notenbaert, A.M.; Douxchamps, S.; Villegas, D.M.; Arango, J.; Paul, B.K.; Burkart, S.; Rao, I.; Kettle, C.J.; Rudel, T.; Vázquez, E. Tapping into the environmental co-benefits of improved tropical forages for an agroecological transformation of livestock production systems. Front. Sustain. Food Syst. 2021, 434, 742842. [Google Scholar] [CrossRef]
- Shikuku, K.M.; Valdivia, R.O.; Paul, B.K.; Mwongera, C.; Winowiecki, L.; Läderach, P.; Herrero, M.; Silvestri, S. Prioritizing climate-smart livestock technologies in rural Tanzania: A minimum data approach. Agric. Syst. 2017, 151, 204–216. [Google Scholar] [CrossRef]
- Thomas, M.G.; Mohamed, A.H.; Sawalhah, M.N.; Holechek, J.L.; Bailey, D.W.; Hawkes, J.M.; Luna-Nevarez, P.; Molinar, F.; Khumalo, G.J.R.E. Long-term forage and cow-calf performance and economic considerations of two stocking levels on Chihuahuan desert rangeland. Rangel. Ecol. Manag. 2015, 68, 158–165. [Google Scholar] [CrossRef]
- Thornton, P.K.; Kristjanson, P.M.; Thorne, P.J. Measuring the potential impacts of improved food-feed crops: Methods for ex ante assessment. Field Crops Res. 2003, 84, 199–212. [Google Scholar] [CrossRef]
- Hanjra, M.A.; Ferede, T.; Gutta, D.G. Reducing poverty in sub-Saharan Africa through investments in water and other priorities. Agric. Water Manag. 2009, 96, 1062–1070. [Google Scholar] [CrossRef]
- Yami, M. Irrigation projects in Ethiopia: What can be done to enhance effectiveness under ‘challenging contexts’? Int. J. Sustain. Dev. World Ecol. 2016, 23, 132–142. [Google Scholar] [CrossRef]
- Assefa, M.; Wesseler, J.; Hengsdijk, H. Socio-Economic Assessment of Two Small-Scale Irrigation Schemes in Adami Tullu Jido Kombolcha Woreda, Central Rift Valley of Ethiopia; Environmental Economics and Natural Resources Group, Wageningen University: Wageningen, The Netherlands, 2008. [Google Scholar]
- Vennila, C.; Ananthi, T. Impact of irrigation and nutrients on the performance of bajra Napier hybrid grass grown under light sandy soil. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 804–812. [Google Scholar] [CrossRef]
- Belay, S.A.; Schmitter, P.; Worqlul, A.W.; Steenhuis, T.S.; Reyes, M.R.; Tilahun, S.A. Conservation agriculture saves irrigation water in the dry monsoon phase in the Ethiopian highlands. Water 2019, 11, 2103. [Google Scholar] [CrossRef]
- Yohannes, D.F.; Ritsema, C.; Eyasu, Y.; Solomon, H.; Van Dam, J.; Froebrich, J.; Ritzema, H.; Meressa, A. A participatory and practical irrigation scheduling in semiarid areas: The case of Gumselassa irrigation scheme in Northern Ethiopia. Agric. Water Manag. 2019, 218, 102–114. [Google Scholar]
- Centreal Statistics Agency of Ethiopia. Agricultural Sample Survey, 2019/2020, Crop and Livestock Product Utilization; Centreal Statistics Agency of Ethiopia: Addis Ababa, Ethiopia, 2020; Volume II.
- Farrell, G.; Simons, S.; Hillocks, R. Pests, diseases and weeds of Napier grass, Pennisetum purpureum: A review. Int. J. Pest Manag. 2002, 48, 39–48. [Google Scholar] [CrossRef]
- Mwendia, S.; Wanyoike, M.; JGM, N.; Wahome, R.; Mwangi, D. Evaluation of Napier Grass Cultivars for Resistance to Napier Head Smut; Univesity of Nairobi, Kenya Agricultural Research Institute: Nairobi, Kenya, 2006. [Google Scholar]
- Negawo, A.T.; Teshome, A.; Kumar, A.; Hanson, J.; Jones, C.S. Opportunities for Napier grass (Pennisetum purpureum) improvement using molecular genetics. Agronomy 2017, 7, 28. [Google Scholar] [CrossRef]
- Odongo, N.; Tanner, J.; Romney, D.; Plaizier, J.; Van Straaten, P.; McBride, B. The effects of supplementing Napier grass (Pennisetum purpureum) with rock phosphate and steamed bone meal compared with a commercial mineral mix on phosphorus absorption in cattle. Trop. Anim. Health Prod. 2002, 34, 329–338. [Google Scholar] [CrossRef]
- Zewdu, T. Variation in growth, yield, chemical composition and in vitro dry matter digestibility of Napier grass accessions (Pennisetum purpureum). Trop. Sci. 2005, 45, 67–73. [Google Scholar] [CrossRef]
- Cook, B.G.; Pengelly, B.C.; Brown, S.; Donnelly, J.; Eagles, D.; Franco, M.; Hanson, J.; Mullen, B.F.; Partridge, I.; Peters, M. Tropical Forages: An Interactive Selection Tool. Web Tool. CSIRO, DPI&F(Qld), CIAT and ILRI, Brisbane, Australia. 2005. Available online: https://cgspace.cgiar.org/items/f3b5a09f-5630-4fb6-b0ed-f6a1d61539c2 (accessed on 27 January 2023).
- Assefa, T.; Jha, M.; Reyes, M.; Tilahun, S.; Worqlul, A.W. Experimental evaluation of conservation agriculture with drip irrigation for water productivity in sub-Saharan Africa. Water 2019, 11, 530. [Google Scholar] [CrossRef]
- Fenta, H.M.; Hussein, M.A.; Tilahun, S.A.; Nakawuka, P.; Steenhuis, T.S.; Barron, J.; Adie, A.; Blummel, M.; Schmitter, P. Berken plow and intercropping with pigeon pea ameliorate degraded soils with a hardpan in the Ethiopian highlands. Geoderma 2022, 407, 115523. [Google Scholar] [CrossRef]
- Yimam, A.Y.; Assefa, T.T.; Adane, N.F.; Tilahun, S.A.; Jha, M.K.; Reyes, M.R. Experimental evaluation for the impacts of conservation agriculture with drip irrigation on crop coefficient and soil properties in the sub-humid Ethiopian Highlands. Water 2020, 12, 947. [Google Scholar] [CrossRef]
- Mulugeta, H. Development of Crop Coefficients and Evaluating the Productivity Andwater Use for Napier Grass under Small-Scale Irrigation: The Case of Robit Kebele. Master’s Thesis, Faculty of Civil and Water Resource Engineering, Bahir Dar University, Bahir Dar, Etiopia, 2015. Available online: https://ilssi.tamu.edu/publications/student-thesis-papers/ (accessed on 16 September 2020).
- Dadrasan, M.; Chaichi, M.; Pourbabaee, A.; Yazdani, D.; Keshavarz-Afshar, R. Deficit irrigation and biological fertilizer influence on yield and trigonelline production of fenugreek. Ind. Crops Prod. 2015, 77, 156–162. [Google Scholar] [CrossRef]
- Tilahun, S.A.; Yilak, D.L.; Schmitter, P.; Zimale, F.A.; Langan, S.; Barron, J.; Parlange, J.Y.; Steenhuis, T.S. Establishing irrigation potential of a hillside aquifer in the African highlands. Hydrol. Process. 2020, 34, 1741–1753. [Google Scholar] [CrossRef]
- Assefa, T.; Adametie, T.; Yimam, A.; Belay, S.; Degu, Y.; Hailemeskel, S.; Tilahun, S.; Reyes, M.; Prasad, P. Evaluating Irrigation and Farming Systems with Solar MajiPump in Ethiopia. Agronomy 2020, 11, 17. [Google Scholar] [CrossRef]
- Black, C.A. Methods of Soil Analysis: Sponsored by the American Society of Agronomy and the American Society for Testing Materials; American Society for Agronomy: Madison, WI, USA, 1965. [Google Scholar]
- Cassel, D.; Nielsen, D. Field capacity and available water capacity. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods; American Society of Agronomy-Soil Science Society of America: Madison, WI, USA, 1986; Volume 5, pp. 901–926. [Google Scholar]
- Bremner, J.; Mulvaney, C. Nitrogen-total. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Soil Science Society of America: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Olsen, S.; Dean, L. Phosphorus. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; American Society of Agronomy, Inc.: Madison, WI, USA, 1965; Volume 2, pp. 1035–1048. [Google Scholar]
- Nelson, D.A.; Sommers, L. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Wiley Online Library: Hoboken, NJ, USA, 1983; Volume 9, pp. 539–579. [Google Scholar]
- Assefa, T.; Jha, M.; Reyes, M.; Worqlul, A.W. Modeling the impacts of conservation agriculture with a drip irrigation system on the hydrology and water management in sub-Saharan Africa. Sustainability 2018, 10, 4763. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. D05109. [Google Scholar]
- Wu, Y.; Si, W.; Yan, S.; Wu, L.; Zhao, W.; Zhang, J.; Zhang, F.; Fan, J. Water consumption, soil nitrate-nitrogen residue and fruit yield of drip-irrigated greenhouse tomato under various irrigation levels and fertilization practices. Agric. Water Manag. 2023, 277, 108092. [Google Scholar] [CrossRef]
- Hunt, R.C. Labor productivity and agricultural development: Boserup revisited. Hum. Ecol. 2000, 28, 251–277. [Google Scholar] [CrossRef]
- Ul-Allah, S.; Khan, A.A.; Fricke, T.; Buerkert, A.; Wachendorf, M. Effect of fertiliser and irrigation on forage yield and irrigation water use efficiency in semi-arid regions of Pakistan. Exp. Agric. 2015, 51, 485–500. [Google Scholar] [CrossRef]
- Menke, K. Estimation of the energetic feed value obtained from chemical analysis and In Vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Purcell, J.; Currey, A. Gaining Acceptance of Water Use Efficiency—Framework, Terms and Definitions; Final Report; National Program for Sustainable Irrigation (NPSI): Narrabri, NSW, Australia, 2003; pp. 7–15.
- Gallardo, A. Spatial variability of soil properties in a floodplain forest in northwest Spain. Ecosystems 2003, 6, 564–576. [Google Scholar] [CrossRef]
- Getachew, T. Development of Crop Coefficient and Evaluation of Partial Nutrient Balance for Garlic (Allium sativum) and Inter Cropped Napier Grass under Dry Period Irrigation in Robit Bata Watershed. Ph.D. Thesis, Bahir Dar University, Bahir Dar, Etiopia, 2020. [Google Scholar]
- Schmitter, P.S.; Tegegne, D.; Adie, A.; Baudron, F.; Blümmel, M.; Lefore, N.; Barron, J. Evaluation of Suitable Water Lifting and On-Farm Water Management Technologies for the Irrigation of Vegetables and Fodder in Lemo District, Ethiopia; International Livestock Research Institute: Addis Ababa, Ethiopia, 2016. [Google Scholar]
- Spencer, G.; Krutz, L.; Falconer, L.; Henry, W.; Henry, C.; Larson, E.; Pringle, H., III; Bryant, C.; Atwill, R. Irrigation water management technologies for furrow-irrigated corn that decrease water use and improve yield and on-farm profitability. Crop Forage Turfgrass Manag. 2019, 5, 1–8. [Google Scholar] [CrossRef]
- Frenken, K.; Gillet, V. Irrigation Water Requirement and Water Withdrawal by Country; FAO: Rome, Italy, 2012. [Google Scholar]
- Getiso, A.; Mijena, D. Performance Evaluation of Napier Grass (Penisetum purpuruem (L.) Schumach) accessions under rain fed and Irrigation System at Wondo Genet. Glob. J. Ecol. 2021, 6, 28–33. [Google Scholar]
- Salmerón, M.; Urrego, Y.; Isla, R.; Cavero, J. Effect of non-uniform sprinkler irrigation and plant density on simulated maize yield. Agric. Water Manag. 2012, 113, 1–9. [Google Scholar] [CrossRef]
- Namara, R.E.; Hope, L.; Sarpong, E.O.; De Fraiture, C.; Owusu, D. Adoption patterns and constraints pertaining to small-scale water lifting technologies in Ghana. Agric. Water Manag. 2014, 131, 194–203. [Google Scholar] [CrossRef]
- Bizimana, J.-C.; Richardson, J.W.; Clarke, N.P. Household Food Security and Nutrition Analysis Using a Farm Simulation Model (FARMSIM): Case Study of Robit in Amhara Region, Ethiopia. ES Food Agrofor. 2020, 2, 22–41. [Google Scholar] [CrossRef]
- Nigussie, L.; Lefore, N.; Schmitter, P.S.; Nicol, A. Gender and Water Technologies: Water Lifting for Irrigation and Multiple Purposes in Ethiopia; International Livestock Research Institute: Addis Ababa, Ethiopia, 2017. [Google Scholar]
- Singh, J.; Behari, P.; Yadava, R. On the estimation of evapotranspiration, water-use efficiency and crop coefficient of lucerne (Medicago sativa L.) in central India. Curr. Sci. 2007, 93, 17–19. [Google Scholar]
- Zhang, X.; Chen, S.; Sun, H.; Shao, L.; Wang, Y. Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades. Agric. Water Manag. 2011, 98, 1097–1104. [Google Scholar] [CrossRef]
- Howell, T.; Evett, S.; Tolk, J. Irrigation systems and management to meet future food/fiber needs and to enhance water use efficiency. In Proceedings of the INIFAP-ARS Joint Meeting: A Framework for Cooperation, Weslaco, TX, USA and Río Bravo, Mexico, 6–7 November 2001; pp. 10–14. [Google Scholar]
- Hassanli, A.M.; Ebrahimizadeh, M.A.; Beecham, S. The effects of irrigation methods with effluent and irrigation scheduling on water use efficiency and corn yields in an arid region. Agric. Water Manag. 2009, 96, 93–99. [Google Scholar] [CrossRef]
- Levidow, L.; Zaccaria, D.; Maia, R.; Vivas, E.; Todorovic, M.; Scardigno, A. Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agric. Water Manag. 2014, 146, 84–94. [Google Scholar] [CrossRef]
- Montazar, A.; Bachie, O.; Corwin, D.; Putnam, D. Feasibility of moderate deficit irrigation as a water conservation tool in California’s low desert alfalfa. Agronomy 2020, 10, 1640. [Google Scholar] [CrossRef]
- Fazel, F.; Ansari, H.; Aguilar, J. Determination of the Most Efficient Forage Sorghum Irrigation Scheduling Strategies in the US Central High Plains Using the AquaCrop Model and Field Experiments. Agronomy 2023, 13, 2446. [Google Scholar] [CrossRef]
- Rathore, V.S.; Nathawat, N.S.; Bhardwaj, S.; Yadav, B.M.; Kumar, M.; Santra, P.; Kumar, P.; Reager, M.L.; Yadava, N.D.; Yadav, O.P. Optimization of deficit irrigation and nitrogen fertilizer management for peanut production in an arid region. Sci. Rep. 2021, 11, 5456. [Google Scholar] [CrossRef] [PubMed]
- Purbajanti, E.; Anwar, S.; Wydiati, F.K. Drought stress effect on morphology characters, water use efficiency, growth and yield of guinea and napier grasses. Int. Res. J. Plant Sci. 2012, 3, 47–53. [Google Scholar]
- Descheemaeker, K.; Amede, T.; Haileslassie, A. Improving water productivity in mixed crop–livestock farming systems of sub-Saharan Africa. Agric. Water Manag. 2010, 97, 579–586. [Google Scholar] [CrossRef]
- Kumar, M.D.; Sharma, B.R.; Singh, O.P. Water saving and yield enhancing micro-irrigation technologies: How far can they contribute to water productivity in Indian agriculture? In Strategic Analyses of the National River Linking Project (NRLP) of India, Series 1: India’s Water Future: Scenarios and Issues; International Water Management Institute: Colombo, Sri Lanka, 2009. [Google Scholar]
- Capstaff, N.M.; Miller, A.J. Improving the yield and nutritional quality of forage crops. Front. Plant Sci. 2018, 9, 535. [Google Scholar] [CrossRef] [PubMed]
- Kamwamba-Mtethiwa, J.; Weatherhead, K.; Knox, J. Assessing performance of small-scale pumped irrigation systems in sub-Saharan Africa: Evidence from a systematic review. Irrig. Drain. 2016, 65, 308–318. [Google Scholar] [CrossRef]
- Kelley, L.C.; Gilbertson, E.; Sheikh, A.; Eppinger, S.D.; Dubowsky, S. On the feasibility of solar-powered irrigation. Renew. Sustain. Energy Rev. 2010, 14, 2669–2682. [Google Scholar] [CrossRef]
- Schmitter, P.; Kibret, K.S.; Lefore, N.; Barron, J. Suitability mapping framework for solar photovoltaic pumps for smallholder farmers in sub-Saharan Africa. Appl. Geogr. 2018, 94, 41–57. [Google Scholar] [CrossRef]
Soil Property | Unit | Soil Depth | |||||||
---|---|---|---|---|---|---|---|---|---|
0–30 cm | 30–60 cm | ||||||||
Min | Max | Mean | CV (%) | Min | Max | Mean | CV (%) | ||
pH | H2O (1:2.5) | 5.17 | 5.55 | 5.34 | 2.4 | 5.26 | 6.02 | 5.58 | 3.94 |
EC | dS/m | 0.04 | 0.18 | 0.07 | 64.78 | 0.03 | 0.08 | 0.04 | 37.04 |
OC | % | 1.61 | 2.52 | 2.04 | 15.12 | 0.59 | 1.88 | 1.21 | 38.23 |
OM | % | 2.78 | 4.35 | 3.51 | 15.15 | 1.01 | 3.25 | 2.08 | 38.46 |
TN | % | 0.13 | 0.21 | 0.16 | 17 | 0.03 | 0.15 | 0.09 | 45.62 |
FC (gravimetric) | % | 28.1 | 33.5 | 30.82 | 5.33 | 30.1 | 35.9 | 33.29 | 5.65 |
PWP (gravimetric) | % | 17.6 | 21.8 | 19.98 | 7.23 | 19.9 | 24 | 21.94 | 6.9 |
Av. P | ppm | 3.89 | 10.58 | 7.82 | 24.29 | 3.08 | 8.74 | 6.37 | 29.83 |
%Sand | 11 | 25 | 17.8 | 26.59 | 3 | 11 | 7.2 | 42.33 | |
Texture | %Silt | 27 | 41 | 32.6 | 14.4 | 11 | 29 | 20.2 | 29.22 |
%Clay | 34 | 60 | 49.6 | 14.33 | 60 | 86 | 72.6 | 12.12 |
IWA | DMY | WP | NoIrr | WP.CP | WP.ME | SM | ILP | |
---|---|---|---|---|---|---|---|---|
IM | *** | *** | 0.714 | *** | 0.947 | 0.541 | ||
WLT | 0.103 | 0.001 | 0.018 | 0.008 | 0.402 | 0.005 | *** | *** |
Season | *** | *** | 0.589 | *** | 0.839 | 0.156 | ||
IM*WLT | 0.103 | 0.701 | 0.558 | 0.008 | 0.93 | 0.789 | ||
IM*Season | 0.666 | 0.019 | 0.047 | *** | 0.655 | 0.026 | ||
WLT*Season | 0.234 | 0.016 | 0.216 | 0.578 | 0.574 | 0.205 | ||
IM*WLT*Season | 0.234 | 0.893 | 0.704 | 0.578 | 0.937 | 0.822 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, M.A.; Riga, F.T.; Derseh, M.B.; Assefa, T.T.; Worqlul, A.W.; Haileslassie, A.; Adie, A.; Jones, C.S.; Tilahun, S.A. Application of Irrigation Management and Water-Lifting Technologies to Enhance Fodder Productivity in Smallholder Farming Communities: A Case Study in Robit Bata, Ethiopia. Agronomy 2024, 14, 1064. https://doi.org/10.3390/agronomy14051064
Hussein MA, Riga FT, Derseh MB, Assefa TT, Worqlul AW, Haileslassie A, Adie A, Jones CS, Tilahun SA. Application of Irrigation Management and Water-Lifting Technologies to Enhance Fodder Productivity in Smallholder Farming Communities: A Case Study in Robit Bata, Ethiopia. Agronomy. 2024; 14(5):1064. https://doi.org/10.3390/agronomy14051064
Chicago/Turabian StyleHussein, Misbah A., Fikadu T. Riga, Melkamu B. Derseh, Tewodros T. Assefa, Abeyou W. Worqlul, Amare Haileslassie, Abera Adie, Chris S. Jones, and Seifu A. Tilahun. 2024. "Application of Irrigation Management and Water-Lifting Technologies to Enhance Fodder Productivity in Smallholder Farming Communities: A Case Study in Robit Bata, Ethiopia" Agronomy 14, no. 5: 1064. https://doi.org/10.3390/agronomy14051064
APA StyleHussein, M. A., Riga, F. T., Derseh, M. B., Assefa, T. T., Worqlul, A. W., Haileslassie, A., Adie, A., Jones, C. S., & Tilahun, S. A. (2024). Application of Irrigation Management and Water-Lifting Technologies to Enhance Fodder Productivity in Smallholder Farming Communities: A Case Study in Robit Bata, Ethiopia. Agronomy, 14(5), 1064. https://doi.org/10.3390/agronomy14051064