Identification of Candidate Genes for Salt Tolerance at Seedling Stage in Rice Using QTL-Seq and Chromosome Segment Substitution Line-Derived Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Salt Stress Experiment and Evaluation of Salt Tolerance
2.3. Bulk Construction, DNA Extraction, Whole-Genome Sequencing, and RNA-Seq
2.4. QTL-Seq Analysis and Candidate Gene Determination
2.5. KASP Marker Genotyping and Marker–Trait Association Analysis
2.6. Statistical Analysis
3. Results
3.1. Evaluation of Salt Tolerance and Construction of the Two Extreme Bulks
3.2. Whole-Genome Sequencing and Variant Detection
3.3. QTL-Seq Analysis for Salt Tolerance at Seedling Stage
3.4. Candidate Gene Annotation and Prioritization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, M.; Lin, Y.; Chen, H. Improving nutritional quality of rice for human health. Theor. Appl. Genet. 2020, 133, 1397–1413. [Google Scholar] [CrossRef]
- Fahad, S.; Adnan, M.; Noor, M.; Arif, M.; Alam, M.; Khan, I.A.; Ullah, H.; Wahid, F.; Mian, I.A.; Jamal, Y.; et al. Major constraints for global rice production. In Advances in Rice Research for Abiotic Stress Tolerance; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–22. ISBN 9780128143322. [Google Scholar]
- Oelviani, R.; Adiyoga, W.; Mahatma Yuda Bakti, I.G.; Suhendrata, T.; Malik, A.; Chanifah, C.; Samijan, S.; Sahara, D.; Arif Sutanto, H.; Wulanjari, M.E.; et al. Climate change driving salinity: An overview of vulnerabilities, adaptations, and challenges for indonesian agriculture. Weather Clim. Soc. 2024, 16, 29–49. [Google Scholar] [CrossRef]
- Padmavathi, G.; Singh, R.K.; Arun, M.N.; Umakanth, B.; Prasad, G.S.V.; Muralidharan, K. Genetic enhancement for salt tolerance in rice. In Molecular and Physiological Insights into Plant Stress Tolerance and Applications in Agriculture; Chen, J.-T., Ed.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2023; pp. 40–84. ISBN 9789815136562. [Google Scholar]
- Qin, H.; Li, Y.; Huang, R. Advances and Challenges in the Breeding of Salt-Tolerant Rice. Int. J. Mol. Sci. 2020, 21, 8385. [Google Scholar] [CrossRef]
- Gerona, M.E.B.; Deocampo, M.P.; Egdane, J.A.; Ismail, A.M.; Dionisio-Sese, M.L. Physiological responses of contrasting rice genotypes to salt stress at reproductive stage. Rice Sci. 2019, 26, 207–219. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Jagendorf, A.; Zhu, J.-K. Understanding and Improving Salt Tolerance in Plants. Crop Sci. 2005, 45, 437. [Google Scholar] [CrossRef]
- Reddy, I.N.B.L.; Kim, B.-K.; Yoon, I.-S.; Kim, K.-H.; Kwon, T.-R. Salt tolerance in rice: Focus on mechanisms and approaches. Rice Sci. 2017, 24, 123–144. [Google Scholar] [CrossRef]
- Negrão, S.; Courtois, B.; Ahmadi, N.; Abreu, I.; Saibo, N.; Oliveira, M.M. Recent updates on salinity stress in rice: From physiological to molecular responses. CRC Crit. Rev. Plant Sci. 2011, 30, 329–377. [Google Scholar] [CrossRef]
- Prakash, N.R.; Lokeshkumar, B.M.; Rathor, S.; Warraich, A.S.; Yadav, S.; Vinaykumar, N.M.; Dushynthkumar, B.M.; Krishnamurthy, S.L.; Sharma, P.C. Meta-analysis and validation of genomic loci governing seedling and reproductive stage salinity tolerance in rice. Physiol. Plant. 2022, 174, e13629. [Google Scholar] [CrossRef]
- Alam, R.; Sazzadur Rahman, M.; Seraj, Z.I.; Thomson, M.J.; Ismail, A.M.; Tumimbang-Raiz, E.; Gregorio, G.B. Investigation of seedling-stage salinity tolerance QTLs using backcross lines derived from Oryza sativa L. Pokkali. Plant Breed. 2011, 130, 430–437. [Google Scholar] [CrossRef]
- Bonilla, P. RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philos. Agric. Sci. 2002, 85, 68–76. [Google Scholar]
- Thomson, M.J.; de Ocampo, M.; Egdane, J.; Rahman, M.A.; Sajise, A.G.; Adorada, D.L.; Tumimbang-Raiz, E.; Blumwald, E.; Seraj, Z.I.; Singh, R.K.; et al. Characterizing the saltol quantitative trait locus for salinity tolerance in rice. Rice 2010, 3, 148–160. [Google Scholar] [CrossRef]
- Gregorio, G.B.; Islam, M.R.; Vergara, G.V.; Thirumeni, S. Recent advances in rice science to design salinity and other abiotic stress tolerant rice varieties. Sabrao J. Breed Genet. 2013, 45, 31–41. [Google Scholar]
- Songtoasesakul, D.; Aesomnuk, W.; Pannak, S.; Siangliw, J.L.; Siangliw, M.; Toojinda, T.; Wanchana, S.; Arikit, S. QTL-seq Identifies Pokkali-Derived QTLs and Candidate Genes for Salt Tolerance at Seedling Stage in Rice (Oryza sativa L.). Agriculture 2023, 13, 1596. [Google Scholar] [CrossRef]
- Takagi, H.; Abe, A.; Yoshida, K.; Kosugi, S.; Natsume, S.; Mitsuoka, C.; Uemura, A.; Utsushi, H.; Tamiru, M.; Takuno, S.; et al. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 2013, 74, 174–183. [Google Scholar] [CrossRef]
- Bommisetty, R.; Chakravartty, N.; Bodanapu, R.; Naik, J.B.; Panda, S.K.; Lekkala, S.P.; Lalam, K.; Thomas, G.; Mallikarjuna, S.J.; Eswar, G.R.; et al. Discovery of genomic regions and candidate genes for grain weight employing next generation sequencing based QTL-seq approach in rice (Oryza sativa L.). Mol. Biol. Rep. 2020, 47, 8615–8627. [Google Scholar] [CrossRef]
- Arikit, S.; Wanchana, S.; Khanthong, S.; Saensuk, C.; Thianthavon, T.; Vanavichit, A.; Toojinda, T. QTL-seq identifies cooked grain elongation QTLs near soluble starch synthase and starch branching enzymes in rice (Oryza sativa L.). Sci. Rep. 2019, 9, 8328. [Google Scholar] [CrossRef]
- Thianthavon, T.; Aesomnuk, W.; Pitaloka, M.K.; Sattayachiti, W.; Sonsom, Y.; Nubankoh, P.; Malichan, S.; Riangwong, K.; Ruanjaichon, V.; Toojinda, T.; et al. Identification and Validation of a QTL for Bacterial Leaf Streak Resistance in Rice (Oryza sativa L.) against Thai Xoc Strains. Genes 2021, 12, 1587. [Google Scholar] [CrossRef]
- Riangwong, K.; Aesomnuk, W.; Sonsom, Y.; Siangliw, M.; Unartngam, J.; Toojinda, T.; Wanchana, S.; Arikit, S. QTL-seq Identifies Genomic Regions Associated with Resistance to Dirty Panicle Disease in Rice. Agronomy 2023, 13, 1905. [Google Scholar] [CrossRef]
- Lei, L.; Zheng, H.; Bi, Y.; Yang, L.; Liu, H.; Wang, J.; Sun, J.; Zhao, H.; Li, X.; Li, J.; et al. Identification of a Major QTL and Candidate Gene Analysis of Salt Tolerance at the Bud Burst Stage in Rice (Oryza sativa L.) Using QTL-Seq and RNA-Seq. Rice 2020, 13, 55. [Google Scholar] [CrossRef]
- Lei, L.; Cao, L.; Ding, G.; Zhou, J.; Luo, Y.; Bai, L.; Xia, T.; Chen, L.; Wang, J.; Liu, K.; et al. OsBBX11 on qSTS4 links to salt tolerance at the seeding stage in Oryza sativa L. ssp. Japonica. Front. Plant Sci. 2023, 14, 1139961. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Y. Bulk segregation analysis in the NGS era: A review of its teenage years. Plant J. 2022, 109, 1355–1374. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.L.; Sanchez, P.L.; Yu, S.; Lorieux, M.; Eizenga, G.C. Chromosome Segment Substitution Lines: A Powerful Tool for the Introgression of Valuable Genes from Oryza Wild Species into Cultivated Rice (O. sativa). Rice 2010, 3, 218–234. [Google Scholar] [CrossRef]
- Siangliw, J.L.; Jongdee, B.; Pantuwan, G.; Toojinda, T. Developing KDML105 backcross introgression lines using marker-assisted selection for QTLs associated with drought tolerance in rice. ScienceAsia 2007, 33, 207–214. [Google Scholar] [CrossRef]
- Chutimanukul, P.; Kositsup, B.; Plaimas, K.; Buaboocha, T.; Siangliw, M.; Toojinda, T.; Comai, L.; Chadchawan, S. Photosynthetic responses and identification of salt tolerance genes in a chromosome segment substitution line of ‘Khao dawk Mali 105’ rice. Environ. Exp. Bot. 2018, 155, 497–508. [Google Scholar] [CrossRef]
- Phosuwan, S.; Nounjan, N.; Theerakulpisut, P.; Siangliw, M.; Charoensawan, V. Comparative quantitative trait loci analysis framework reveals relationships between salt stress responsive phenotypes and pathways. Front. Plant Sci. 2024, 15, 1264909. [Google Scholar] [CrossRef] [PubMed]
- International Rice Research Institute. Standard Evaluation System for Rice; International Rice Research Institute: Los Baños, Philippines, 2013. [Google Scholar]
- Mondal, S.; Borromeo, T.H. Screening of salinity tolerance of rice at early seedling stage. J. Biosci. Agric. Res. 2016, 10, 843–847. [Google Scholar] [CrossRef]
- Sriden, N.; Charoensawan, V. Large-scale comparative transcriptomic analysis of temperature-responsive genes in Arabidopsis thaliana. Plant Mol. Biol. 2022, 110, 425–443. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Putri, G.H.; Anders, S.; Pyl, P.T.; Pimanda, J.E.; Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 2022, 38, 2943–2945. [Google Scholar] [CrossRef] [PubMed]
- Sugihara, Y.; Young, L.; Yaegashi, H.; Natsume, S.; Shea, D.J.; Takagi, H.; Booker, H.; Innan, H.; Terauchi, R.; Abe, A. High-performance pipeline for MutMap and QTL-seq. PeerJ 2022, 10, e13170. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed]
- de Mendiburu, F.; Yaseen, M. Agricolae: Statistical Procedures for Agricultural Research. R package Version 1.4.0. 2020. Available online: https://myaseen208.github.io/agricolae/https://cran.r-project.org/package=agricolae (accessed on 17 March 2024).
- Wickham, H.; Chang, W.; Wickham, M.H. Package ‘ggplot2. ’ Creat. Elegant Data Vis. Using Gramm. Graph. Version 2016, 2, 1–189. [Google Scholar]
- Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots, R Package version 0.4.0; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Ahlmann-Eltze, C.; Patil, I. ggsignif: R Package for Displaying Significance Brackets for “ggplot2”; R Core Team: Vienna, Austria, 2021. [Google Scholar] [CrossRef]
- Neuwirth, E.; Neuwirth, M.E. Package ‘RColorBrewer’. Color. Palettes 2014, 991, 1–5. [Google Scholar]
- Gel, B.; Serra, E. karyoploteR: An R/Bioconductor package to plot customizable genomes displaying arbitrary data. Bioinformatics 2017, 33, 3088–3090. [Google Scholar] [CrossRef] [PubMed]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Shannon, M.C. Salinity effects on seedling growth and yield components of rice. Crop Sci. 2000, 40, 996–1003. [Google Scholar] [CrossRef]
- Afzal, M.; Hindawi, S.E.S.; Alghamdi, S.S.; Migdadi, H.H.; Khan, M.A.; Hasnain, M.U.; Arslan, M.; Habib ur Rahman, M.; Sohaib, M. Potential breeding strategies for improving salt tolerance in crop plants. J. Plant Growth Regul. 2023, 42, 3365–3387. [Google Scholar] [CrossRef]
- Maniruzzaman, S.; Rahman, M.A.; Hasan, M.; Rasul, M.G.; Molla, A.H.; Khatun, H.; Iftekharuddaula, K.M.; Kabir, M.S.; Akter, S. Molecular Mapping to Discover Reliable Salinity-Resilient QTLs from the Novel Landrace Akundi in Two Bi-Parental Populations Using SNP-Based Genome-Wide Analysis in Rice. Int. J. Mol. Sci. 2023, 24, 1141. [Google Scholar] [CrossRef] [PubMed]
- Pruthi, R.; Chapagain, S.; Coronejo, S.; Singh, L.; Subudhi, P.K. Quantitative trait loci, candidate genes, and breeding lines to improve salt tolerance at the flowering and seedling stages in rice. Food Energy Secur. 2022, 12, e433. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kim, S.-M. Identification of Candidate Genes for Salt Tolerance at the Seedling Stage Using Integrated Genome-Wide Association Study and Transcriptome Analysis in Rice. Plants 2023, 12, 1401. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lu, C.; Yang, M.; Wu, G.; Nyasulu, M.; He, H.; He, X.; Bian, J. Uncovering Novel QTLs and Candidate Genes for Salt Tolerance at the Bud Burst Stage in Rice through Genome-Wide Association Study. Plants 2024, 13, 174. [Google Scholar] [CrossRef] [PubMed]
- Ju, C.; Ma, X.; Han, B.; Zhang, W.; Zhao, Z.; Geng, L.; Cui, D.; Han, L. Candidate gene discovery for salt tolerance in rice (Oryza sativa L.) at the germination stage based on genome-wide association study. Front. Plant Sci. 2022, 13, 1010654. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, H.; Yin, X.; Wang, F.; Hu, S.; Liu, W.; Chen, L.; Dai, X.; Liang, M. Identification of Salt Tolerance Related Candidate Genes in “Sea Rice 86” at the Seedling and Reproductive Stages Using QTL-Seq and BSA-Seq. Genes 2023, 14, 458. [Google Scholar] [CrossRef]
- Kong, W.; Zhang, C.; Zhang, S.; Qiang, Y.; Zhang, Y.; Zhong, H.; Li, Y. Uncovering the Novel QTLs and Candidate Genes of Salt Tolerance in Rice with Linkage Mapping, RTM-GWAS, and RNA-seq. Rice 2021, 14, 93. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, K.; Tiwari, S.; Kumar, N.; Sinha, S.; Krishnamurthy, S.L.; Singh, R.; Kalia, S.; Singh, N.K.; Rai, V. QTLs and Genes for Salt Stress Tolerance: A Journey from Seed to Seed Continued. Plants 2024, 13, 1099. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Kota, S.; Flowers, T.J. Salt tolerance in rice: Seedling and reproductive stage QTL mapping come of age. Theor. Appl. Genet. 2021, 134, 3495–3533. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, S.L.; Pundir, P.; Warraich, A.S.; Rathor, S.; Lokeshkumar, B.M.; Singh, N.K.; Sharma, P.C. Introgressed saltol QTL lines improves the salinity tolerance in rice at seedling stage. Front. Plant Sci. 2020, 11, 833. [Google Scholar] [CrossRef]
- Yadav, A.K.; Kumar, A.; Grover, N.; Ellur, R.K.; Krishnan, S.G.; Bollinedi, H.; Bhowmick, P.K.; Vinod, K.K.; Nagarajan, M.; Krishnamurthy, S.L.; et al. Marker aided introgression of “Saltol”, a major QTL for seedling stage salinity tolerance into an elite Basmati rice variety “Pusa Basmati 1509”. Sci. Rep. 2020, 10, 13877. [Google Scholar] [CrossRef]
- Vanavichit, A.; Kamolsukyeunyong, W.; Siangliw, M.; Siangliw, J.L.; Traprab, S.; Ruengphayak, S.; Chaichoompu, E.; Saensuk, C.; Phuvanartnarubal, E.; Toojinda, T.; et al. Thai hom mali rice: Origin and breeding for subsistence rainfed lowland rice system. Rice 2018, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Doi, K.; Iwata, N.; Yoshimura, A. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of Japonica rice (O. sativa L.). Rice Genet. Newsl. 1997, 14, 39–41. [Google Scholar]
- Kubo, T.; Aida, Y.; Nakamura, K.; Tsunematsu, H.; Doi, K.; Yoshimura, A. Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L.). Breed. Sci. 2002, 52, 319–325. [Google Scholar] [CrossRef]
- Siangliw, M.; Phatanathara, A.; Toojinda, T.; Theerakulpisut, P.; Fukai, S.; Vanavichit, A. QTL and candidate gene identification for salt tolerance and Na/K ratio at seedling stage under modified soil and hydroponic conditions in rice (Oryza sativa L). In Proceedings of the 4th International Rice Congress (IRC2014), Bangkok, Thailand, 27 October–1 November 2014. [Google Scholar]
- Agarwal, P.; Khurana, P. Overexpression of TaMADS from wheat promotes flowering by upregulating expression of floral promoters and provides protection against thermal stress. Plant Gene 2019, 17, 100168. [Google Scholar] [CrossRef]
- Alfatih, A.; Zhang, J.; Song, Y.; Jan, S.U.; Zhang, Z.-S.; Xia, J.-Q.; Zhang, Z.-Y.; Nazish, T.; Wu, J.; Zhao, P.-X.; et al. Nitrate-responsive OsMADS27 promotes salt tolerance in rice. Plant Commun. 2023, 4, 100458. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Dong, F.-S.; Hu, F.-H.; Liu, Y.-W.; Chai, J.-F.; Zhao, H.; Lv, M.-Y.; Zhou, S. Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (CAMTA) gene family in wheat (Triticum aestivum L.). BMC Genet. 2020, 21, 105. [Google Scholar] [CrossRef]
- Abdel-Hameed, A.A.E.; Liao, W.; Prasad, K.V.S.K.; Reddy, A.S.N. CAMTAs, a family of calmodulin-binding transcription factors, are versatile regulators of biotic and abiotic stress responses in plants. CRC Crit. Rev. Plant Sci. 2024, 43, 171–210. [Google Scholar] [CrossRef]
- Moin, M.; Bakshi, A.; Saha, A.; Udaya Kumar, M.; Reddy, A.R.; Rao, K.V.; Siddiq, E.A.; Kirti, P.B. Activation tagging in indica rice identifies ribosomal proteins as potential targets for manipulation of water-use efficiency and abiotic stress tolerance in plants. Plant Cell Environ. 2016, 39, 2440–2459. [Google Scholar] [CrossRef]
- Sonsungsan, P.; Chantanakool, P.; Suratanee, A.; Buaboocha, T.; Comai, L.; Chadchawan, S.; Plaimas, K. Identification of Key Genes in “Luang Pratahn”, Thai Salt-Tolerant Rice, Based on Time-Course Data and Weighted Co-expression Networks. Front. Plant Sci. 2021, 12, 744654. [Google Scholar] [CrossRef]
- Shi, L.; Cui, X.; Shen, Y. The roles of histone methylation in the regulation of abiotic stress responses in plants. Plant Stress 2024, 11, 100303. [Google Scholar] [CrossRef]
- van Ooijen, G.; Mayr, G.; Kasiem, M.M.A.; Albrecht, M.; Cornelissen, B.J.C.; Takken, F.L.W. Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. J. Exp. Bot. 2008, 59, 1383–1397. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Gao, S.; Ma, W.; Lyu, X.; Cao, X.; Yao, Y. Identification and functional prediction of salt stress-related long noncoding RNAs in grapevine roots. Environ. Exp. Bot. 2020, 179, 104215. [Google Scholar] [CrossRef]
- Wang, L.; Du, M.; Wang, B.; Duan, H.; Zhang, B.; Wang, D.; Li, Y.; Wang, J. Transcriptome analysis of halophyte Nitraria tangutorum reveals multiple mechanisms to enhance salt resistance. Sci. Rep. 2022, 12, 14031. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.-X.; Liu, X.; Boge, W.; Liu, X.-P. Genome-Wide Association Study Identifies Loci for Salt Tolerance during Germination in Autotetraploid Alfalfa (Medicago sativa L.) Using Genotyping-by-Sequencing. Front. Plant Sci. 2016, 7, 956. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Cheng, Y.; Han, S.; Van Handel, B.; Dong, L.; Li, X.; Xie, X. Whole genome sequencing and comparative transcriptome analysis of a novel seawater adapted, salt-resistant rice cultivar—Sea rice 86. BMC Genom. 2017, 18, 655. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Zong, X.; Ren, P.; Qian, Y.; Fu, A. Basic Helix-Loop-Helix (bHLH) Transcription Factors Regulate a Wide Range of Functions in Arabidopsis. Int. J. Mol. Sci. 2021, 22, 7152. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Ye, H.; Fan, M.; Pu, T.; Yan, J. The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis. Plant Signal. Behav. 2017, 12, e1316442. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.K.; Kumar, V.V.S.; Yadav, S.K.; Kumar, T.S.; Rao, M.V.; Chinnusamy, V. Overexpression of Arabidopsis ICE1 enhances yield and multiple abiotic stress tolerance in indica rice. Plant Signal. Behav. 2020, 15, 1814547. [Google Scholar] [CrossRef]
- Feng, H.-L.; Ma, N.-N.; Meng, X.; Zhang, S.; Wang, J.-R.; Chai, S.; Meng, Q.-W. A novel tomato MYC-type ICE1-like transcription factor, SlICE1a, confers cold, osmotic and salt tolerance in transgenic tobacco. Plant Physiol. Biochem. 2013, 73, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Hoang, X.L.T.; Nhi, D.N.H.; Thu, N.B.A.; Thao, N.P.; Tran, L.-S.P. Transcription Factors and Their Roles in Signal Transduction in Plants under Abiotic Stresses. Curr. Genom. 2017, 18, 483–497. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chen, Z.; Luo, F.; Liao, M.; Wei, S.; Yang, Z.; Yang, J. RicetissueTFDB: A Genome-Wide Identification of Tissue-Specific Transcription Factors in Rice. Plant Genome 2019, 12, 170081. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Ding, J.; Zhang, B.; Xi, D.; Ming, F. OsNAC2 positively affects salt-induced cell death and binds to the OsAP37 and OsCOX11 promoters. Plant J. 2018, 94, 454–468. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Long, Y.; Huang, J.; Xia, J. Osnac45 is involved in ABA response and salt tolerance in rice. Rice 2020, 13, 79. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.-S.P.; Nishiyama, R.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 2010, 1, 32–39. [Google Scholar] [CrossRef] [PubMed]
Score | Observation | Tolerance |
---|---|---|
1 | Normal growth, no leaf symptoms | Highly tolerant |
3 | Nearly normal growth, but leaf tips or few leaves are whitish and rolled | Tolerant |
5 | Growth severely retarded; most leaves rolled; only a few are elongated | Moderately tolerant |
7 | Complete cessation of growth; most leaves are dry; some plants are dying | Susceptible |
9 | Almost all plants dead or dying | Highly susceptible |
Sample | Raw Reads (Million) | Cleaned Reads (Million) | Clean Base (Gb) | Read Alignment (%) | Genome Coverage (%) | Average Depth |
---|---|---|---|---|---|---|
Tolerance bulk | 53.40 | 29.82 | 4.25 | 93.07 | 97.90 | 17.26 |
Susceptible bulk | 58.12 | 33.48 | 4.77 | 93.04 | 98.00 | 18.88 |
KD-CSSL106 | 58.12 | 31.80 | 4.52 | 93.26 | 97.85 | 18.72 |
KD | 54.72 | 35.65 | 5.30 | 96.75 | 91.09 | 17.54 |
Chromosome | Length (bp) | All Variants (Read Depths > 8) | Filtered Variants (Read Depths > 12) | ||
---|---|---|---|---|---|
SNPs | InDels | SNPs | InDels | ||
1 | 43,270,923 | 1579 | 1655 | 839 | 800 |
2 | 35,937,250 | 849 | 969 | 462 | 441 |
3 | 36,413,819 | 183 | 831 | 66 | 343 |
4 | 35,502,694 | 1668 | 1435 | 939 | 728 |
5 | 29,958,434 | 3985 | 1287 | 1847 | 586 |
6 | 31,248,787 | 460 | 719 | 235 | 307 |
7 | 29,697,621 | 1272 | 1006 | 661 | 469 |
8 | 28,443,022 | 3744 | 1346 | 2036 | 656 |
9 | 23,012,720 | 206 | 571 | 103 | 242 |
10 | 23,207,287 | 893 | 622 | 484 | 275 |
11 | 29,021,106 | 682 | 1121 | 330 | 529 |
12 | 27,531,856 | 146 | 373 | 56 | 133 |
Total | 373,245,519 | 15,667 | 11,935 | 8058 | 5509 |
Chr | Pos | Effect | Gene Name | Description | KD | KD-CSSL106 | SNP Index(S) | SNP Index(T) | ∆SNP Index |
---|---|---|---|---|---|---|---|---|---|
1 | 40344634 | missense | LOC_Os01g69850 | OsMADS65 | C | T | 0.71 | 0.17 | 0.55 |
1 | 40362776 | missense | LOC_Os01g69850 | OsMADS65 | A | C | 0.80 | 0.33 | 0.47 |
1 | 40401258 | missense | LOC_Os01g69910 | calmodulin-binding transcription activator | A | G | 0.82 | 0.38 | 0.44 |
1 | 40402065 | missense | LOC_Os01g69910 | calmodulin-binding transcription activator | G | A | 0.78 | 0.31 | 0.47 |
1 | 40402297 | missense | LOC_Os01g69910 | calmodulin-binding transcription activator | T | C | 0.86 | 0.50 | 0.36 |
1 | 40402429 | missense | LOC_Os01g69910 | calmodulin-binding transcription activator | G | A | 0.82 | 0.25 | 0.57 |
1 | 40402459 | missense | LOC_Os01g69910 | calmodulin-binding transcription activator | A | G | 0.75 | 0.36 | 0.39 |
1 | 40402504 | missense | LOC_Os01g69910 | calmodulin-binding transcription activator | G | A | 0.70 | 0.29 | 0.41 |
1 | 40453979 | missense | LOC_Os01g69950 | ribosomal protein L27 | A | C | 0.91 | 0.33 | 0.58 |
1 | 40556756 | frameshift | LOC_Os01g70080 | NB-ARC domain containing protein | C | CA | 0.71 | 0.36 | 0.36 |
1 | 40556758 | frameshift | LOC_Os01g70080 | NB-ARC domain containing protein | G | GC | 0.67 | 0.31 | 0.36 |
1 | 40556761 | frameshift | LOC_Os01g70080 | NB-ARC domain containing protein | T | TC | 0.78 | 0.42 | 0.36 |
1 | 40557831 | missense | LOC_Os01g70080 | NB-ARC domain containing protein | G | A | 0.80 | 0.33 | 0.47 |
1 | 40563787 | missense | LOC_Os01g70090 | enoyl-CoA hydratase/isomerase family protein | T | G | 0.80 | 0.17 | 0.63 |
1 | 40568751 | missense | LOC_Os01g70100 | zinc finger DHHC domain-containing protein | C | T | 0.80 | 0.17 | 0.63 |
1 | 40572974 | missense | LOC_Os01g70110 | No apical meristem protein | A | G | 0.73 | 0.33 | 0.39 |
1 | 40585106 | missense | LOC_Os01g70120 | expressed protein | CTCCTCCTCG | C | 0.86 | 0.40 | 0.46 |
1 | 40617122 | Inframe insertion | LOC_Os01g70180 | exostosin family domain containing protein | AATCCAC | A | 0.86 | 0.40 | 0.46 |
1 | 40663740 | missense | LOC_Os01g70220 | histone-lysine N-methyltransferase | C | T | 0.67 | 0.31 | 0.35 |
1 | 40711179 | missense | LOC_Os01g70300 | aspartokinase 3 | T | C | 0.78 | 0.38 | 0.40 |
1 | 40715330 | missense | LOC_Os01g70310 | inducer of CBF expression 2 | A | C | 0.75 | 0.42 | 0.33 |
1 | 40796815 | Inframe insertion | LOC_Os01g70430 | oxidoreductase | CCGGCGGCGG | CCGGCGG | 0.63 | 0.20 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leawtrakun, J.; Aesomnuk, W.; Khanthong, S.; Dumhai, R.; Songtoasesakul, D.; Phosuwan, S.; Nuanpirom, J.; Charoensawan, V.; Siangliw, J.L.; Ruanjaichon, V.; et al. Identification of Candidate Genes for Salt Tolerance at Seedling Stage in Rice Using QTL-Seq and Chromosome Segment Substitution Line-Derived Population. Agronomy 2024, 14, 929. https://doi.org/10.3390/agronomy14050929
Leawtrakun J, Aesomnuk W, Khanthong S, Dumhai R, Songtoasesakul D, Phosuwan S, Nuanpirom J, Charoensawan V, Siangliw JL, Ruanjaichon V, et al. Identification of Candidate Genes for Salt Tolerance at Seedling Stage in Rice Using QTL-Seq and Chromosome Segment Substitution Line-Derived Population. Agronomy. 2024; 14(5):929. https://doi.org/10.3390/agronomy14050929
Chicago/Turabian StyleLeawtrakun, Jiraporn, Wanchana Aesomnuk, Srisawat Khanthong, Reajina Dumhai, Decha Songtoasesakul, Sunadda Phosuwan, Jiratchaya Nuanpirom, Varodom Charoensawan, Jonaliza L. Siangliw, Vinitchan Ruanjaichon, and et al. 2024. "Identification of Candidate Genes for Salt Tolerance at Seedling Stage in Rice Using QTL-Seq and Chromosome Segment Substitution Line-Derived Population" Agronomy 14, no. 5: 929. https://doi.org/10.3390/agronomy14050929
APA StyleLeawtrakun, J., Aesomnuk, W., Khanthong, S., Dumhai, R., Songtoasesakul, D., Phosuwan, S., Nuanpirom, J., Charoensawan, V., Siangliw, J. L., Ruanjaichon, V., Toojinda, T., Wanchana, S., Siangliw, M., & Arikit, S. (2024). Identification of Candidate Genes for Salt Tolerance at Seedling Stage in Rice Using QTL-Seq and Chromosome Segment Substitution Line-Derived Population. Agronomy, 14(5), 929. https://doi.org/10.3390/agronomy14050929