Intelligent Detection of Muskmelon Ripeness in Greenhouse Environment Based on YOLO-RFEW
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Information
2.2. Constructing the YOLO-RFEW Muskmelon Maturity Detection Model
2.3. RFAConv Module
2.4. Construction of the C2f-FE Module
2.4.1. Construction of the C2f-F Module
2.4.2. EMA Attention Mechanism
2.5. WIoU Loss Function
2.6. Grad-CAM
2.7. Test Platforms
2.8. Evaluation Indicators
3. Results and Analysis
3.1. Effect of Different Convolutions on Model Feature Extraction
3.2. Effect of C2f-F Combined with the Attention Mechanism on Model Performance
3.3. Ablation Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gothi, H.R.; Patel, P.S.; Raj, V.P.; Rabari, P.H. Diversity and abundance of insect pollinators on muskmelon. J. Entomol. Res. 2022, 46, 1102–1107. [Google Scholar] [CrossRef]
- Xue, Q.; Li, H.; Chen, J.; Du, T. Fruit cracking in muskmelon: Fruit growth and biomechanical properties in different irrigation levels. Agric. Water Manag. 2024, 293, 108672. [Google Scholar] [CrossRef]
- Mayobre, C.; Domingo, M.S.; Özkan, E.N.; Borbolla, A.F.; Lasierra, J.R.; Mas, J.G.; Pujol, M. Genetic regulation of volatile production in two melon introgression line collections with contrasting ripening behavior. Hortic. Res. 2024, 11, uhae020. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhao, H.; Lawal, O.M.; Lu, X.; Ren, R.; Zhang, S. An Automatic Jujube Fruit Detection and Ripeness Inspection Method in the Natural Environment. Agronomy 2023, 13, 451. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, D.; Lawal, O.; Zhang, S. Muskmelon Maturity Stage Classification Model Based on CNN. J. Robot. 2021, 2021, 8828340. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Maleva, T.; Soloviev, V. Using YOLOv3 Algorithm with Pre- and Post-Processing for Apple Detection in Fruit-Harvesting Robot. Agronomy 2020, 10, 1016. [Google Scholar] [CrossRef]
- Ju, J.; Chen, G.; Lv, Z.; Zhao, M.; Sun, L.; Wang, Z.; Wang, J. Design and experiment of an adaptive cruise weeding robot for paddy fields based on improved YOLOv5. Comput. Electron. Agric. 2024, 219, 108824. [Google Scholar] [CrossRef]
- Mathias, A.; Dhanalakshmi, S.; Kumar, R. Occlusion aware underwater object tracking using hybrid adaptive deep SORT-YOLOv3 approach. Multimed. Tools Appl. 2022, 81, 44109–44121. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Solimani, F.; Cardellicchio, A.; Dimauro, G.; Petrozza, A.; Summerer, S.; Cellini, F.; Renò, V. Optimizing tomato plant phenotyping detection: Boosting YOLOv8 architecture to tackle data complexity. Comput. Electron. Agric. 2024, 218, 108728. [Google Scholar] [CrossRef]
- Chen, W.; Liu, M.; Zhao, C.; Li, X.; Wang, Y. MTD-YOLO: Multi-task deep convolutional neural network for cherry tomato fruit bunch maturity detection. Comput. Electron. Agric. 2024, 216, 108533. [Google Scholar] [CrossRef]
- Edy, S.; Suharjito. Hyperparameter optimization of YOLOv4 tiny for palm oil fresh fruit bunches maturity detection using genetics algorithms. Smart Agric. Technol. 2023, 6, 100364. [Google Scholar] [CrossRef]
- Kazama, E.H.; Tedesco, D.; Carreira, V.d.S.; Júnior, M.R.B.; Oliveira, M.F.d.; Ferreira, F.M.; Junior, W.M.; Silva, R.P.d. Monitoring coffee fruit maturity using an enhanced convolutional neural network under different image acquisition settings. Sci. Hortic. 2024, 328, 112957. [Google Scholar] [CrossRef]
- Juntao, X.; Yonglin, h.; Xiao, W.; Zhexing, L.; Haoyan, C.; Qiyan, H. Method of Maturity Detection for Papaya Fruits in Natural Environment Based on YOLO v5-Lite. Trans. Chin. Soc. Agric. Mach. 2023, 54, 243–252. [Google Scholar]
- Chen, W.; Zhang, J.; Guo, B.; Wei, Q.; Zhu, Z. An Apple Detection Method Based on Des-YOLO v4 Algorithm for Harvesting Robots in Complex Environment. Math. Probl. Eng. 2021, 2021, 7351470. [Google Scholar] [CrossRef]
- Ren, R.; Sun, H.; Zhang, S.; Wang, N.; Lu, X.; Jing, J.; Xin, M.; Cui, T. Intelligent Detection of Lightweight “Yuluxiang” Pear in Non-Structural Environment Based on YOLO-GEW. Agronomy 2023, 13, 2418. [Google Scholar] [CrossRef]
- Li, S.; Zhang, S.; Xue, J.; Sun, H. Lightweight target detection for the field flat jujube based on improved YOLOv5. Comput. Electron. Agric. 2022, 202, 107391. [Google Scholar] [CrossRef]
- Hang, J.; Zhao, X.; Gao, F.; Wen, X.; Jing, S.; Zhang, Y. Recognizing and detecting the strawberry at multi-stages usingimproved lightweight YOLOv5s. Trans. CSAE 2023, 39, 181–187. [Google Scholar] [CrossRef]
- Guo, A.; Sun, K.; Zhang, Z. A lightweight YOLOv8 integrating FasterNet for real-time underwater object detection. J. Real-Time Image Process. 2024, 21, 49. [Google Scholar] [CrossRef]
- Kong, D.; Wang, J.; Zhang, Q.; Li, J.; Rong, J. Research on Fruit Spatial Coordinate Positioning by Combining Improved YOLOv8s and Adaptive Multi-Resolution Model. Agronomy 2023, 13, 2122. [Google Scholar] [CrossRef]
- Zhichao, H.; Yi, W.; Junping, W.; Wanli, X.; Bilian, L. Improved Lightweight Rebar Detection Network Based on YOLOv8s Algorithm. Adv. Comput. Signals Syst. 2023, 7, 107–117. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Yang, D.; Song, T.; Ye, Y.; Li, K.; Song, Y. RFAConv: Innovating Spatial Attention and Standard Convolutional Operation. In Proceedings of the Computer Vision and Pattern Recognition, Xiamen, China, 26–28 April 2024. [Google Scholar] [CrossRef]
- Chen, J.; Kao, S.H.; He, H.; Zhuo, W.; Wen, S.; Lee, C.H.; Chan, S.H.G. Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks. In Proceedings of the Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.; Li, X.; Han, Y. Recognizing facial expressions based on pyramid multi-head grid and spatial attention network. Comput. Vis. Image Underst. 2024, 244, 104010. [Google Scholar] [CrossRef]
- Yasir, K.M.M.; Qingxian, W.; Bo, C.; Weidong, W. Cross-modality representation learning from transformer for hashtag prediction. J. Big Data 2023, 10, 148. [Google Scholar] [CrossRef]
- Viet, B.D.; Masao, K.; Hiroshi, S. Attention-based neural network with Generalized Mean Pooling for cross-view geo-localization between UAV and satellite. Artif. Life Robot. 2023, 28, 560–570. [Google Scholar] [CrossRef]
- Li, X.; Zhong, Z.; Wu, J.; Yang, Y.; Liu, H. Expectation-Maximization Attention Networks for Semantic Segmentation. In Proceedings of the International Conference in Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar] [CrossRef]
- Zanjia, T.; Yuhang, C.; Zewei, X.; Rong, Y. Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism. arXiv 2023, arXiv:2301.10051. [Google Scholar]
- Xu, W.; Wan, Y. ELA: Efficient Local Attention for Deep Convolutional Neural Networks. arXiv 2024, arXiv:2403.01123. [Google Scholar]
- Yang, L.; Zhang, R.Y.; Li, L.; Xie, X. SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks. In Proceedings of the International Conference on Machine Learning, Jeju Island, Republic of Korea, 23–25 April 2021. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Ren, R.; Sun, H.; Zhang, S.; Zhao, H.; Wang, L.; Su, M.; Sun, T. FPG-YOLO: A detection method for pollenable stamen in ‘Yuluxiang’ pear under non-structural environments. Sci. Hortic. 2024, 328, 112941. [Google Scholar] [CrossRef]
Model | Precision (%) | Recall (%) | F1 (%) | mAP (%) | Model Size (MB) | Inference Time (ms) |
---|---|---|---|---|---|---|
Conv | 86.44 | 80.64 | 83.44 | 88.31 | 5.95 | 1.7 |
RFAConv | 93.53 | 78.27 | 85.22 | 89.23 | 6.06 | 1.7 |
DWConv | 90.33 | 82.68 | 86.34 | 87.76 | 5.22 | 1.5 |
KWConv | 94.34 | 80.68 | 86.98 | 88.94 | 6.00 | 2.0 |
GSConv | 91.59 | 76.24 | 83.21 | 87.04 | 5.59 | 1.7 |
Model | Precision (%) | Recall (%) | F1 (%) | mAP (%) | Model Size (MB) | Parameters (M) | Inference Time (ms) |
---|---|---|---|---|---|---|---|
YOLOv8n | 86.44 | 80.64 | 83.44 | 88.31 | 5.95 | 3.011 | 1.7 |
C2f-F | 93.26 | 80.33 | 86.31 | 88.89 | 4.61 | 2.306 | 1.4 |
EMA | 90.78 | 82.31 | 86.34 | 89.96 | 4.66 | 2.315 | 1.4 |
ELA | 93.32 | 79.91 | 86.10 | 88.55 | 4.73 | 2.360 | 1.5 |
SimAM | 92.81 | 81.04 | 86.53 | 89.10 | 4.61 | 2.306 | 1.4 |
SE | 88.69 | 85.05 | 86.83 | 88.95 | 4.63 | 2.313 | 1.4 |
Model | F1 (%) | AP (%) | mAP (%) | Model Size (MB) | ||
---|---|---|---|---|---|---|
M-u | M-r | M-u | M-r | |||
YOLOv8n | 80.20 | 86.26 | 82.92 | 93.71 | 88.31 | 5.95 |
YOLO-R | 80.41 | 89.64 | 84.52 | 93.94 | 89.23 | 6.06 |
YOLO-FE | 82.98 | 89.52 | 85.71 | 94.22 | 89.96 | 4.66 |
YOLO-W | 80.27 | 88.78 | 82.97 | 94.43 | 88.70 | 5.95 |
YOLO-RFE | 84.83 | 88.91 | 87.36 | 93.18 | 90.27 | 4.75 |
YOLO-FEW | 84.36 | 92.06 | 86.17 | 94.09 | 90.13 | 4.66 |
YOLO-RFEW | 84.71 | 91.06 | 87.70 | 93.94 | 90.82 | 4.75 |
Model | Precision (%) | Recall (%) | F1 (%) | mAP (%) | Model Size (MB) | Inference Time (ms) |
---|---|---|---|---|---|---|
YOLOv3-Tiny | 88.26 | 84.10 | 86.13 | 88.14 | 16.64 | 1.8 |
YOLOv4-Tiny | 93.45 | 81.06 | 86.82 | 90.25 | 21.19 | 2.5 |
YOLOv5s | 88.91 | 81.67 | 85.14 | 89.46 | 13.77 | 1.6 |
YOLOv7-Tiny | 91.23 | 80.32 | 85.43 | 88.24 | 11.71 | 1.6 |
YOLOv8s | 94.70 | 79.60 | 86.50 | 89.51 | 21.47 | 2.0 |
YOLOv8n | 86.44 | 80.64 | 83.44 | 88.31 | 5.95 | 1.7 |
YOLO-RFEW | 93.16 | 83.22 | 87.91 | 90.82 | 4.75 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Ren, R.; Zhao, H.; Zhang, S. Intelligent Detection of Muskmelon Ripeness in Greenhouse Environment Based on YOLO-RFEW. Agronomy 2024, 14, 1091. https://doi.org/10.3390/agronomy14061091
Xu D, Ren R, Zhao H, Zhang S. Intelligent Detection of Muskmelon Ripeness in Greenhouse Environment Based on YOLO-RFEW. Agronomy. 2024; 14(6):1091. https://doi.org/10.3390/agronomy14061091
Chicago/Turabian StyleXu, Defang, Rui Ren, Huamin Zhao, and Shujuan Zhang. 2024. "Intelligent Detection of Muskmelon Ripeness in Greenhouse Environment Based on YOLO-RFEW" Agronomy 14, no. 6: 1091. https://doi.org/10.3390/agronomy14061091
APA StyleXu, D., Ren, R., Zhao, H., & Zhang, S. (2024). Intelligent Detection of Muskmelon Ripeness in Greenhouse Environment Based on YOLO-RFEW. Agronomy, 14(6), 1091. https://doi.org/10.3390/agronomy14061091