Detailed Insight into the Behaviour of Chlorophyll a Fluorescence Transient Curves and Parameters during Different Times of Dark Adaptation in Sunflower Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation of the Plants
2.2. Chlorophyll a Fluorescence (ChlF)
2.3. Statistical Analysis
3. Results and Discussion
3.1. OJIP Transients
3.2. Chlorophyll a Fluorescence Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishra, K.B.; Mishra, A.; Novotná, K.; Rapantová, B.; Hodaňová, P.; Urban, O.; Klem, K. Chlorophyll a fluorescence, under half of the adaptive growth-irradiance, for high-throughput sensing of leaf-water deficit in Arabidopsis thaliana accessions. Plant Methods 2016, 12, 46. [Google Scholar] [CrossRef]
- Dhondt, S.; Wuyts, N.; Inze, D. Cell to whole-plant phenotyping: The best is yet to come. Trends Plant Sci. 2013, 18, 428–439. [Google Scholar] [CrossRef]
- Srivastava, A.; Guisse, B.; Greppin, H.; Strasser, R.J. Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim. Biophys. Acta 1997, 1320, 95–106. [Google Scholar] [CrossRef]
- Strasser, R.J.; Stirbet, D.A. Heterogeneity of photosystem II probed by the numerically simulated chlorophyll a fluorescence rise (O-J-I-P). Math. Comput. Simulat. 1998, 48, 3–9. [Google Scholar] [CrossRef]
- Tsimilli-Michael, M.; Eggenberger, P.H.; Biro, B.; Köves-Pechy, K.; Vörös, I.; Strasser, R. Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P. Appl. Soil Ecol. 2000, 15, 169–182. [Google Scholar] [CrossRef]
- van Heerden, P.D.; Tsimilli-Michael, M.; Krüger, G.H.; Strasser, R.J. Dark chilling effects on soybean genotypes during vegetative development: Parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation. Physiol. Plant. 2003, 117, 476–491. [Google Scholar] [CrossRef] [PubMed]
- Gamon, J.A.; Field, C.B.; Bilger, W.; Björkman, O.; Fredeen, A.L.; Peñuelas, J. Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 1990, 85, 1–7. [Google Scholar] [CrossRef]
- Plesničar, M.; Kastori, R.; Petrović, N.; Panković, D. Photosynthesis and chlorophyll fluorescence in sunflower (Helianthus annuus L.) leaves as affected by phosphorus nutrition. J. Exp. Bot. 1994, 45, 919–924. [Google Scholar] [CrossRef]
- Ma, T.; Chen, K.; He, P.; Dai, Y.; Yin, Y.; Peng, S.; Ding, J.; Yu, S.; Huang, J. Sunflower Photosynthetic Characteristics, Nitrogen Uptake, and Nitrogen Use Efficiency under Different Soil Salinity and Nitrogen Applications. Water 2022, 14, 982. [Google Scholar] [CrossRef]
- Umar, M.; Siddiqui, Z.S. Physiological performance of sunflower genotypes under combined salt and drought stress environment. Acta Bot. Croat. 2018, 77, 36–44. [Google Scholar] [CrossRef]
- Markulj Kulundžić, A.; Viljevac Vuletić, M.; Matoša Kočar, M.; Mijić, A.; Varga, I.; Sudarić, A.; Cesar, V.; Lepeduš, H. The Combination of Increased Temperatures and High Irradiation Causes Changes in Photosynthetic Efficiency. Plants 2021, 10, 2076. [Google Scholar] [CrossRef] [PubMed]
- Markulj Kulundžić, A.; Viljevac Vuletić, M.; Matoša Kočar, M.; Antunović Dunić, J.; Varga, I.; Zdunić, Z.; Sudarić, A.; Cesar, V.; Lepeduš, H. Effect of Elevated Temperature and Excess Light on Photosynthetic Efficiency, Pigments, and Proteins in the Field-Grown Sunflower during Afternoon. Horticulturae 2022, 8, 392. [Google Scholar] [CrossRef]
- Killi, D.; Raschi, A.; Bussotti, F. Lipid Peroxidation and Chlorophyll Fluorescence of Photosystem II Performance during Drought and Heat Stress is Associated with the Antioxidant Capacities of C3 Sunflower and C4 Maize Varieties. Int. J. Mol. Sci. 2020, 21, 4846. [Google Scholar] [CrossRef] [PubMed]
- Stirbet, A.; Lazár, D.; Kromdijk, J.; Govindjee. Chlorophyll-a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 2018, 56, 86–104. [Google Scholar] [CrossRef]
- Genty, J.M.; Briantais, B.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Galić, V.; Franić, M.; Jambrović, A.; Ledenčan, T.; Brkić, A.; Zdunić, Z.; Šimić, D. Genetic Correlations between Photosynthetic and Yield Performance in Maize Are Different under Two Heat Scenarios during Flowering. Front. Plant Sci. 2019, 10, 566. [Google Scholar] [CrossRef] [PubMed]
- Spanic, V.; Mlinaric, S.; Zdunic, Z.; Katanic, Z. Field Study of the Effects of Two Different Environmental Conditions on Wheat Productivity and Chlorophyll Fluorescence Induction (OJIP) Parameters. Agriculture 2021, 11, 1154. [Google Scholar] [CrossRef]
- Antunović Dunić, J.; Lepeduš, H.; Šimić, D.; Lalić, A.; Mlinarić, S.; Kovačević, J.; Cesar, V. Physiological response to different irradiation regimes during barley seedlings growth followed by drought stress under non-photoinhibitory light. J. Agric. Sci. 2015, 7, 69–83. [Google Scholar] [CrossRef]
- Begović, L.; Jurišić, N.; Šrajer Gajdošik, M.; Mikuška, A.; Mlinarić, S. Photosynthetic Efficiency and Antioxidative Response of Soybean Exposed to Selective Herbicides: A Field Study. Agriculture 2023, 13, 1385. [Google Scholar] [CrossRef]
- Schansker, G.; Tóth, S.Z.; Strasser, R.J. Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: The qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. Biochim. Biophys. Acta 2006, 1757, 787–797. [Google Scholar] [CrossRef]
- Schansker, G.; Yuan, Y.; Strasser, R.J. Chl a fluorescence and 820 nm transmission changes occurring during a dark-to-light transition in pine needles and pea leaves: A comparison. In Energy from the Sun; Allen, J.F., Osmond, B., Golbeck, J.H., Gantt, E., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 951–955. [Google Scholar]
- Kalaji, H.M.; Schansker, G.; Ladle, R.J.; Goltsev, V.; Bosa, K.; Allakhverdiev, S.I.; Brestic, M.; Bussotti, F.; Calatayud, A.; Dąbrowsk, P.; et al. Frequently asked questions about in vivo chlorophyll fluorescence: Practical issues. Photosynth. Res. 2014, 122, 121–158. [Google Scholar] [CrossRef] [PubMed]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the fluorescence transient. In Chlorophyll Fluorescence: A Signature of Photosynthesis; Advances in Photosynthesis and Respiration Series; George, C., Papageorgiou, C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 321–362. [Google Scholar] [CrossRef]
- Strauss, A.J.; Kruger, G.H.J.; Strasser, R.J.; van Heerden, P.D.R. Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environ. Exp. Bot. 2006, 56, 147–157. [Google Scholar] [CrossRef]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis: Mechanism, Regulation and Adaptation; Yunus, M., Pathre, U., Mohanty, P., Eds.; Taylor and Francis: London, UK, 2000; pp. 445–483. [Google Scholar]
- Zagorchev, L.; Atanasova, A.; Albanova, I.; Traianova, A.; Mladenov, P.; Kouzmanova, M.; Goltsev, V.; Kalaji, H.M.; Teofanova, D. Functional Characterization of the Photosynthetic Machinery in Smicronix Galls on the Parasitic Plant Cuscuta campestris by JIP-Test. Cells 2021, 10, 1399. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, G.C.; Tsimilli-Michael, M.; Stamatakis, K. The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: A viewpoint. Photosynth. Res. 2007, 94, 275–290. [Google Scholar] [CrossRef] [PubMed]
- Kane, N.C.; Rieseberg, L.H. Selective sweeps reveal candidate genes for adaptation to drought and salt tolerance in common sunflower, Helianthus annuus. Genetics 2007, 175, 1823–1834. [Google Scholar] [CrossRef] [PubMed]
- García-López, J.; Lorite, I.J.; García-Ruiz, R.; Domínguez, J. Evaluation of three simulation approaches for assessing yield of rainfed sunflower in a Mediterranean environment for climate change impact modelling. Clim. Chang. 2014, 124, 147–162. [Google Scholar] [CrossRef]
- Killi, D.; Bussotti, F.; Raschi, A.; Haworth, M. Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. Physiol. Plant. 2017, 159, 130–147. [Google Scholar] [CrossRef] [PubMed]
- Markulj Kulundžić, A.; Viljevac Vuletić, M.; Sudarić, A.; Varga, I.; Matoša Kočar, M. Does the water content affect the performance index in the sunflower grain filling stage? In Book of Proceedings 5th Croatian and International Symposium on Agriculture; Majić, I., Antunović, Z., Eds.; Grafika Osijek: Osijek, Croatia, 2022; pp. 220–224. [Google Scholar]
- Agricultural Institute Osijek. Available online: https://www.poljinos.hr/proizvodi-usluge/soja-suncokret/suncokret/luka-i12/ (accessed on 8 March 2024).
- Schneiter, A.A.; Miller, J.F. Description of sunflower growth stages. Crop Sci. 1981, 21, 901–903. [Google Scholar] [CrossRef]
- Yusuf, M.A.; Kumar, D.; Rajwanshi, R.; Strasser, R.J.; Tsimilli-Michael, M.; Govindjee; Sarin, N.B. Overexpression of g-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. Biochim. Biophys. Acta 2010, 1797, 1428–1438. [Google Scholar] [CrossRef] [PubMed]
- Vratarić, M. Sunflower Heliantus annuus L.; Agricultural Institute Osijek: Osijek, Croatia, 2004. [Google Scholar]
- Škorić, D. Sunflower breeding for resistence to abiotic stress. In Sunflower Genetics and Breeding; Škorić, D., Sakač, Z., Eds.; Serbian Academy of Sciences and Arts Branch in Novi Sad: Novi Sad, Republic of Serbia, 2012; pp. 245–255. [Google Scholar]
- Viljevac Vuletić, M.; Marček, T.; Španić, V. Photosynthetic and antioxidative strategies of flag leaf maturation and its impact to grain yield of two field-grown wheat varieties. Theor. Exp. Plant Physiol. 2019, 31, 387–399. [Google Scholar] [CrossRef]
- Sitko, K.; Rusinowskis, S.; Pogrzeba, M.; Daszkowska-Golec, A.; Gieroń, Ž.; Kalaji, H.M.; Małkowski, E. Development and aging of photosynthetic apparatus of Vitis vinifera L. during growing season. Photosynthetica 2019, 57, 1–8. [Google Scholar] [CrossRef]
- Cahyo, A.N.; Murti, R.H.; Putra Eka, T.S.; Nuringtyas, T.R.; Fabre, D.; Montoro, P. Assessment of factual measurement times for chlorophyll-a fluorescence in rubber (Hevea brasiliensis) clones. Biodiversitas 2021, 22, 3470–3477. [Google Scholar] [CrossRef]
- Bolhar-Nordenkampf, H.R.; Long, S.P.; Baker, N.R.; Öquist, G.; Schreiber, U.; Lechner, E.G. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: A review of current Instrumentation. Funct. Ecol. 1989, 3, 497–514. [Google Scholar] [CrossRef]
- Pavlović, I.; Mlinarić, S.; Tarkowská, D.; Oklestkova, J.; Novák, O.; Lepeduš, H.; Bok, V.V.; Brkanac, S.R.; Strnad, M.; Salopek-Sondi, B. Early Brassica Crops Responses to Salinity Stress: A Comparative Analysis Between Chinese Cabbage, White Cabbage, and Kale. Front. Plant Sci. 2019, 10, 450. [Google Scholar] [CrossRef] [PubMed]
- Vrebalov, T. The role of leaves in the process of kendel yield and oil content formation in sunflower. In Proceedings of the 5th International Conference on Sunflower, Clermont-Ferrand, France, 25–29 July 1972; pp. 57–62. [Google Scholar]
Formula | Description |
---|---|
F0 | Minimum fluorescence |
Fm | Maximum fluorescence |
φP0 = 1 − (F0/Fm) | Maximal photochemical quantum yield |
φD0 = F0/Fm | Quantum yield of energy dissipation |
φR0 = φP0 × δR0 | Quantum yield for the reduction of terminal electron acceptors at the photosystem I acceptor side |
δR0 = (Fm − FI)/(Fm − FJ) | Probability with which an electron from the intersystem electron carriers will move to reduce the end acceptors at the photosystem I acceptor side |
ABS/RC = M0 × (1/VJ) × (1/φP0) | Absorption flux per active reaction center (RC) |
DI0/RC = ABS/RC − TR0/RC | Dissipation flux per active RC |
TR0/RC = M0 × (1/VJ) | Trapping flux per active RC |
ET0/RC = M0 × (1/VJ) × (1 − VJ) | Electron transport flux per active RC |
RE0/RC = M0 × (1/VJ) × ψE0 × δR0 | Electron flux reducing terminal electron acceptors at the PSI acceptor side per RC |
RC/CS0 = φP0 × (VJ/M0) × (ABS/CS0) | Density of active photosystem II reaction centers (RCs) per cross-section |
RC/ABS = 1 − ABS/RC | Density of RC on chlorophyll a basis |
TR0/DI0 = FV/F0 | Flux ratio trapping per dissipation |
ET0/(TR0 − ET0) = (Fm − FJ)/(FJ − F0) | Electron transport from QA− to intersystem electron acceptors |
PIABS = RC/ABS × TR0/DI0 × ET0/(TR0 − ET0) | Performance index on absorption basis |
δR0/(1 − δR0) = (Fm − FI)/(Fm − FJ) | Electron transport from PQH2 to final photosystem I (PSI) acceptors |
PItotal = PIABS × (RE0/ET0/(δR0/(1 − δR0)) | Performance index for energy conservation from exciton to the reduction of PSI terminal acceptors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markulj Kulundžić, A.; Sudarić, A.; Matoša Kočar, M.; Duvnjak, T.; Liović, I.; Mijić, A.; Varga, I.; Viljevac Vuletić, M. Detailed Insight into the Behaviour of Chlorophyll a Fluorescence Transient Curves and Parameters during Different Times of Dark Adaptation in Sunflower Leaves. Agronomy 2024, 14, 954. https://doi.org/10.3390/agronomy14050954
Markulj Kulundžić A, Sudarić A, Matoša Kočar M, Duvnjak T, Liović I, Mijić A, Varga I, Viljevac Vuletić M. Detailed Insight into the Behaviour of Chlorophyll a Fluorescence Transient Curves and Parameters during Different Times of Dark Adaptation in Sunflower Leaves. Agronomy. 2024; 14(5):954. https://doi.org/10.3390/agronomy14050954
Chicago/Turabian StyleMarkulj Kulundžić, Antonela, Aleksandra Sudarić, Maja Matoša Kočar, Tomislav Duvnjak, Ivica Liović, Anto Mijić, Ivana Varga, and Marija Viljevac Vuletić. 2024. "Detailed Insight into the Behaviour of Chlorophyll a Fluorescence Transient Curves and Parameters during Different Times of Dark Adaptation in Sunflower Leaves" Agronomy 14, no. 5: 954. https://doi.org/10.3390/agronomy14050954
APA StyleMarkulj Kulundžić, A., Sudarić, A., Matoša Kočar, M., Duvnjak, T., Liović, I., Mijić, A., Varga, I., & Viljevac Vuletić, M. (2024). Detailed Insight into the Behaviour of Chlorophyll a Fluorescence Transient Curves and Parameters during Different Times of Dark Adaptation in Sunflower Leaves. Agronomy, 14(5), 954. https://doi.org/10.3390/agronomy14050954