Simulation of Drainage Volume and Nitrogen Loss Load in Paddy Fields under Different Irrigation and Drainage Modes and Hydrological Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Soil Properties
2.2. Experimental Design and Field Management
2.2.1. Experimental Design
2.2.2. Field Management
2.3. Measurement Items and Methods
2.3.1. Meteorological Indicators
2.3.2. Soil Physicochemical Parameters
2.3.3. Irrigation and Drainage
- (1)
- Water Depth
- (2)
- Irrigation and Drainage
- (3)
- Nitrogen in Water Samples
2.3.4. Yield
2.4. Drainage Design Parameter of Model
2.5. Model Evaluation Parameters
2.6. Data Statistical Analysis Methods
3. Results
3.1. Model Calibration
3.1.1. Paddy Field Drainage
3.1.2. Nitrogen Loss Load
3.2. Model Verification
3.2.1. Paddy Field Drainage
3.2.2. Nitrogen Loss Load
3.3. Simulation of Drainage Volume and Nitrogen Loss Load in Different Hydrological Years
3.3.1. Selection of Representative Hydrological Year
3.3.2. Simulation of Drainage and Nitrogen Loss Load in Different Hydrological Years
4. Discussion
4.1. The Simulation of Drainage Volume and Nitrogen Loss Load in the Paddy Field
4.2. Optimizing Water Management of Paddy Fields
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tan, X.Z.; Shao, D.G.; Gu, W.Q.; Liu, H.H. Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D. Agric. Water Manag. 2015, 150, 67–80. [Google Scholar] [CrossRef]
- Yang, S.H.; Peng, S.Z.; Xu, J.Z.; Hou, H.J.; Gao, X.L. Nitrogen loss from paddy fields with different water and nitrogen managements in Taihu Lake region of China. Commun. Soil Sci. Plant Anal. 2013, 44, 2393–2407. [Google Scholar] [CrossRef]
- Liu, X.F.; Fei, L.J.; Meng, Z.J.; Zhang, J.Y.; Liu, X.L.; Zhang, Y.Y. Effects of water and nutrient synergies on dry matter translocation and nitrogen uptake and utilization in winter wheat. J. Plant Nutr. Fertil. 2018, 24, 905–914. [Google Scholar]
- Ye, Y.S.; Liang, X.Q.; Chen, Y.X.; Liu, J.; Gu, J.T.; Guo, R.; Li, L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Res. 2013, 144, 212–224. [Google Scholar] [CrossRef]
- Yang, J.Z.; Wang, L.Y.; LU, X.Y.; Jayawardane, N. Experiment and numerical simulation of nitrogen transport in soils irrigated with treated sewage. Irrig. Drain. 2008, 57, 203–217. [Google Scholar] [CrossRef]
- Antonopoulos, V.Z. Modelling of water and nitrogen balances in the ponded water and soil profile of paddy fields in Northern Greece. Agric. Water Manag. 2010, 98, 321–330. [Google Scholar] [CrossRef]
- Tan, X.Z.; Shao, D.G.; Liu, H.H.; Sun, C.M. Experimental and simulated water-nitrogen balance in rice paddy fields under water-saving irrigation with controlled drainage. Trans. Chin. Soc. Agric. Eng. 2011, 27, 193–198. [Google Scholar]
- Ferm, M. Atmospheric ammonia and ammonium transport in Europe and critical loads, a review. Nutr. Cycl. Agroecosystems 1998, 51, 5–17. [Google Scholar] [CrossRef]
- Huang, S.F.; Shen, G.X.; Tang, H.; Lu, Y.T. Study on nitrogen loss in paddy fields in suburban Shanghai. Environ. Pollut. Control 2005, 27, 651–654. [Google Scholar]
- Wesstrom, I.; Joel, A.; Messing, I. Controlled drainage and subirrigation—A water management option to reduce non-point source pollution from agricultural land. Agric. Ecosyst. Environ. 2014, 198, 74–82. [Google Scholar] [CrossRef]
- Wei, Q.; Xu, J.Z.; Liu, Y.Z.; Wang, D.; Chen, S.Y.; Qian, W.H.; He, M.; Chen, P.; Zhou, X.Y.; Qi, Z.M. Nitrogen losses from soil as affected by water and fertilizer management under drip irrigation: Development, hotspots and future perspectives. Agric. Water Manag. 2024, 296, 108791. [Google Scholar] [CrossRef]
- Youssef, M.A.; Abdelbaki, A.M.; Negm, L.M.; Skaggs, R.W.; Thorp, K.R.; Jaynes, D.B. DRAINMOD-simulated performance of controlled drainage across the US Midwest. Agric. Water Manag. 2018, 197, 54–66. [Google Scholar] [CrossRef]
- He, X.C.; Shao, D.G.; Liu, W.Y.; Dai, T. Research progress and prospect of resource utilization of agricultural drainage. Trans. Chin. Soc. Agric. Eng. 2006, 22, 176–179. [Google Scholar]
- Lu, W.X.; Cheng, W.G.; Zhang, Z.; Xin, X.; Wang, X.H. Differences in rice water consumption and yield under four irrigation schedules in central Jilin Province, China. Paddy Water Environ. 2016, 14, 473–480. [Google Scholar] [CrossRef]
- Xiao, M.H.; Yu, S.E.; She, D.L.; Hu, X.J.; Chu, L.L. Nitrogen and phosphorus loss and optimal drainage time of paddy field under controlled drainage condition. Arab. J. Geosci. 2015, 8, 4411–4420. [Google Scholar] [CrossRef]
- Li, J.; Shao, M.N.; Zhang, X.C. Mathematical simulation of soil nitrogen and phosphorus transport and crop nutrition in EPIC model. J. Plant Nutr. Fertil. 2005, 11, 166–173. [Google Scholar]
- Beasley, D.; Huggins, L.; Monke, E. ANSWERS: A model for watershed planning. Trans. ASAE 1980, 23, 938–944. [Google Scholar] [CrossRef]
- Chung, S.; Kim, H.; Kim, J. Model development for nutrient loading from paddy rice fields. Agric. Water Manag. 2003, 62, 1–17. [Google Scholar] [CrossRef]
- Hao, F.H.; Sun, W.; Zeng, A.Y.; Li, P.; Zhang, J.X.; Yue, Y. Simulation of nitrogen migration by HYDRUS-1D model under different irrigation scenarios in Hetao irrigation district. J. Environ. Sci. 2008, 28, 853–858. [Google Scholar]
- Li, Y.; Simunek, J.; Jin, L.F.; Zhang, Z.T.; Ni, L.X. Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D. Agric. Water Manag. 2015, 148, 213–222. [Google Scholar] [CrossRef]
- Li, S. Simulation of Non-Point Source Nitrogen and Phosphorus Pollution and Response of Lake Sediments in Nansi Lake Basin Based on SWAT Model. Ph.D. Thesis, Shandong Normal University, Jinan, China, 2012. [Google Scholar]
- Hoang, L.; Griensven, A.; Mynett, A. Enhancing the SWAT model for simulating denitrification in riparian zones at the river basin scale. Environ. Model. Softw. 2017, 93, 163–179. [Google Scholar] [CrossRef]
- Li, H.; Qiu, J.J.; Gao, C.Y.; Wang, L.G. Estimation of nitrogen leaching potential of farmland in a typical basin around Bohai Sea based on DNDC model. Trans. Chin. Soc. Agric. Eng. 2012, 28, 127–134. [Google Scholar]
- Moursi, H.; Youssef, M.A.; Chescheir, G.M. Development and application of DRAINMOD model for simulating crop yield and water conservation benefits of drainage water recycling. Agric. Water Manag. 2022, 266, 107592. [Google Scholar] [CrossRef]
- Skaggs, R.W. A Water Management Model for Shallow Water Table Soils; Water Resources Research Institute of the University of North Carolina: Chapel Hill, NC, USA, 1978. [Google Scholar]
- Breve, M.A. Modeling the Movement and Fate of Nitrogen in Artificially Drained Soils; North Carolina State University: Raleigh, NC, USA, 1994. [Google Scholar]
- Youssef, M.A.; Skaggs, R.W. The nitrogen simulation model, DRAINMOD-NII: Field testing and model. Am. Soc. Civ. Eng. 2006, 1–11. [Google Scholar] [CrossRef]
- Hong, L.; Luo, W.B. Dynamic simulation of nitrogen loss in surface runoff from farmland based on DRAINMOD. Adv. Water Sci. 2011, 22, 703–709. [Google Scholar]
- Qi, Z.M.; Du, X.; Feng, H.; Matthew, J.H. Influence of winter long-term covering rye on subsurface drainage and nitrate nitrogen loss based on DRAINMOD-NII. Trans. Chin. Soc. Agric. Eng. 2017, 33, 153–161. [Google Scholar]
- Salazar, O.; Wesstrom, I.; Youssef, M.A.; Skaggs, R.W.; Joel, A. Evaluation of the DRAINMOD-N II model for predicting nitrogen losses in a loamy sand under cultivation in south-east Sweden. Agric. Water Manag. 2009, 96, 267–281. [Google Scholar] [CrossRef]
- Li, S.; Luo, W.; Jia, Z.H.; Pan, Y.X.; Wu, D.; Zhang, D.K. Estimation of shallow groundwater withdrawal and salt accumulation in irrigated area based on DRAINMOD model. Trans. Chin. Soc. Agric. Eng. 2015, 31, 89–97. [Google Scholar]
- Jia, Z.H.; Luo, W.; Mo, F.; Cheng, H.Y. Effects of drainage and inflow on wetland hydrology using DRAINMOD model under different climatic conditions. J. Soil Water Conserv. 2003, 5, 54–58. [Google Scholar]
- Luo, W.; Jia, Z.; Skaggs, R.W.; Xi, W.Y.; Zhang, Y.F. Modeling of drainage process in yinnan irrigation district with DRAINMOD. Trans. Chin. Soc. Agric. Eng. 2006, 22, 53–57. [Google Scholar]
- Luo, W.; Gary, R.; Jing, W.H.; Jia, Z.H. Hydrological effects of planting perennial grasses in the "corn belt" based on simulation with DRAINMOD. Trans. Chin. Soc. Agric. Eng. 2010, 26, 89–94. [Google Scholar]
- Wang, S.L.; Wang, X.K.; Prasher, S.O.; Tan, C.S. Simulation of groundwater table and surface drainage using DRAINMOD model. Trans. Chin. Soc. Agric. Eng. 2006, 22, 54–59. [Google Scholar]
- Zhang, Z.; Zhang, Y.; Zhang, J.; Ma, H.Y.; Zhu, W.Y. Simulation of subsurface drainage in coastal saline-alkali farmland based on DRAINMOD-S Model. Adv. Water Sci. 2012, 23, 782–788. [Google Scholar]
- Abduljaleel, Y.; Awad, A.; Al-Ansari, N.; Salem, A.; Negm, A.; Gabr, M.E. Assessment of subsurface drainage strategies using DRAINMOD model for sustainable agriculture: A review. Sustainability 2023, 15, 1355. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, X.; Sun, C.; Ding, S.B.; Huo, Z.L.; Huang, G.H. Parameterization and modeling of paddy rice growth and water use in cold regions, yield and water-saving analysis. Agric. Water Manag. 2021, 250, 106864. [Google Scholar] [CrossRef]
- Hansen, J.; Fuller, F.; Gale, F.; Crook, F.; Wailes, E.; Moore, M. China’s japonica rice market, growth and competitiveness. In Rice Situation and Outlook Yearbook; Economic Research Service: Washington, DC, USA, 2002; pp. 32–37. [Google Scholar]
- Zade, A. Technologies of quality, the role of the Chinese state in guiding the market for rice. East Asian Sci. Technol. 2020, 5, 461–477. [Google Scholar] [CrossRef]
- Liu, S.; Chen, X.F.; Liu, L. Evapotranspiration algorithm and application based on the Penman-Monteith equation. Heilongjiang Sci. Technol. Inf. 2013, 40–41. [Google Scholar]
- The State Environmental Protection Administration. Water and Wastewater Monitoring and Analysis Methods, 4th ed.; Environmental Science Press: Beijing, China, 2002. [Google Scholar]
- SL 13-2015; Water Industry Standard of the People’s Republic of China, Specifications for Irrigation Experiment. Ministry of Water Resources of Pelple’s Repubic of China: Beijing, China, 2015.
- Bouman, B.A.M.; Laar, H.H. Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agric. Syst. 2006, 87, 249–273. [Google Scholar] [CrossRef]
- Nash, J.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gao, X.R.; Dong, B.; Qin, D.Y.; Sun, N.N.; Zhang, Z.Y. Simulation of drainage process and nitrogen loss in paddy field using DrainMOD. Trans. Chin. Soc. Agric. Eng. 2011, 27, 52–58. [Google Scholar]
- Wu, D.; Luo, W.; Zhou, M.Y.; Jia, Z.H.; Li, S.; Li, L. Paddy field drainage processes and its influence by lateral ditches in thepolder area of southeastern China. J. Irrig. Drain. 2015, 34, 28–33. [Google Scholar]
- Golmohammadi, G.; Rudra, R.P.; Prasher, S.O.; Madani, A.; Goel, P.K.; Mohammadi, K. Modeling the impacts of tillage practices on water table depth, drain outflow and nitrogen losses using DRAINMOD. Comput. Electron. Agric. 2016, 124, 73–83. [Google Scholar] [CrossRef]
- Wang, J.; Yu, S.E.; Wang, M.; Zhang, Y.D.; Gao, S.K. Effect of water depth over paddy field on nitrogen and phosphorus in the water after storms at tillering stage. J. Irrig. Drain. 2018, 37, 71–75, 82. [Google Scholar]
- Hashemi, S.Z.; Darzi-Naftchali, A.; Qi, Z. Assessing water and nitrate-N losses from subsurface-drained paddy lands by DRAINMOD-NII. Irrig. Drain. 2020, 69, 776–787. [Google Scholar] [CrossRef]
- Morris, M.D. Factorial sampling plans for preliminary computational experiments. Technometrics 1991, 33, 161–174. [Google Scholar] [CrossRef]
- Xie, Y.C.; Xu, M.; Gao, S.K.; Shen, L.Q. Simulation of water and nitrogen transport in rice field with different irrigation and drainage models based on DRAINMOD model. J. Irrig. Drain. 2021, 40, 37–44. [Google Scholar]
- Shao, G.C.; Cui, J.T.; Yu, S.E.; Lu, B.; Brian, B.J.; Ding, J.H.; She, D.L. Impacts of controlled irrigation and drainage on the yield and physiological attributes of rice. Agric. Water Manag. 2015, 149, 156–165. [Google Scholar] [CrossRef]
Mode | Growth Period | Water Depth of Paddy Field |
---|---|---|
CID | Replanting Tillering Jointing and booting Heading and flowering Milking ripening Yellow ripening | 1~3~5 −10~3~5 −20~3~10 −20~3~10 −20~3~10 Dry naturally after drainage |
TID | Replanting~Milking ripening Yellow ripening | 1~5~5 Dry naturally after drainage |
Year | Raise Seedlings | Steeping Field | Transplanting | Base Fertilizer | Tillering Fertilizer | Ear Fertilizer | Harvest |
---|---|---|---|---|---|---|---|
2020 | 4.5 | 5.8 | 5.15 | 5.12 | 5.26 | 7.5 | 9.25 |
2021 | 4.1 | 5.1 | 5.18 | 5.12 | 5.28 | 7.18 | 9.28 |
Month | May | June | July | August | September |
---|---|---|---|---|---|
Kc | 0.38 | 0.78 | 1.34 | 1.06 | 0.45 |
Soil Depth /cm | Distribution of Soil Particle Size/% | Bulk Density /g·cm−3 | Field Capacity /cm3·cm−3 | Wilting Coefficient /cm3·cm−3 | Saturated Moisture Content /cm3·cm−3 | Lateral Saturation Conductivity /cm·d−1 | ||
---|---|---|---|---|---|---|---|---|
2.0~0.05 /mm | 0.05~0.002 /mm | <0.002 /mm | ||||||
0~20 | 20.0 | 67.2 | 12.8 | 1.47 | 0.29 | 0.093 | 0.49 | 1.40 |
20~40 | 9.1 | 76.9 | 14.0 | 1.48 | 0.28 | 0.068 | 0.43 | 1.12 |
40~60 | 11.3 | 74.9 | 13.8 | 1.53 | 0.26 | 0.058 | 0.44 | 0.95 |
60~80 | 17.8 | 71.7 | 10.5 | 1.29 | 0.23 | 0.051 | 0.41 | 0.75 |
Relative Impervious Depth /cm | Maximum Surface Water Storage Depth (Sm) /cm | Drainage Coefficient /cm·d−1 | Drainage Depth /cm | Drainage Spacing /cm | Krikham Water Depth (SI) /cm |
---|---|---|---|---|---|
280 | 10.0 | 3.0 | 50 | 1000 | 0.8 |
Maximum Nitration Rate /µg·ng−1·d−1 | Optimum Nitration Temperature /°C | Maximum Denitrification Rate /µg·ng−1·d−1 | Optimum Denitrification Temperature /°C | Nitrogen Dissolution Rate /d−1 | NO3−-N Concentration in Rain /mg·L−1 | NH4+-N Concentration in Rain /mg·L−1 |
---|---|---|---|---|---|---|
25 | 25 | 3.5 | 20 | 1.5 | 1.0 | 0.75 |
Groundwater depth/cm | 15 | 25 | 35 | 75 | 120 | 150 | 200 | 500 |
Drainage/cm | 0.07 | 0.22 | 0.40 | 1.80 | 4.25 | 6.85 | 11.50 | 55.10 |
Submersible rising flux/cm | 0.30 | 0.28 | 0.25 | 0.19 | 0.18 | 0.15 | 0.10 | 0.05 |
Water table/cm | 0 | 10 | 40 | 60 | 80 | 100 | 200 |
A/cm·h−1 | 0.85 | 0.15 | 0.72 | 1.20 | 1.65 | 1.90 | 3.60 |
B/cm·h−1 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
Soil depth/cm | 0~20 | 20~40 | 40~60 |
Vertical saturated hydraulic conductivity/cm·h−1 | 1.74 | 0.92 | 0.78 |
Horizontal saturated hydraulic conductivity/cm·h−1 | 1.25 | 1.02 | 0.45 |
Evaluation Parameter | RMSEa | ε | NSE | R2 |
---|---|---|---|---|
Drainage volume | 2.08 | 0.14 | 0.94 | 0.88 |
Evaluation Parameter | RMSEa | ε | NSE | R2 |
---|---|---|---|---|
NO3−-N loss load | 0.22 | 0.23 | 0.88 | 0.83 |
NH4+-N loss load | 1.09 | 0.80 | 0.92 | 0.85 |
Evaluation Parameter | RMSEa | ε | NSE | R2 |
---|---|---|---|---|
Drainage volume | 2.72 | 0.19 | 0.72 | 0.90 |
Evaluation Parameter | RMSEa | ε | NSE | R2 |
---|---|---|---|---|
NO3−-N loss load | 0.04 | 0.08 | 0.97 | 0.88 |
NH4+-N loss load | 0.29 | 0.12 | 0.93 | 0.90 |
Rainfall Frequency /% | Rainfall /mm | Hydrological Year | Representative Year |
---|---|---|---|
1 | 742.4 | Wet year | 2012 |
5 | 700.4 | Wet year | 1985 |
10 | 633.3 | Wet year | 1988 |
25 | 551.3 | Wet year | 1998 |
50 | 483.5 | Normal year | 1966 |
75 | 416.4 | Dry year | 2006 |
Mode | Year | Water Saving | Emission Reduction | High Yield | |||
---|---|---|---|---|---|---|---|
Irrigation Amount /mm | Rainwater Utilization Rate /% | Drainage /mm | NH4+-N Loss Load /kg·hm−2 | NO3−-N Loss Load /kg·hm−2 | Yield /kg·hm−2 | ||
CID | 2020 | 74.5 | 89.12 | 54.0 | 3.6 | 0.6 | 12,117.15 |
2021 | 140.6 | 90.50 | 59.0 | 3.5 | 0.7 | 10,843.51 | |
TID | 2020 | 150.2 | 75.64 | 138.2 | 8.5 | 2.1 | 10,615.35 |
2021 | 194.6 | 83.65 | 82.5 | 4.4 | 1.1 | 9065.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Yu, Y.; Yu, S.; Chen, P.; Cao, K. Simulation of Drainage Volume and Nitrogen Loss Load in Paddy Fields under Different Irrigation and Drainage Modes and Hydrological Years. Agronomy 2024, 14, 1095. https://doi.org/10.3390/agronomy14061095
Meng Y, Yu Y, Yu S, Chen P, Cao K. Simulation of Drainage Volume and Nitrogen Loss Load in Paddy Fields under Different Irrigation and Drainage Modes and Hydrological Years. Agronomy. 2024; 14(6):1095. https://doi.org/10.3390/agronomy14061095
Chicago/Turabian StyleMeng, Yan, Yanmei Yu, Shuangen Yu, Peng Chen, and Kaihua Cao. 2024. "Simulation of Drainage Volume and Nitrogen Loss Load in Paddy Fields under Different Irrigation and Drainage Modes and Hydrological Years" Agronomy 14, no. 6: 1095. https://doi.org/10.3390/agronomy14061095
APA StyleMeng, Y., Yu, Y., Yu, S., Chen, P., & Cao, K. (2024). Simulation of Drainage Volume and Nitrogen Loss Load in Paddy Fields under Different Irrigation and Drainage Modes and Hydrological Years. Agronomy, 14(6), 1095. https://doi.org/10.3390/agronomy14061095