Effect of Biochar Application on the Improvement of Soil Properties and Buckwheat (Fagopyrum esculentum Moench) Yield on Two Contrasting Soil Types in a Semi-Arid Region of Inner Mongolia
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Sites
2.2. Biochar
2.3. Experimental Design
2.4. Soil Sampling and Measurements
2.4.1. Soil Physicochemical Properties
2.4.2. Soil Chemical Properties
2.4.3. Soil Microbiological Properties
2.4.4. Grain Yield
2.5. Data Analysis
3. Results
3.1. ANOVA of Measurements
3.2. Soil Physicochemical Properties
3.3. Soil Microbiological Properties
3.3.1. Soil Microbial Biomass
3.3.2. Soil Enzyme Activities
3.4. Buckwheat Yield
3.5. Relationship between Soil Properties and Biochar Treatments
3.6. Buckwheat Yield and Its Relationship with Soil Properties
4. Discussion
4.1. Soil Physicochemical Properties
4.2. Soil Microbiological Properties
4.3. Buckwheat Yield
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SWS | Soil water storage |
SOM | Soil organic matter |
AN | Available nitrogen |
AP | Available phosphorus |
AK | Available potassium |
SMC | Microbial biomass carbon |
SMN | Microbial biomass nitrogen |
SMP | Microbial biomass phosphorus |
Ure | Urease activity |
Int | Invertase activity |
Alkp | Alkaline phosphatase activity |
Yield | Grain yield |
References
- Xu, S.; Zhang, L.; Zhou, L.; Mi, J.; McLaughlin, N.B.; Liu, J. Effect of synthetic and natural water absorbing soil amendments on soil microbiological parameters under potato production in a semi-arid region. Eur. J. Soil Biol. 2016, 75, 8–14. [Google Scholar] [CrossRef]
- Hou, D.; Bolan, N.S.; Tsang, D.C.; Kirkham, M.B.; O’connor, D. Sustainable soil use and management: An interdisciplinary and systematic approach. Sci. Total Environ. 2020, 729, 138961. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Wu, D.; Feng, Y.; Xue, L.; Liu, M.; Yang, B.; Hu, F.; Yang, L. Biochar combined with vermicompost increases crop production while reducing ammonia and nitrous oxide emissions from a paddy soil. Pedosphere 2019, 29, 82–94. [Google Scholar] [CrossRef]
- Xiu, L.; Zhang, W.; Sun, Y.; Wu, D.; Meng, J.; Chen, W. Effects of biochar and straw returning on the key cultivation limitations of albic soil and soybean growth over 2 years. Catena 2019, 173, 481–493. [Google Scholar] [CrossRef]
- Pranagal, J.; Oleszczuk, P.; Tomaszewska-Krojańska, D.; Kraska, P.; Różyło, K. Effect of biochar application on the physical properties of Haplic Podzol. Soil Till Res. 2017, 174, 92–103. [Google Scholar] [CrossRef]
- Sun, Q.; Meng, J.; Lan, Y.; Shi, G.; Yang, X.; Cao, D.; Chen, W.; Han, X. Long-term effects of biochar amendment on soil aggregate stability and biological binding agents in brown earth. Catena 2021, 205, 105460. [Google Scholar] [CrossRef]
- Holt, J.A.; Yost, M.A.; Winward, D.; Creech, J.E.; Allen, L.N.; McAvoy, D. Biochar had minor effects on yield, quality, and water availability of irrigated alfalfa, corn, and wheat. Agron. J. 2022, 114, 1717–1730. [Google Scholar] [CrossRef]
- Li, Y.; Yao, N.; Liang, J.; Wang, X.; Jia, Y.; Jiang, F.; Li Liu, D.; Hu, W.; He, H.; Javed, T. Optimum biochar application rate for peak economic benefit of sugar beet in Xinjiang, China. Agr. Water Manag. 2022, 272, 107880. [Google Scholar] [CrossRef]
- Zhou, H.; Fang, H.; Zhang, Q.; Wang, Q.; Chen, C.; Mooney, S.; Peng, X.; Du, Z. Biochar enhances soil hydraulic function but not soil aggregation in a sandy loam. Eur. J. Soil Sci. 2019, 70, 291–300. [Google Scholar] [CrossRef]
- Hardie, M.; Clothier, B.; Bound, S.; Oliver, G.; Close, D. Does biochar influence soil physical properties and soil water availability? Plant Soil 2014, 376, 347–361. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Yang, H.; Yan, G.; Xu, Z.; Chen, C.; Zhang, D. Biochar nutrient availability rather than its water holding capacity governs the growth of both C3 and C4 plants. J. Soils Sediments 2016, 16, 801–810. [Google Scholar] [CrossRef]
- Brtnicky, M.; Datta, R.; Holatko, J.; Bielska, L.; Gusiatin, Z.M.; Kucerik, J.; Hammerschmiedt, T.; Danish, S.; Radziemska, M.; Mravcova, L.; et al. A critical review of the possible adverse effects of biochar in the soil environment. Sci. Total Environ. 2021, 796, 148756. [Google Scholar] [CrossRef] [PubMed]
- Andrés, P.; Rosell-Melé, A.; Colomer-Ventura, F.; Denef, K.; Cotrufo, M.F.; Riba, M.; Alcañiz, J.M. Belowground biota responses to maize biochar addition to the soil of a Mediterranean vineyard. Sci. Total Environ. 2019, 660, 1522–1532. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Northup, B.K.; Rice, C.W.; Prasad, P.V.V. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis. Biochar 2022, 4, 8. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Cui, L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Cayuela, M.L.; Sigua, G.; Novak, J.; Spokas, K.; et al. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review. Biochar 2020, 2, 421–438. [Google Scholar] [CrossRef]
- Ghorbani, M.; Konvalina, P.; Neugschwandtner, R.W.; Soja, G.; Bárta, J.; Chen, W.H.; Amirahmadi, E. How do different feedstocks and pyrolysis conditions effectively change biochar modification scenarios? A critical analysis of engineered biochars under h2o2 oxidation. Energy Convers. Manag. 2024, 300, 117924. [Google Scholar] [CrossRef]
- Sun, J.; He, F.; Pan, Y.; Zhang, Z. Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2017, 67, 12–22. [Google Scholar] [CrossRef]
- Uroić Štefanko, A.; Leszczynska, D. Impact of biomass source and pyrolysis parameters on physicochemical properties of biochar manufactured for innovative applications. Front. Energy Res. 2020, 8, 138. [Google Scholar] [CrossRef]
- Jiang, W.; Pang, Z.; Lv, J.; Ju, H.; Li, L.; Fu, J. Satellite observations reveal decreasing soil erosion in Northeast Inner Mongolia, China, over the past four decades. Front. Earth Sci. 2022, 10, 988521. [Google Scholar] [CrossRef]
- Meng, H.; Zhou, H.; Wang, L.; Zhang, X.; Liu, W.; Zhao, Y.; Dong, B.; Yi, W.; Zhao, Y.; Wang, D. Occurrence and Distribution of Rhinoncus sibiricus (Coleoptera: Curculionoidea) and Its Preference for two buckwheat species in China. J. Insect Sci. 2019, 19, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, J.; Lu, P.; Wu, B.; Liu, M.; Gao, J.; Wang, C.; Bai, K.; Guo, G. Six underutilized grain crops for food and nutrition in China. Plants 2022, 11, 2451. [Google Scholar] [CrossRef] [PubMed]
- Bonafaccia, G.; Marocchini, M.; Kreft, I. Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chem. 2003, 80, 9–15. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Li, Z.Z.; Zhao, Q.; Huang, X.Y.; Huang, K.F. Effect of continuous cropping on the rhizosphere soil and growth of common buckwheat. Plant Prod. Sci. 2020, 23, 81–90. [Google Scholar] [CrossRef]
- Nepal, J.; Ahmad, W.; Munsif, F.; Khan, A.; Zou, Z. Advances and prospects of biochar in improving soil fertility, biochemical quality, and environmental applications. Front. Environ. Sci. 2023, 11, 1114752. [Google Scholar] [CrossRef]
- Li, Y.; Feng, H.; Chen, J.; Lu, J.; Wu, W.; Liu, X.; Li, C.; Siddique, K.H.M. Biochar incorporation increases winter wheat (Triticum aestivum L.) production with significantly improving soil enzyme activities at jointing stage. Catena 2022, 211, 105979. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Agbede, T.M.; Olayanju, A.; Ejue, W.S.; Adekanye, T.A.; Adenusi, T.T.; Ayeni, J.F. Effect of biochar on soil properties, soil loss, and cocoyam yield on a tropical sandy loam Alfisol. Sci. World J. 2020, 2020, 9391630. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Yang, H.; Fan, M.; Chen, H.; Guo, D.; Cao, J.; Kuzyakov, Y. Biochar effects on crop yields and nitrogen loss depending on fertilization. Sci. Total Environ. 2020, 702, 134423. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.; Pandit, B.; Martinsen, V.; Cornelissen, G.; Conte, P.; Kammann, C. Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil. Agriculture 2015, 5, 723–741. [Google Scholar] [CrossRef]
- Yang, X.; Meng, J.; Lan, Y.; Chen, W.; Yang, T.; Yuan, J.; Liu, S.; Han, J. Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China. Agric. Ecosyst. Environ. 2017, 240, 24–31. [Google Scholar] [CrossRef]
- Zhao, H.L.; Yi, X.Y.; Zhou, R.L.; Zhao, X.Y.; Zhang, T.H.; Drake, S. Wind erosion and sand accumulation effects on soil properties in Horqin Sandy farmland, Inner Mongolia. Catena 2006, 65, 71–79. [Google Scholar] [CrossRef]
- Mebius, L.J. A rapid method for the determination of organic carbon in soil. Anal. Chim. Acta 1960, 22, 120–124. [Google Scholar] [CrossRef]
- Xiong, Y.M.; Xia, H.P.; Li, Z.A.; Cai, X.A.; Fu, S.L. Impacts of litter and understory removal on soil properties in a subtropical Acacia Mangium Plantation in China. Plant Soil 2008, 304, 179–188. [Google Scholar] [CrossRef]
- Olsen, S.; Sommers, L.; Page, A. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties of Phosphorus; ASA Monograph 9; Wiley: New York, NY, USA, 1982; pp. 403–430. [Google Scholar] [CrossRef]
- Helmke, P.A.; Sparks, D.L. Lithium, Sodium, Potassium, Rubidium, and Cesium. In Methods of Soil Analysis: Part 3 Book Series No. 5. Soil Science Society of America; Madison, Ed.; Wiley: New York, NY, USA, 1996; pp. 551–573. [Google Scholar] [CrossRef]
- Brookes, P.; Landman, A.; Pruden, G.; Jenkinson, D. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Boil. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Brookes, P.; Powlson, D.; Jenkinson, D. Measurement of microbial biomass phosphorus in soil. Soil Boil Biochem. 1982, 14, 319–329. [Google Scholar] [CrossRef]
- Cui, Y.; Fang, L.; Guo, X.; Wang, X.; Wang, Y.; Li, P.; Zhang, Y.; Zhang, X. Responses of soil microbial communities to nutrient limitation in the desert grassland ecological transition zone. Sci. Total Environ. 2018, 642, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xu, S.T.; Monreal, C.M.; Mclaughlin, N.B.; Zhao, B.P.; Liu, J.H.; Hao, G.C. Bentonite-humic acid improves soil organic carbon, microbial biomass, enzyme activities and grain quality in a sandy soil cropped to maize (Zea Mays L.) in a semi-arid region. J. Integr. Agric. 2022, 21, 208–221. [Google Scholar] [CrossRef]
- Guan, S.Y.; Zhang, D.S.; Zhang, Z.M. Methods of Soil Enzyme Activities Analysis; Agriculture press: Beijing, China, 1991; pp. 274–297. [Google Scholar]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- Reyes-Cabrera, J.; Erickson, J.E.; Leon, R.G. Biochar affects soil water content but not soybean yield in a sandy southeastern U.S. soil. Agrosyst. Geosci. Environ. 2021, 4, e20197. [Google Scholar] [CrossRef]
- Mandal, S.; Pu, S.; Adhikari, S.; Ma, H.; Kim, D.H.; Bai, Y.; Hou, D. Progress and future prospects in biochar composites: Application and refection in the soil environment. Crit. Rev. Environ. Sci Technol. 2020, 51, 219–271. [Google Scholar] [CrossRef]
- Oladele, S.O. Changes in physicochemical properties and quality index of an Alfisol after three years of rice husk biochar amendment in rainfed rice—Maize cropping sequence. Geoderma 2019, 353, 359–371. [Google Scholar] [CrossRef]
- Greenberg, I.; Kaiser, M.; Polifka, S.; Wiedner, K.; Glaser, B.; Ludwig, B. The effect of biochar with biogas digestate or mineral fertilizer on fertility, aggregation and organic carbon content of a sandy soil: Results of a temperate field experiment. J. Plant Nutr. Soil Sci. 2019, 182, 824–835. [Google Scholar] [CrossRef]
- Dong, X.; Singh, B.P.; Li, G.; Lin, Q.; Zhao, X. Biochar increased field soil inorganic carbon content five years after application. Soil Till Res. 2019, 186, 36–41. [Google Scholar] [CrossRef]
- Pokharel, P.; Ma, Z.; Chang, S.X. Biochar increases soil microbial biomass with changes in extra-and intracellular enzyme activities: A global meta-analysis. Biochar 2020, 2, 65–79. [Google Scholar] [CrossRef]
- Xu, N.; Tan, G.; Wang, H.; Gai, X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 2016, 74, 1–8. [Google Scholar] [CrossRef]
- Hussain, M.; Farooq, M.; Nawaz, A.; Al-Sadi, A.M.; Solaiman, Z.M.; Alghamdi, S.S.; Ammara, U.; OK, Y.S.; Siddique, K.H.M. Biochar for crop production: Potential benefits and risks. J. Soils Sediments 2017, 17, 685–716. [Google Scholar] [CrossRef]
- Mierzwa-Hersztek, M.; Gondek, K.; Baran, A. Effect of poultry litter biochar on soil enzymatic activity, ecotoxicity and plant growth. Appl. Soil Ecol. 2016, 105, 144–150. [Google Scholar] [CrossRef]
- Han, S.; Li, H.; Rengel, Z.; Du, Z.; Hu, N.; Wang, Y.; Zhang, A. Biochar application promotes crops yield through regulating root development and the community structure of root endophytic fungi in wheat-maize rotation. Soil Till Res. 2023, 234, 105827. [Google Scholar] [CrossRef]
- Böhme, L.; Böhme, F. Soil microbiological and biochemical properties affected by plant growth and different long-term fertilisation. Eur. J. Soil Biol. 2006, 42, 1–12. [Google Scholar] [CrossRef]
- Vijay, V.; Shreedhar, S.; Adlak, K.; Payyanad, S.; Sreedharan, V.; Gopi, G.; van der Voort, T.S.; Malarvizhi, P.; Yi., S.; Gebert, J.; et al. Review of large-scale biochar field-trials for soil amendment and the observed influences on crop yield variations. Front. Energy Res. 2021, 9, 710766. [Google Scholar] [CrossRef]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Laghari, M.; Mirjat, M.S.; Hu, Z.; Fazal, S.; Xiao, B.; Hu, M.; Chen, Z.; Guo, D. Effects of biochar application rate on sandy desert soil properties and sorghum growth. Catena 2015, 135, 313–320. [Google Scholar] [CrossRef]
- Haider, G.; Steffens, D.; Moser, G.; Müller, C.; Kammann, C.I. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric. Ecosyst. Environ. 2017, 237, 80–94. [Google Scholar] [CrossRef]
- Bouqbis, L.; Daoud, S.; Harrouni, M.C. Positive Effect of biochar derived from argan waste on soil nutrients and growth of three plants. J. Ecol. Eng. 2021, 22, 28–34. [Google Scholar] [CrossRef]
- Hagemann, N.; Joseph, S.; Schmidt, H.P.; Kammann, C.I.; Harter, J.; Borch, T.; Young, R.B.; Varga, K.; Taherymoosavi, S.; Elliott, K.W.; et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nat. Commun. 2017, 8, 1089. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Jia, Y.; Feng, G.; Ma, C.; Qu, Z. Residual effect of single biochar application on soil nutrients availability and fertilizer productivity in a mulched drip-irrigated corn field. Arch. Agron. Soil Sci. 2023, 69, 905–919. [Google Scholar] [CrossRef]
- Yao, T.; Zhang, W.; Gulaqa, A.; Cui, Y.; Zhou, Y.; Weng, W.; Wang, X.; Liu, Q.; Jin, F. Effects of peanut shell biochar on soil nutrients, soil enzyme activity, and rice yield in heavily saline-sodic paddy field. J. Soil Sci. Plant Nutr. 2021, 21, 655–664. [Google Scholar] [CrossRef]
- Rondon, M.A.; Lehmann, J.; Ramírez, J.; Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fertil. 2007, 43, 699–708. [Google Scholar] [CrossRef]
Soil Type | Soil Texture | pH | Soil Organic Matter (g kg-1) | Avalaible Nitrogen (mg kg-1) | Avalaible Phosphorus (mg kg-1) | Avalaible Potassium (mg kg-1) | Bulk Density (g cm-3) | Clay (%) | Silt (%) | Sand (%) |
---|---|---|---|---|---|---|---|---|---|---|
Aeolian sandy | Entisol | 8.23 | 7.11 | 32.14 | 5.58 | 80.16 | 1.63 | 3.97 | 10.7 | 85.33 |
Grey meadow | Inceptisols | 7.2 | 11.24 | 48.52 | 15.72 | 98 | 1.45 | 10.52 | 65.44 | 24.04 |
Factors | DF | Yield | SWS | SOM | AN | AP | AK | SMC | SMN | SMP | Ure | Int | Alkp |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BC | 3 | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
T | 1 | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Y | 2 | *** | *** | *** | NS | NS | *** | *** | *** | * | *** | *** | *** |
BC *T | 3 | NS | NS | *** | * | * | NS | * | ** | NS | NS | NS | *** |
T*Y | 2 | *** | NS | *** | NS | *** | NS | NS | * | NS | ** | *** | *** |
BC *Y | 6 | NS | NS | ** | NS | NS | ** | NS | NS | NS | NS | NS | ** |
Y*T* BC | 6 | NS | NS | NS | NS | * | NS | NS | NS | NS | * | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Chu, J.; Zhang, Y.; Wang, Q.; Ye, Y.; Zhao, B. Effect of Biochar Application on the Improvement of Soil Properties and Buckwheat (Fagopyrum esculentum Moench) Yield on Two Contrasting Soil Types in a Semi-Arid Region of Inner Mongolia. Agronomy 2024, 14, 1137. https://doi.org/10.3390/agronomy14061137
Zhou L, Chu J, Zhang Y, Wang Q, Ye Y, Zhao B. Effect of Biochar Application on the Improvement of Soil Properties and Buckwheat (Fagopyrum esculentum Moench) Yield on Two Contrasting Soil Types in a Semi-Arid Region of Inner Mongolia. Agronomy. 2024; 14(6):1137. https://doi.org/10.3390/agronomy14061137
Chicago/Turabian StyleZhou, Lei, Junqi Chu, Yufen Zhang, Qi Wang, Yingjie Ye, and Baoping Zhao. 2024. "Effect of Biochar Application on the Improvement of Soil Properties and Buckwheat (Fagopyrum esculentum Moench) Yield on Two Contrasting Soil Types in a Semi-Arid Region of Inner Mongolia" Agronomy 14, no. 6: 1137. https://doi.org/10.3390/agronomy14061137
APA StyleZhou, L., Chu, J., Zhang, Y., Wang, Q., Ye, Y., & Zhao, B. (2024). Effect of Biochar Application on the Improvement of Soil Properties and Buckwheat (Fagopyrum esculentum Moench) Yield on Two Contrasting Soil Types in a Semi-Arid Region of Inner Mongolia. Agronomy, 14(6), 1137. https://doi.org/10.3390/agronomy14061137