Management Efficacy and Response to Post-Application Precipitation of Fungicides for Southern Stem Rot of Peanut and Evaluation of Co-Application with Micronized Sulfur
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Data Analysis
3. Results and Discussion
3.1. Southern Stem Rot
3.2. Pod Yield
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aycock, R. Stem rot and other diseases caused by Sclerotium rolfsii. N. C. Agric. Exp. Stn. Tech. Bull. 1966, 175, 1–202. [Google Scholar]
- Backman, P.A.; Brenneman, T.B. Peanut Diseases. In Compendium of Peanut Diseases, 2nd ed.; Kokalis-Burelle, N., Porter, D.M., Rodrigues-Kabana, R., Smith, D.H., Subrahmanyam, P., Eds.; American Phytopathological Society Press: St. Paul, MN, USA, 1997. [Google Scholar]
- Standish, J.R.; Culbreath, A.K.; Branch, W.D.; Brenneman, T.B. Disease and yield response of a stem-rot-resistant and -susceptible peanut cultivar under varying fungicide inputs. Plant Dis. 2019, 103, 2781–2785. [Google Scholar] [CrossRef] [PubMed]
- Bowen, K.L.; Hagan, A.K.; Weeks, J.R. Soil-borne pests of peanut in growers’ fields with different cropping histories in Alabama. Peanut Sci. 1996, 23, 36–42. [Google Scholar] [CrossRef]
- Mehan, V.K.; Mayee, C.D.; McDonald, D. Management of Sclerotium rolfsii-caused stem and pod rots of groundnut-a critical review. Int. J. Pest Manag. 1994, 40, 313–320. [Google Scholar] [CrossRef]
- Mullen, J. Southern blight, southern stem blight, white mold. Plant Health Instr. 2001, 10, 104. [Google Scholar] [CrossRef]
- Anco, D.; Marshall, M.; Kirk, K.R.; Plumblee, M.T.; Smith, N.; Mickey, S.; Farmaha, B.; Payero, J. Peanut Money-Maker 2024. Production Guide; Circular 588; Clemson University Extension: Clemson, SC, USA, 2024. [Google Scholar]
- Augusto, J.; Brenneman, T.B.; Culbreath, A.K.; Sumner, P. Night spraying peanut fungicides I. Extended fungicide residual and integrated disease management. Plant Dis. 2010, 94, 676–682. [Google Scholar] [CrossRef]
- Augusto, J.; Brenneman, T.B.; Culbreath, A.K.; Sumner, P. Night spraying peanut fungicides II. Application timings and spray deposition in the lower canopy. Plant Dis. 2010, 94, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Woodward, J.E.; Brenneman, T.B.; Mullinix, B.G., Jr. Irrigation timing impacts the efficacy of foliar-applied fungicides toward foliar and soilborne pathogens of peanut. Plant Dis. 2012, 96, 1785–1790. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.F.; Smith, F.D.; Brenneman, T.B.; McLean, H. Effect of irrigation on expression of stem rot of peanut and comparison of aboveground and belowground disease ratings. Plant Dis. 1996, 80, 1155–1159. [Google Scholar] [CrossRef]
- Bowen, K.L. Development of stem rot (caused by Sclerotium rolfsii) in peanut in Alabama. Peanut Sci. 2003, 30, 120–128. [Google Scholar] [CrossRef]
- Sanjel, S.; Colee, J.; Barocco, R.L.; Dufault, N.S.; Tillman, B.L.; Punja, Z.K.; Seepaul, R.; Small, I.M. Environmental factors influencing stem rot development in peanut: Predictors and action thresholds for disease management. Phytopathology 2024, 114, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Renfroe-Becton, H.; Croft, J.; Davis, C.; Varn, J.; Culbreath, A.K.; Langston, D.B.; Anco, D.J. Phenotypic fungicide resistance and cross-resistance among Nothopassalora personata populations. PhytoFrontiers 2024. [Google Scholar] [CrossRef]
- Culbreath, A.K.; Brenneman, T.B.; Kemerait, R.C., Jr.; Stevenson, K.L.; Anco, D.J. Combinations of elemental sulfur with demethylation inhibitor fungicides for management of late leaf spot (Nothopassalora personata) of peanut. Crop Protect. 2019, 125, 104911. [Google Scholar] [CrossRef]
- Culbreath, A.K.; Brenneman, T.B.; Kemerait, R.C., Jr.; Cantonwine, E.G. Comparison of elemental sulfur products as tank mix partners with azoxystrobin for management of late leaf spot (Nothopassalora personata) of peanut. Plant Health Prog. 2023, 24, 188–192. [Google Scholar] [CrossRef]
- Simmonds, M.C.; Higgins, J.P.T.; Stewart, L.A.; Tierney, J.F.; Clarke, M.J.; Thompson, S.G. Meta-analysis of individual patient data from randomized trials: A review of methods used in practice. Clin. Trials 2005, 2, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.G.; Higgins, J.P.T. How should meta-regression analyses be undertaken and interpreted? Stat. Med. 2002, 21, 1559–1573. [Google Scholar] [CrossRef]
- van Houwelingen, H.C.; Arends, L.R.; Stijnen, T. Advanced methods in meta-analysis: Multivariate approach and meta-regression. Stat. Med. 2002, 21, 589–624. [Google Scholar] [CrossRef] [PubMed]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Maechler, M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 1 November 2023).
- Lin, L.I.-K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- Huber, L.; Madden, L.V.; Fitt, B.D.L. Rain-splash and spore dispersal: A physical perspective. In The Epidemiology of Plant Diseases; Jones, D.G., Ed.; Springer: Dordrecht, The Netherlands, 1998. [Google Scholar] [CrossRef]
- Madden, L.V. Effects of rain on splash dispersal of fungal pathogens. Can. J. Plant Pathol. 1997, 19, 225–230. [Google Scholar] [CrossRef]
- Pietravalle, S.; van den Bosch, F.; Welham, S.J.; Parker, S.R.; Lovell, D.J. Modelling of rain splash trajectories and prediction of rain splash height. Agric. For. Meteorol. 2001, 109, 171–185. [Google Scholar] [CrossRef]
- Shaw, M.W. Assessment of upward movement of rain splash using a fluorescent tracer method and its application to the epidemiology of cereal pathogens. Plant Pathol. 1987, 36, 201–213. [Google Scholar] [CrossRef]
- Shew, B.B.; Beute, M.K.; Campbell, C.L. Spatial pattern of southern stem rot caused by Sclerotium rolfsii in six North Carolina peanut fields. Phytopathology 1984, 74, 730–735. [Google Scholar] [CrossRef]
- Chapman, S.C.; Ludlow, M.M.; Blamey, F.P.C.; Fischer, K.S. Effect of drought during pod filling on utilization of water and on growth of cultivars of groundnut. Field Crops Res. 1993, 32, 243–255. [Google Scholar] [CrossRef]
- Munir, M.; Wang, H.; Agudelo, P.; Anco, D.J. Rapid detection of fungicide resistance phenotypes among populations of Nothopassalora personata in South Carolina peanut fields. Plant Health Prog. 2020, 21, 123–132. [Google Scholar] [CrossRef]
- Anco, D.J.; Thomas, J.S.; Jordan, D.L.; Shew, B.B.; Monfort, W.S.; Mehl, H.L.; Small, I.M.; Wright, D.L.; Tillman, B.L.; Dufault, N.S. Peanut yield loss in the presence of defoliation caused by late or early leaf spot. Plant Dis. 2020, 104, 1390–1399. [Google Scholar] [CrossRef]
- Brent, K.J.; Hollomon, D.W. Fungicide Resistance in Crop Pathogens: How Can It Be Managed? 2nd ed.; Fungicide Resistance Action Committee Monograph No. 1; Global Crop Protection Federation: Brussels, Belgium, 2007; ISBN 90-72398-07-6. [Google Scholar]
- Deising, H.B.; Reimann, S.; Pascholati, S.F. Mechanisms and significance of fungicide resistance. Braz. J. Microbiol. 2008, 39, 286–295. [Google Scholar] [CrossRef]
Active Ingredient | Rate (kg ai/ha) | Experiments | Treatments | Treatment-Experiments |
---|---|---|---|---|
Chlorothalonil-only | 1.26 | 10 | 1 | 10 |
Benzovindiflupyr plus azoxystrobin | 0.08 to 0.1 plus 0.15 to 0.2 | 9 | 8 | 12 |
Flutolanil | 0.53 to 1.07 | 9 | 17 | 27 |
Inpyrfluxam | 0.05 to 0.1 | 7 | 20 | 24 |
Micronized sulfur 1 | 4.48 | 5 | 9 | 12 |
Tebuconazole | 0.2 to 0.23 | 10 | 17 | 22 |
Prothioconazole | 0.11 to 0.2 | 5 | 8 | 8 |
Response | Subsequent Days Considered | dd_mmn × a.i. 1 | φ 2 | AIC 3 | CCC 4 |
---|---|---|---|---|---|
SSR incidence | One | Yes | 12.1 | −833.8 | 0.885 |
Two | 11.8 | −827.5 | 0.882 | ||
One | No | 11.7 | −834.7 | 0.882 | |
Two | 11.7 | −837.1 | 0.882 | ||
Pod yield | One | Yes | 88.4 | 6505.9 | 0.897 |
Two | 88.4 | 6493.9 | 0.900 | ||
One | No | 96.3 | 6517.0 | 0.893 | |
Two | 96.3 | 6513.0 | 0.894 |
Response | Precipitation Period Considered | dd_mmn × a.i. 1 | φ 2 | AIC 3 | CCC 4 |
---|---|---|---|---|---|
SSR incidence | All | No | 11.7 | −837.1 | 0.882 |
≥60 days after planting | 11.7 | −838.8 | 0.882 | ||
≥75 days after planting | 11.7 | −838.9 | 0.882 | ||
≥90 days after planting | 11.7 | −837.1 | 0.881 | ||
Pod yield | All | Yes | 88.4 | 6493.9 | 0.900 |
≥60 days after planting | 88.4 | 6500.0 | 0.899 | ||
≥75 days after planting | 88.4 | 6499.3 | 0.899 | ||
≥90 days after planting | 88.4 | 6497.9 | 0.900 |
SSR Incidence | Pod Yield (kg/ha) | |||||
---|---|---|---|---|---|---|
Parameter 1 | Estimate | 95% CI 2 | p | Estimate | 95% CI | p |
Intercept | −0.5560 | −1.2776, 0.1596 | 0.117 | 7.9739 | 7.7444, 8.2023 | <0.001 |
C | 0.1847 | −0.1325, 0.5030 | 0.254 | −0.2061 | −0.2965, −0.1184 | <0.001 |
B | −6.7462 | −8.6401, −4.8492 | <0.001 | 1.9218 | 1.4424, 2.3896 | <0.001 |
F | −0.4723 | −0.6765, −0.2698 | <0.001 | 0.0766 | 0.0319, 0.1204 | 0.003 |
I | −7.9504 | −10.0211, −5.8846 | <0.001 | 1.4272 | 0.8490, 2.0110 | <0.001 |
M | −0.1371 | −0.3854, 0.0969 | 0.263 | 0.0504 | −0.0366, 0.1365 | 0.258 |
P | −1.4566 | −2.8694, −0.1686 | 0.033 | 0.0295 | −0.3636, 0.4164 | 0.883 |
T | −0.6383 | −1.0792, −0.1986 | 0.004 | 0.2829 | 0.1599, 0.4087 | <0.001 |
dd_mm | −0.0039 | −0.0077, −0.0001 | 0.042 | 0.0028 | 0.0017, 0.0039 | <0.001 |
B × dd_mm | -- | -- | -- | −0.0245 | −0.0361, −0.0128 | <0.001 |
F × dd_mm | -- | -- | -- | −0.0014 | −0.0014, −0.0014 | 0.014 |
I × dd_mm | -- | -- | -- | −0.0099 | −0.0241, 0.0042 | 0.209 |
M × dd_mm | -- | -- | -- | −0.0017 | −0.0052, 0.0018 | 0.371 |
P × dd_mm | -- | -- | -- | −0.0072 | −0.0165, 0.0024 | 0.274 |
T × dd_mm | -- | -- | -- | −0.0067 | −0.0105, −0.0028 | 0.014 |
Cultivar × Year | 0.7414 | 0.5311, 1.1043 | -- | 0.2700 | 0.1970, 0.3975 | -- |
φ | 11.6978 | 10.1173, 13.4338 | -- | 88.4159 | 87.1084, 89.5506 | -- |
Active Ingredient | Rate (ai kg/ha) | Cost (USD/ha/ Application) | SSR Control/USD/ha/ Application | Return (USD/ha) 1 |
---|---|---|---|---|
Chlorothalonil-only | 1.26 | USD 12.0 | −0.48% | USD 0 |
Benzovindiflupyr plus azoxystrobin | 0.07 plus 0.15 | USD 46.5 | 0.26% | USD 574 |
0.08 plus 0.17 | USD 53.2 | 0.26% | USD 605 | |
0.09 plus 0.19 | USD 59.8 | 0.26% | USD 637 | |
Flutolanil | 0.53 | USD 36.0 | 0.17% | USD 409 |
0.80 | USD 54.0 | 0.17% | USD 425 | |
1.06 | USD 72.0 | 0.17% | USD 442 | |
Inpyrfluxam | 0.05 | USD 37.1 | 0.26% | USD 459 |
0.07 | USD 55.6 | 0.26% | USD 502 | |
0.10 | USD 74.1 | 0.26% | USD 548 | |
Micronized sulfur | 4.48 | USD 23.5 | 0.07% | USD 355 |
Prothioconazole | 0.20 | USD 67.4 | 0.11% | USD 320 |
Tebuconazole | 0.22 | USD 7.4 | 0.47% | USD 474 |
Prothioconazole plus tebuconazole | 0.20 plus 0.20 | USD 48.9 | 0.21% | USD 425 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anco, D.J.; Hiers, J.; Zurweller, B. Management Efficacy and Response to Post-Application Precipitation of Fungicides for Southern Stem Rot of Peanut and Evaluation of Co-Application with Micronized Sulfur. Agronomy 2024, 14, 893. https://doi.org/10.3390/agronomy14050893
Anco DJ, Hiers J, Zurweller B. Management Efficacy and Response to Post-Application Precipitation of Fungicides for Southern Stem Rot of Peanut and Evaluation of Co-Application with Micronized Sulfur. Agronomy. 2024; 14(5):893. https://doi.org/10.3390/agronomy14050893
Chicago/Turabian StyleAnco, Daniel J., Justin Hiers, and Brendan Zurweller. 2024. "Management Efficacy and Response to Post-Application Precipitation of Fungicides for Southern Stem Rot of Peanut and Evaluation of Co-Application with Micronized Sulfur" Agronomy 14, no. 5: 893. https://doi.org/10.3390/agronomy14050893
APA StyleAnco, D. J., Hiers, J., & Zurweller, B. (2024). Management Efficacy and Response to Post-Application Precipitation of Fungicides for Southern Stem Rot of Peanut and Evaluation of Co-Application with Micronized Sulfur. Agronomy, 14(5), 893. https://doi.org/10.3390/agronomy14050893