Assessing the Impact of Genotype-Specific Caprifig Fruit Storage on the Pollination Efficacy and Fruit Quality of “Bursa Siyahı” Cultivar: A Multivariate Analysis Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Design
2.2. Flowering Phenology
2.3. Preparation Storage Conditions
2.4. Number of B. psenes and P. caricae and Duration of B. psenes Exit
2.5. Pollen Viability, Pollen Germination, and Pollen Size
2.6. Pollination Treatments
Fruit Ripening Stage, Fruit Set, and Fruit Characteristics
2.7. Statistical Analysis
3. Results and Discussion
3.1. Flowering Phenology
3.2. Number of B. psenes and P. caricae and Duration of B. psenes’s Exit
3.3. Pollen Viability, Pollen Germination, and Pollen Size
3.4. Fruit Ripening Stage, Fruit Set, and Fruit Characteristics
3.5. Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berg, C.C. Classification and distribution of Ficus. Experientia 1989, 45, 605–611. [Google Scholar] [CrossRef]
- Falistocco, E.; Antonielli, L. Molecular cytogenetics of Vitis vinifera L. and Ficus carica L.: Location of rDNA sequences. In Atti del XLVI Convegno Annuale della Società Italiana di Genetica Agraria; SIGA annual Congress: Giardini, Italy, 2002. [Google Scholar]
- Condit, I.J. Fig Characteristics Useful in The Identification of Varieties. Hilgardia 1941, 14, 1–69. [Google Scholar] [CrossRef]
- Zare, H. Comparison of fig caprification vessels, period and caprifig cultivar usable in Iran. Acta Hortic. 2008, 798, 233–239. [Google Scholar] [CrossRef]
- Pourghayoumi, M.; Bakhshi, D.; Rahemi, M.; Jafari, M. Effect of pollen source on quantitative and qualitative characteristics of dried figs (Ficus carica L.) Cvs’ Payves’ and ‘Sabz’ ın Kazerun, Iran. Sci. Hortic. 2012, 147, 98–104. [Google Scholar] [CrossRef]
- Ferguson, L.; Michailides, T.J.; Shorey, H.H. The California Fig Industry. Hortic. Rev. 1990, 12, 409–490. [Google Scholar] [CrossRef]
- Yaman, S.; Çalışkan, O. Effects of pollinizer on yield and fruit quality characteristics of figs (Ficus carica L.). MKU J. Agric. 2014, 19, 34–46. [Google Scholar] [CrossRef]
- Ilgın, M.; Ergenoğlu, F.; Çağlar, S. Viability, germination and amount of pollen in selected caprifig types. Pak. J. Bot. 2007, 39, 9–14. [Google Scholar]
- Çalışkan, O.; Bayazit, S.; Ilgin, M.; Karataş, N. Morphological diversity of caprifig (Ficus carica var. caprificus) accessions in the eastern Mediterranean region of Turkey: Potential utility for caprification. Sci. Hortic. 2017, 222, 46–56. [Google Scholar] [CrossRef]
- Vovlas, N.; Larizza, A. Relationship of Schistonchus caprifici (Aphelenchoididae) With Fig İnflorescences, The Fig Pollinator Blastophaga psenes, and Its Cleptoparasite Philotrypesis caricae. Fundam. Appl. Nematol. 1996, 19, 443–448. [Google Scholar] [CrossRef]
- Essid, A.; Alijane, F.; Ferchichi, A. Morphological characterization and pollen evaluation of some Tunisian ex situ planted caprifig (Ficus carica L.) ecotypes. S. Afr. J. Bot. 2017, 111, 134–143. [Google Scholar] [CrossRef]
- Focke, W.O. Die Pflanzen-Mischlinge: Ein Beitrag Zur Biologie Der Gewachse; Bomtrae-Ger: Berlin, Germany, 1881; pp. 510–518. [Google Scholar]
- Taber, S.K.; Olmstead, J.W. Impact of Cross- and Self-Pollination on Fruit Set, Fruit Size, Seed Number, and Harvest Timing Among 13 Southern Highbush Blueberry Cultivars. Horttechnology 2016, 26, 213–219. [Google Scholar] [CrossRef]
- Doi, K.; Inoue, R.; Iwasaki, N. Seed weight mediates effects of pollen on berry weight, ripening, and anthocyanin content in highbush blueberry. Sci. Hortic. 2021, 288, 110313. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, D.; Zou, F.; Fan, X.; Tang, J.; Zhu, Z. A Study on the Xenia Effect in Castanea henryi. Hortic. Plant J. 2016, 2, 301–308. [Google Scholar] [CrossRef]
- Mohammadi, N.; Rastgoo, S.; Izadi, M. The Strong Effect of Pollen Source and Pollination Time on Fruit Set and The Yield of Tissue Culture-Derived Date Palm (Phoenix dactylifera L.) Trees Cv. Barhee. Sci. Hortic. 2017, 224, 343–350. [Google Scholar] [CrossRef]
- Kadri, K.; Elsafy, M.; Makhlouf, S.; Awad, M.A. Effect of pollination time, the hour of daytime, pollen storage temperature and duration on pollen viability, germinability, and fruit set of date palm (Phoenix dactylifera L.) cv “Deglet Nour”. Saudi J. Biol. Sci. 2022, 29, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Gaaliche, B.; Trad, M.; Mars, M. Effect of pollination ıntensity, frequency and pollen source on fig (Ficus carica L.) productivity and fruit quality. Sci. Hortic. 2011, 130, 737–742. [Google Scholar] [CrossRef]
- Gaaliche, B.; Hfaiedh, L.; Trad, M.; Mars, M. Caprification efficiency of three Tunisian fig (Ficus carica L.) cultivars. JNPR 2011, 1, 20–25. [Google Scholar]
- Trad, M.; Bourvellec, C.L.; Gaaliche, B.; Ginies, C.; Mars, M.; Renard, C.C. Caprification Modifies Polyphenols But Not Cell Wall Concentrations in Ripe Figs. Sci. Hortic. 2013, 160, 115–122. [Google Scholar] [CrossRef]
- Rahemi, M.; Jafari, M. Effect of Caprifig Type on Quantity and Quality of Estahban Dried Fig Ficus carica Cv. Sabz. Acta Hortic. 2008, 798, 249–252. [Google Scholar] [CrossRef]
- Barakat, H.; Draie, R. Evaluation of viability and germination of pollen grains of three local caprifig cultivars and their effect on some characteristics of fig fruits (Ficus carica L.). Adv. Hortic. Sci. 2023, 37, 415–426. [Google Scholar] [CrossRef]
- Göçmez, A.; Seferoğlu, H.G. Fresh fig and dry fig quality parameters and the effective factors on quality. Turk. J. Agric. Res. 2014, 1, 98–108. [Google Scholar] [CrossRef]
- Şimşek, E.; Kılıç, D.; Çalışkan, O. Phenotypic variation of fig genotypes (Ficus carica L.) in the Eastern Mediterranean of Turkey. Genetika 2020, 52, 957–972. [Google Scholar] [CrossRef]
- Ahi Koşar, D.; Koşar, M.B.; Oran, R.B.; Ertürk, Ü. Effect of Pollen Sources on Fruit Set and Quality of Edible Fig (Ficus carica L.) Cv. ‘Bursa Siyahı’. Not. Bot. Horti Agrobot. Cluj-Napoca 2022, 50, 12831. [Google Scholar] [CrossRef]
- Çalışkan, O. Present status and future of table fig cultivation in Turkey. J. Agric. Fac. Uludağ Univ. 2012, 26, 71–87. [Google Scholar]
- Ertürk, U.; Yazgan, S.; Gençer, N.S.; Candoğan, B.N.; Aşık, B.B.; Gülsoylu, N.E. Bursa Siyahı İnciri İçin Uygun İlek İnciri Çeşit ve Tiplerinin Saptanması ve İlek Bahçesi Kurulması; TAGEM 14/AR-GE/03 Nolu Proje Sonuç Raporu; Bursa Uludag University: Bursa, Türkiye, 2018. [Google Scholar]
- Ahi Koşar, D.; Ertürk, U. Effects of Caprifig (Ficus carica var. caprificus) Storage Temperature and Duration on the Fruit Productivity and Quality of ‘Bursa Siyahi’ Figs. Horticulturae 2023, 9, 78. [Google Scholar] [CrossRef]
- Anjam, K.; Khadivi-Khub, A.; Sarkhosh, A. The potential of caprifig genotypes for sheltering Blastophaga psenes for caprification of edible figs. Erwerbs-Obstbau 2017, 59, 45–49. [Google Scholar] [CrossRef]
- Zare, H.; Darvishzadeh, H.; Rastegari, N. Effect of Cold Storage on Blastophaga psenes (Hymenoptera: Agaonidae) Wasp İnside Different Caprifig Cultivars Syconium. J. Plant. Prot. 2018, 9, 17–33. [Google Scholar]
- Bao, S. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000; pp. 25–114. [Google Scholar]
- Valdeyron, G.; Lloyd, D.G. Sex Differences and Flowering Phenology in the Common Fig, Ficus carica L. Evolution 1979, 33, 673–685. [Google Scholar] [CrossRef]
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Hess, M.; Lancashire, P.D.; Schnock, U.; Staub, R.; Van Den Boom, T.; et al. The BBCH system to coding the phenological growth stages of plants—History and publications. J. Für Kult. 2009, 61, 41–52. [Google Scholar]
- Zhang, F.P.; Peng, Y.Q.; Compton, S.G.; Yang, D.R. Floral character-istics of Ficus curtipes and the oviposition behavior of its polli-nator fig wasp. Ann. Entomol. Soc. Am. 2009, 102, 556–559. [Google Scholar] [CrossRef]
- Ertan, B.; Doğan, Ö.; Dağ, S.; Tuncay, Ö.; Çıtak, D. İlek İnciri Muhafazasında Uygun Depolama Sıcaklığının Belirlenmesi; TÜBİTAK 118O206 No’lu Proje Sonuç Raporu. 2021. Available online: https://search.trdizin.gov.tr/tr/yayin/detay/622058/ilek-inciri-muhafazasinda-uygun-depolama-sicakliginin-belirlenmesi (accessed on 30 March 2024).
- Storey, W.B. Figs Advances İn Fruit Breeding. In Advances in Fruit Breeding; Janick, J., Moore, J.N., Eds.; Purdue University: West Lafayette, IN, USA, 1975; pp. 568–589. [Google Scholar]
- Eti, S. The Pollen Viability And Germination Ratios İn The Some Fruit Species and Cultivars by İn Vitro Tests. Cukurova Univ. J. Agric. Fac. 1991, 6, 69–80. [Google Scholar]
- Gaaliche, B.; Majdoub, A.; Trad, M.; Mars, M. Assessment of pollen viability, germination, and tube growth in eight Tunisian caprifig (Ficus carica L.) cultivars. ISRN Agron. 2013, 2013, 207434. [Google Scholar] [CrossRef]
- United Nations Economic Comission for Europe (UNECE). UNECE Standard FFV-17 Concerning the Marketing and Commercial Quality Control of Fresh Figs. Available online: https://unece.org/fileadmin/DAM/trade/agr/standard/fresh/FFV-Std/English/17_FreshFigs.pdf (accessed on 15 October 2022).
- Eroğlu, A.Ş. İncir Seleksiyonu. İncir Araştırmaları Projesi; Erbeyli Zirai Araştırma Enstitüsü Müdürlüğü Aydın: Aydın, Turkey, 1982. [Google Scholar]
- Yaman, S.; Çalışkan, O. Pollinizer characteristics of some caprifig genotypes (Ficus carica var. caprificus) selected from Hatay. Anadolu J. Agr. Sci. 2016, 31, 315–320. [Google Scholar] [CrossRef]
- Yaman, S. Determınatıon of Phenologıcal, Pomologıcal and Bıologıcal Characterıstıcs of Some Caprıfıg Genotypes (Ficus carica var. caprificus). Master’s Thesis, Mustafa Kemal University, Hatay, Turkey, 2015. [Google Scholar]
- Ahi Koşar, D.; Aktepe Tangu, N.; Gencer, N.S.; Durgut, E.; Ertürk, U. Some characteristics and caprification potentials of caprifigs (Ficus carica var. caprificus L.) grown in Bursa, Turkey. In Ficus carica: Production, Cultivation and Uses; Dalkılıç, Z., Ed.; Nova Science Publishers: New York, NY, USA, 2022; pp. 97–101. [Google Scholar] [CrossRef]
- Chen, H.; Li, Z.; Tang, L. Effects of Fig Wasp Temperature Tolerance on İnterspecific Coexistence. Biodivers. J. 2020, 28, 1222–1228. [Google Scholar] [CrossRef]
- Gaudet, D.; Singh Yadav, N.; Sorokin, A.; Bilichak, A.; Kovalchuk, I. Development and optimization of a germination assay and long-term storage for Cannabis sativa pollen. Plants 2020, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- Dafni, A.; Firmage, D. Pollen Viability and Longevity: Practical, Ecological and Evolutionary Implications. Plant Syst. Evol. 2000, 222, 113–132. [Google Scholar] [CrossRef]
- Yuan, S.C.; Chin, S.; Lee, C.Y.; Chen, F.C. Phalaenopsis pollinia storage at sub-zero temperature and its pollen viability assessment. Bot. Stud. 2018, 59, 1. [Google Scholar] [CrossRef] [PubMed]
- Rosell, V.; Galán Saúco, V.; Herrero, M. Pollen germination as affected by pollen age in cherimoya. Sci. Hortic. 2006, 109, 97–100. [Google Scholar] [CrossRef]
- Wang, L.; Wu, J.; Chen, J.; Fu, D.; Zhang, C.; Cai, C.; Ou, L. A simple pollen collection, dehydration, and long-term storage method for litchi (Litchi chinensis Sonn.). Sci. Hortic. 2015, 188, 78–83. [Google Scholar] [CrossRef]
- Bellusci, F.; Musacchio, A.; Stabile, R.; Pellegrino, G. Differences in pollen viability in relation to different deceptive pollination strategies in Mediterranean orchids. Ann. Bot. 2010, 106, 769–774. [Google Scholar] [CrossRef]
- Marks, T.R.; Seaton, P.T.; Pritchard, H.W. Desiccation tolerance, longevity and seed-siring ability of entomophilous pollen from UK native orchid species. Ann. Bot. 2014, 114, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Zeybekoğlu, Ş.N. Sarılop İnciri ve Bazı Erkek İncir Çeşitlerinin Döllenme Biyolojisi Üzerinde Araştırmalar. Ph.D. Thesis, University of Aegean, İzmir, Türkiye, 1999. [Google Scholar]
- Vego, D.; Miljković, I. In vitro germination of pollen grains of wild fig (Ficus carica L. var. caprificus). Pomol. Croat. 2012, 18, 19–31. [Google Scholar]
- Acarsoy Bilgin, N.; Mısırlı, A.; Belge, A.; Özen, M. The Pollen and Fruit Properties of Ficus carica var. caprificus. Int. J. Fruit Sci. 2020, 20, 1696–1705. [Google Scholar] [CrossRef]
- Calıskan, O.; Bayazit, S.; Kılıc, D.; Ilgın, M.; Karatas, N. Pollen morphology and variability of caprifig (Ficus carica var. caprificus) genetic resources in Turkey using multivariate analysis. Sci. Hortic. 2021, 287, 110283. [Google Scholar] [CrossRef]
- Al-Khalifah, N. Metaxenia: Influence of Pollen on The Maternal Tissue of Fruits of Two Cultivars of Date Palm (Phoenix dactylifera L.). Bangladesh J. Bot. 2006, 35, 151–161. [Google Scholar]
- Shahsavar, A.R.; Shahhosseini, A. Pollen Grain Hormones of Date Palm Pollinator Cultivars and Their Relationship With Hormones of Different Stages of ‘Piarom’ Date Fruit Growth. Sci. Hortic. 2021, 288, 110389. [Google Scholar] [CrossRef]
- Deng, L.; Wang, T.; Hu, J.; Yang, X.; Yao, Y.; Jin, Z.; Huang, Z.; Sun, G.; Xiong, B.; Liao, L.; et al. Effects of Pollen Sources on Fruit Set and Fruit Characteristics of ‘Fengtangli’ Plum (Prunus salicina Lindl.) Based on Microscopic and Transcriptomic Analysis. Int. J. Mol. Sci. 2022, 23, 12959. [Google Scholar] [CrossRef]
- Westwood, M.N. Temperature Zone Pomology; Timber Press: Los Altos, CA, USA, 1988. [Google Scholar]
- Marcotuli, I.; Mazzeo, A.; Colasuonno, P.; Terzano, R.; Nigro, D.; Porfido, C.; Tarantino, A.; Cigliano, R.A.; Sanseverino, W.; Gadaleta, A.; et al. Fruit Development in Ficus carica L.: Morphological and Genetic Approaches to Fig Buds for An Evolution From Monoecy Toward Dioecy. Front. Plant Sci. 2020, 11, 548369. [Google Scholar] [CrossRef]
- Alinezhad Jahromi, H.; Zarei, A.; Mohammadkhan, A. Analysis the Effects of Pollen Grain Sources on the Fruits Set and Their Characteristics of ‘Clementine’ Mandarin Using Microscopic and Molecular Approaches. Sci. Hortic. 2019, 249, 347–354. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Z.; Mao, Y.; Hu, Y.; Yang, L.; Wang, Y.; Zhang, L.; Shen, X. Effects of Quince Pollen Pollination on Fruit Qualities and Phenolic Substance Contents of Apples. Sci. Hortic. 2019, 256, 108628. [Google Scholar] [CrossRef]
- Can, H.Z. Bazı Seçilmiş Sofralık İncir Çeşitlerinin Ege Bölgesi Koşullarında Özelliklerinin Belirlenmesi Üzerinde Araştırmalar. Master’s Thesis, University of Aegean, İzmir, Turkey, 1993. [Google Scholar]
- Crane, J.C.; Blondeau, R. The Use of Growth-Regulating Chemicals to Induce Parthenocarpic Fruit in The Calimyrna Fig. Plant Physiol. 1949, 24, 44–53. [Google Scholar] [CrossRef]
- Kodad, O.; Socias, İ.; Company, R.S. Fruit Quality in Almond as Related to the Type of Pollination in Self Compatible Genotypes. J. Am. Soc. Hortic. Sci. 2008, 133, 320–326. [Google Scholar] [CrossRef]
- Fattahi, R.; Mohammadzedeh, M.; Khadivi-Khub, A. Influence of Different Pollen Sources on Nut and Kernel Characteristics of Hazelnut. Sci. Hortic. 2014, 173, 15–19. [Google Scholar] [CrossRef]
- Michailides, T.J.; Morgan, D.P. Spread of Endosepis in Calimyrna Fig Orchards. Phytopathology 1998, 88, 637–647. [Google Scholar] [CrossRef]
- Condit, I.J. The Fig; Chronica Botanica Waltham: Waltham, MA, USA, 1947. [Google Scholar]
- Khadivi-Khub, A.; Anjam, K. Characterization and evaluation of male fig (caprifig) accessions in Iran. Plant Syst. Evol. 2014, 10, 2177–2189. [Google Scholar] [CrossRef]
- Karadeniz, T.; Bak, T.; Deligöz, H. Developments in the Shoots and Fruit of Siyah Fig Grown in Two Different Altitudes. IV; International Fig Symposium: Meknes, Morocco, 2009. [Google Scholar]
- Doi, K.; Nozaki, R.; Takahashi, K.; Iwasaki, N. Effects of the number of seeds per berry on fruit growth characteristics, especially on the duration of stage II in blueberry. Plants 2018, 7, 96. [Google Scholar] [CrossRef] [PubMed]
- Denney, O.J. Xenia Includes Metaxenia. HortScience 1992, 27, 722–728. [Google Scholar] [CrossRef]
- Ryugo, K. Fruit Culture: Its Science and Art; John Wiley and Sons: New York, NY, USA, 1988. [Google Scholar]
Genotype (G) | Number of B. psenes (Number/Fruit) | Duration of B. psenes’s Exit (Days) | Number of P. caricae (Number/Fruit) | ||||||
---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2022 | 2020 | 2021 | 2022 | 2020 | 2021 | 2022 | |
16 08 05 | 293.00 a | 146.55 a | 183.55 bc | 3.44 a | 2.88 a | 3.66 a | 1.22 b | 9.11 a | 2.00 b |
16 08 09 | 186.22 bc | 86.44 b | 264.66 a | 2.33 c | 1.44 c | 2.88 bc | 2.22 ab | 1.55 c | 2.00 b |
16 08 10 | 155.66 c | 80.88 b | 148.33 c | 2.77 b | 2.00 b | 2.77 c | 2.22 ab | 2.11 c | 1.77 b |
16 09 10 | 287.00 a | 98.55 b | 168.00 bc | 3.22 a | 2.00 b | 3.22 b | 2.77 a | 3.88 b | 1.44 b |
16 ZF 08 | 217.33 b | 109.88 ab | 204.66 b | 3.11 ab | 1.88bc | 3.00 bc | 2.22 ab | 4.11 b | 3.88 a |
F-value | 18.02 | 5.63 | 7.01 | 10.53 | 10.69 | 6.54 | 3.77 | 23.78 | 4.36 |
p-value | <0.01 ** | 0.01 * | <0.01 ** | <0.01 ** | <0.01 ** | <0.01 ** | 0.04 * | <0.01 ** | <0.01 ** |
Storage time (ST) (days) | |||||||||
0 | 304.66 a | 191.93 a | 293.80 a | 3.80 a | 3.20 a | 3.86 a | 2.33 a | 5.13 a | 2.40 |
8 | 218.80 b | 94.40 b | 181.40 b | 2.73 b | 2.06 b | 3.13 b | 1.33 b | 4.26 ab | 2.13 |
16 | 160.06 c | 27.13 c | 106.33 c | 2.40 c | 0.86 c | 2.33 c | 2.73 a | 3.06 b | 2.13 |
F-value | 42.95 | 61.31 | 52.15 | 50.03 | 88.12 | 51.93 | 7.58 | 4.80 | 0.18 |
p-value | <0.01 ** | <0.01 ** | <0.01 ** | <0.01 ** | <0.01 ** | <0.01 ** | <0.01 ** | 0.01 * | 0.83 ns |
Genotype (G) | Pollen Viability (%) | Pollen Germination (%) | Equatorial Diameter (µm) | Polar Length (µm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2022 | 2020 | 2021 | 2022 | 2020 | 2021 | 2022 | 2020 | 2021 | 2022 | |
16 08 05 | 75.0 b | 80.6 a | 88.9 a | 26.3 c | 46.1 b | 45.3 a | 9.64 b | 9.42 d | 9.98 b | 9.36 b | 9.31 b | 9.56 bc |
16 08 09 | 76.9 ab | 82.4 a | 87.1 a | 38.9 a | 44.3 b | 40.6 b | 10.44 a | 10.34 ab | 10.39 a | 9.70 ab | 9.56 b | 9.98 a |
16 08 10 | 79.6 ab | 83.3 a | 82.4 b | 26.0 c | 35.9 c | 23.9 d | 9.87 b | 9.94 bc | 9.74 b | 9.59 ab | 9.49 b | 9.43 bc |
16 09 10 | 81.2 a | 84.1 a | 86.1 a | 33.7 b | 53.9 a | 39.3 b | 10.30 a | 10.43 a | 10.38 a | 10.07 a | 10.12 a | 10.11 a |
16 ZF 08 | 67.2 c | 65.0 b | 89.3 a | 28.2 c | 33.2 c | 32.2 c | 9.90 b | 9.79 cd | 9.78 b | 9.10 b | 9.48 b | 9.30 c |
F-value | 10.96 | 48.76 | 6.54 | 24.50 | 23.63 | 43.85 | 11.82 | 13.23 | 25.24 | 5.29 | 24.28 | 21.35 |
p-value | <0.01 ** | <0.01 ** | 0.02 * | <0.01 ** | <0.01 ** | <0.01 ** | <0.01 ** | <0.01 ** | <0.01 ** | <0.01 ** | <0.01 ** | <0.01 ** |
Storage time (ST) (days) | ||||||||||||
0 | 74.2 b | 85.6 a | 88.1 a | 28.9 | 41.7 b | 30.4 b | 10.04 | 9.98 | 10.06 | 9.62 | 9.60 | 9.70 |
8 | 75.1 ab | 73.1 c | 88.6 a | 31.4 | 40.4 b | 40.1 a | 10.04 | 9.95 | 10.04 | 9.41 | 9.61 | 9.68 |
16 | 78.6 a | 78.4 b | 84.2 b | 31.6 | 45.9 a | 38.6 a | 10.01 | 9.99 | 10.03 | 9.66 | 9.56 | 9.63 |
F-value | 5.23 | 51.69 | 11.31 | 2.80 | 4.73 | 27.10 | 0.94 | 0.72 | 0.62 | 1.23 | 0.87 | 0.65 |
p-value | 0.04 * | <0.01 ** | <0.01 ** | 0.07 ns | 0.01 * | <0.01 ** | 0.06 ns | 0.99 ns | 0.71 ns | 0.30 ns | 0.75 ns | 0.86 ns |
Ripening Period | Genotype | ||||||
---|---|---|---|---|---|---|---|
16 08 05 | 16 08 09 | 16 08 10 | 16 09 10 | 16 ZF 08 | F Value | p-Value | |
2020 | |||||||
<15 September | 39.50 a | 20.30 b | 8.16 c | 41.22 a | 28.53 ab | 106.00 | <0.01 ** |
15 September–1 October | 28.50 cd | 36.28 b | 47.26 a | 32.77 bc | 22.00 d | 71.21 | <0.01 ** |
1 October–15 October | 20.50 ab | 15.20 b | 27.57 a | 15.92 b | 22.07 a | 29.84 | <0.01 ** |
15 October–1 November | 12.50 c | 28.00 a | 16.32 b | 7.00 d | 18.00 b | 30.21 | <0.01 ** |
2021 | |||||||
<15 September | 30.79 a | 23.73 ab | 11.09 c | 20.16 bc | 17.40 bc | 10.46 | <0.01 ** |
15 September–1 October | 46.02 | 36.76 | 40.68 | 42.50 | 42.42 | 0.70 | 0.61 ns |
1 October–15 October | 21.22 b | 24.92 ab | 10.54 c | 26.99 a | 12.94 c | 10.89 | <0.01 ** |
15 October–1 November | 3.95 c | 14.56 bc | 35.72 a | 13.33 bc | 27.20 ab | 14.19 | <0.01 ** |
2022 | |||||||
<15 September | 20.47 ab | 24.20 a | 16.00 b | 18.64 b | 25.31 a | 4.48 | 0.03 * |
15 September–1 October | 40.72 b | 38.91 bc | 28.69 d | 47.22 a | 36.06 c | 27.30 | <0.01 ** |
1 October–15 October | 26.14 | 14.39 | 17.45 | 16.44 | 15.24 | 3.74 | 0.05 ns |
15 October–1 November | 12.33 b | 22.15 ab | 37.37 a | 19.13 b | 23.37 ab | 9.22 | <0.01 ** |
Genotype | Fruit Set (%) | Fruit Weight (g) | Ostiole Diameter (mm) | Flesh Thickness (mm) | Fruit Cavity (mm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2022 | 2020 | 2021 | 2022 | 2020 | 2021 | 2022 | 2020 | 2021 | 2022 | 2020 | 2021 | 2022 | |
16 08 05 | 65.0 b | 75.3 a | 78.0 ab | 75.2 b | 81.7 ab | 81.6 ab | 5.1 ab | 5.6 ab | 8.1 a | 19.4 | 20.9 a | 20.7 b | 4.9 b | 4.9 a | 5.9 ab |
16 08 09 | 81.0 a | 76.9 a | 85.4 a | 86.7 ab | 85.3 a | 82.1 ab | 7.3 a | 6.0 ab | 7.1 ab | 21.9 | 20.9 a | 21.8 ab | 1.8 c | 4.0 ab | 6.9 ab |
16 08 10 | 66.0 b | 61.9 ab | 67.0 b | 83.8 ab | 75.5 ab | 73.2 b | 7.3 a | 3.5 b | 6.6 b | 20.6 | 19.3 c | 21.0 ab | 1.1 c | 2.1 b | 4.0 b |
16 09 10 | 75.0 ab | 69.3 ab | 81.9 a | 91.3 a | 84.7 a | 80.5 ab | 5.3 ab | 7.5 a | 5.7 b | 20.7 | 20.4 ab | 24.4 a | 7.0 a | 3.4 ab | 9.5 a |
16 ZF 08 | 65.6 b | 59.3 b | 78.8 ab | 82.8 ab | 70.8 b | 77.4 b | 3.9 b | 3.7 b | 6.5 b | 19.8 | 19.8 bc | 18.8 b | 4.3 b | 2.9 b | 5.1 b |
F-value | 11.4 | 8.4 | 17.8 | 14.0 | 11.00 | 9.83 | 2.88 | 2.44 | 2.98 | 3.4 | 11.5 | 4.7 | 18.5 | 7.0 | 5.6 |
p-value | <0.01 ** | 0.01 * | 0.04 * | 0.03 * | <0.01 ** | <0.01 * | 0.01 * | <0.01 ** | 0.01 * | 0.06 ns | <0.01 ** | 0.04 * | <0.01 ** | 0.01 * | 0.01 * |
Fruit Weight Ratio | Genotype | ||||||
---|---|---|---|---|---|---|---|
16 08 05 | 16 08 09 | 16 08 10 | 16 09 10 | 16 ZF 08 | F-Value | p-Value | |
2020 | |||||||
40–60 g | 7.16 b | 15.62 a | 17.58 a | 8.67 b | 18.31 a | 6.43 | 0.01 * |
60–80 g | 61.25 a | 27.72 b | 25.75 b | 26.28 b | 27.37 b | 25.07 | <0.01 ** |
80–100 g | 24.56 | 30.73 | 33.20 | 35.76 | 29.92 | 1.11 | 0.41 ns |
>100 g | 7.00 b | 24.39 a | 25.20 a | 30.04 a | 23.77 a | 6.97 | 0.01 * |
2021 | |||||||
40–60 g | 11.66 b | 13.81 b | 23.75 b | 16.11 b | 40.54 a | 19.61 | <0.01 ** |
60–80 g | 40.96 a | 28.27 b | 35.49 ab | 28.39 b | 39.96 a | 11.46 | <0.01 ** |
80–100 g | 23.75 a | 34.94 a | 29.91 a | 34.16 a | 10.88 b | 15.10 | <0.01 ** |
>100 g | 23.96 a | 23.29 a | 11.58 bc | 21.66 ab | 8.17 c | 10.43 | <0.01 ** |
2022 | |||||||
40–60 g | 23.40 ab | 15.56 b | 37.30 a | 30.60 ab | 22.03 ab | 4.51 | 0.03 * |
60–80 g | 28.20 | 32.56 | 27.13 | 31.10 | 30.43 | 0.44 | 0.77 ns |
80–100 g | 25.33 b | 38.40 a | 25.56 b | 19.45 b | 27.00 ab | 6.27 | <0.01 ** |
>100 g | 23.03 | 13.13 | 10.33 | 18.43 | 20.50 | 2.06 | 0.17 ns |
Ostiole Damage Ratio | Genotype | ||||||
---|---|---|---|---|---|---|---|
16 0805 | 16 08 09 | 16 08 10 | 16 09 10 | 16 ZF 08 | F-Value | p-Value | |
2020 | |||||||
None | 60.00 a | 23.07 b | 44.34 ab | 44.44 ab | 62.58 a | 10.43 | <0.01 ** |
Slight | 9.89 b | 27.04 a | 15.04 ab | 30.55 a | 14.88 ab | 7.98 | <0.01 ** |
Moderate | 17.40 | 15.06 | 11.49 | 8.33 | 13.23 | 3.19 | 0.07 ns |
Severe | 12.63 ab | 27.72 a | 29.12 a | 16.66 ab | 9.29 b | 6.75 | 0.01 * |
2021 | |||||||
None | 48.51 ab | 34.85 b | 55.55 a | 40.06 b | 58.07 a | 4.40 | 0.03 * |
Slight | 25.53 | 30.95 | 24.81 | 21.31 | 24.14 | 1.21 | 0.37 ns |
Moderate | 10.24 | 20.01 | 15.00 | 14.85 | 13.33 | 2.52 | 0.12 ns |
Severe | 15.93 b | 15.10 b | 4.44 c | 25.49 a | 9.44 bc | 15.26 | <0.01 ** |
2022 | |||||||
None | 20.41 b | 23.25 ab | 21.90 ab | 37.41 a | 18.44 b | 5.86 | 0.02 * |
Slight | 26.80 | 25.84 | 41.90 | 29.19 | 26.08 | 0.40 | 0.80 ns |
Moderate | 17.71 b | 28.92 ab | 24.52 ab | 22.98 ab | 32.60 a | 4.84 | 0.04 * |
Severe | 35.07 a | 21.98 ab | 30.55 ab | 10.03 b | 22.80 ab | 21.26 | <0.01 ** |
Genotype | Number of Fertile Seeds (Number/Fruit) | Number of Sterile Seeds (Number/Fruit) | Single Seed Weight (mg/Fruit) | ||||||
---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2022 | 2020 | 2021 | 2022 | 2020 | 2021 | 2022 | |
16 08 05 | 1107.66 a | 1004.22 a | 1132.73 ab | 65.33 b | 67.66 b | 78.66 a | 1.22 c | 1.60 ab | 1.89 a |
16 08 09 | 1258.33 a | 1125.34 a | 1205.83 a | 12.00 c | 25.66 c | 33.66 b | 1.60 a | 1.70 a | 1.86 a |
16 08 10 | 1193.33 a | 957.33 ab | 977.33 b | 14.00 c | 52.00 bc | 55.00 ab | 1.34 bc | 1.46 bc | 1.46 ab |
16 09 10 | 1073.22 a | 1073.22 a | 1293.33 a | 18.00 c | 35.66 c | 55.00 ab | 1.53 ab | 1.66 a | 1.70 a |
16 ZF 08 | 812.66 b | 702.66 b | 1303.00 a | 150.33a | 111.66 a | 65.00 a | 1.41 abc | 1.40 c | 1.20 b |
F-value | 24.50 | 5.68 | 6.50 | 103.28 | 60.32 | 8.67 | 12.42 | 10.15 | 6.87 |
p-value | <0.01 ** | 0.04 * | 0.04 * | <0.01 ** | <0.01 ** | 0.03 * | 0.01 * | <0.01 ** | 0.03 * |
Genotype | Fig Endosepsis (%) | SSC (°Brix) | TA (g/100 mL) | ||||||
---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2022 | 2020 | 2021 | 2022 | 2020 | 2021 | 2022 | |
16 08 05 | 12.33 ab | 12.53 ab | 17.59 ab | 19.76 | 17.50 | 16.03 | 0.17 b | 0.26 | 0.29 |
16 08 09 | 6.54 b | 8.51 b | 18.91 ab | 18.93 | 17.10 | 16.03 | 0.25 ab | 0.28 | 0.34 |
16 08 10 | 7.16 b | 3.26 c | 11.95 b | 20.60 | 17.33 | 14.76 | 0.23 b | 0.32 | 0.32 |
16 09 10 | 5.00 b | 4.45 c | 24.67 a | 20.13 | 16.63 | 15.30 | 0.33 a | 0.30 | 0.31 |
16 ZF 08 | 15.33 a | 16.17 a | 25.16 a | 18.23 | 17.83 | 15.60 | 0.23 b | 0.30 | 0.29 |
F-value | 21.90 | 51.60 | 5.09 | 1.48 | 0.77 | 3.09 | 10.35 | 0.72 | 0.75 |
p-value | <0.01 ** | <0.01 ** | 0.02 * | 0.29 ns | 0.57 ns | 0.08 ns | <0.01 ** | 0.60 ns | 0.58 ns |
Parameters | Contribution | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
FW | 0.902 * | 0.125 | 0.041 | −0.000 | 0.218 |
FT | 0.894 * | 0.093 | 0.086 | −0.000 | −0.065 |
PED | 0.793 * | −0.318 | 0.262 | −0.258 | −0.084 |
PV | 0.771 * | −0.013 | −0.325 | 0.370 | −0.220 |
OD | 0.769 * | 0.057 | −0.428 | 0.146 | 0.205 |
SSW | 0.761 * | 0.169 | −0.250 | 0.019 | 0.434 |
NSS | −0.758 * | 0.136 | 0.406 | 0.061 | 0.066 |
NFS | 0.744 * | 0.394 | 0.036 | 0.061 | −0.275 |
PPL | 0.742 * | 0.011 | 0.387 | −0.104 | −0.487 |
PG | 0.718 * | 0.533 | −0.115 | −0.118 | 0.220 |
FS | 0.669 * | 0.314 | 0.153 | −0.04 | 0.493 |
<15 September | 0.221 | 0.932 * | 0.174 | −0.123 | 0.038 |
15 October–1 November | −0.329 | −0.858 * | 0.285 | 0.071 | 0.074 |
NBP | 0.060 | 0.872 * | 0.127 | 0.132 | 0.307 |
FC | 0.447 | 0.797 * | 0.278 | 0.000 | −0.098 |
NPC | −0.509 | 0.769 * | −0.095 | 0.070 | 0.052 |
DBPE | −0.390 | 0.736 * | −0.156 | 0.312 | −0.360 |
FHue | −0.145 | 0.112 | 0.882 * | −0.000 | 0.000 |
TA | 0.388 | −0.387 | 0.580 * | −0.32 | −0.44 |
SSC | 0.080 | −0.056 | −0.172 | 0.901 * | 0.140 |
SHue | −0.299 | 0.275 | 0.298 | 0.766 * | −0.178 |
Eigenvalue | 8.133 | 5.156 | 2.446 | 1.659 | 1.191 |
% of variance | 37.456 | 24.829 | 9.761 | 9.073 | 7.391 |
Cumulative variance % | 37.456 | 62.285 | 72.045 | 81.119 | 88.510 |
Direct Effect | Estimate | Standardized Estimate | p (|Z| > z) | Indirect Effect | Estimate | Standardized Estimate | p (|Z| > z) |
---|---|---|---|---|---|---|---|
NBP→ < 15 Sept. | 0.093 | 0.641 | <0.01 ** | NBP →FC | 0.007 | 0.227 | <0.01 ** |
DBPE→15 Oct.–1 Nov. | −7.507 | −0.486 | <0.01 ** | NBP →FW | 0.020 | 0.224 | <0.01 ** |
DBPE→NSS | 22.162 | 0.309 | <0.01 ** | DBPE →FC | 0.544 | 0.156 | 0.01 * |
PV→FS | 0.502 | 0.357 | 0.01 * | DBPE→FW | −1.230 | −0.124 | 0.02 * |
PV→NFS | 20.41 | 0.823 | <0.01 ** | PV →FW | 0.219 | 0.243 | <0.01 ** |
PV→NSS | −3.945 | −0.603 | <0.01 ** | PV→OD | 0.023 | 0.102 | 0.03 * |
PV→OD | 0.08 | 0.393 | <0.01 ** | PV→SSW | 0.002 | 0.102 | 0.04 * |
PG→15 Oct.– 1 Nov. | −0.590 | −0.506 | <0.01 ** | PG→FT | 0.060 | 0.331 | <0.01 ** |
PG→SSW | 0.014 | 0.642 | <0.01 ** | PG→FC | 0.033 | 0.126 | 0.04 * |
PG →FW | 0.182 | 0.244 | 0.04 * | <15 Sept. →OD | 0.024 | 0.148 | 0.02 * |
<15 Sept. →FC | 0.078 | 0.355 | <0.01 ** | FS→FT | 0.023 | 0.147 | 0.01 * |
<15 Sept. →FW | 0.221 | 0.351 | <0.01 ** | NSS→OD | −0.006 | −0.170 | 0.01 * |
FS→SSW | 0.005 | 0.286 | <0.01 ** | SSW→FC | 2.296 | 0.196 | 0.03 * |
FT→FC | 0.765 | 0.531 | <0.01 ** | ||||
NFS→FC | 0.006 | 0.507 | <0.01 * | ||||
NSS→FC | 0.024 | 0.507 | <0.01 * | ||||
NSS→FW | −0.055 | −0.403 | <0.01 * | ||||
FW→OD | 0.108 | 0.424 | <0.01 * | ||||
SSW→FT | 4.175 | 0.516 | <0.01 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahi Koşar, D.; Ertürk, Ü. Assessing the Impact of Genotype-Specific Caprifig Fruit Storage on the Pollination Efficacy and Fruit Quality of “Bursa Siyahı” Cultivar: A Multivariate Analysis Approach. Agronomy 2024, 14, 958. https://doi.org/10.3390/agronomy14050958
Ahi Koşar D, Ertürk Ü. Assessing the Impact of Genotype-Specific Caprifig Fruit Storage on the Pollination Efficacy and Fruit Quality of “Bursa Siyahı” Cultivar: A Multivariate Analysis Approach. Agronomy. 2024; 14(5):958. https://doi.org/10.3390/agronomy14050958
Chicago/Turabian StyleAhi Koşar, Dilan, and Ümran Ertürk. 2024. "Assessing the Impact of Genotype-Specific Caprifig Fruit Storage on the Pollination Efficacy and Fruit Quality of “Bursa Siyahı” Cultivar: A Multivariate Analysis Approach" Agronomy 14, no. 5: 958. https://doi.org/10.3390/agronomy14050958
APA StyleAhi Koşar, D., & Ertürk, Ü. (2024). Assessing the Impact of Genotype-Specific Caprifig Fruit Storage on the Pollination Efficacy and Fruit Quality of “Bursa Siyahı” Cultivar: A Multivariate Analysis Approach. Agronomy, 14(5), 958. https://doi.org/10.3390/agronomy14050958