Temporal Analysis of the Relationship between Black Bean Aphid (Aphis fabae) Infestation and Meteorological Conditions in Faba Bean (Vicia faba)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Aphis fabae Population Dynamics
2.3. Weather Data Collection
2.4. Statistical Analysis
3. Results
3.1. Weather Patterns during the Growing Season (May to August)
3.1.1. Temperature Trends
3.1.2. Rainfall Patterns
3.2. Population Dynamics of Aphis fabae
3.3. Meteorological Conditions’ Impact on Aphis fabae Population
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ndakidemi, B.J.; Mbega, E.R.; Ndakidemi, P.A.; Stevenson, P.C.; Belmain, S.R.; Arnold, S.E.J.; Woolley, V.C. Natural Pest Regulation and Its Compatibility with Other Crop Protection Practices in Smallholder Bean Farming Systems. Biology 2021, 10, 805. [Google Scholar] [CrossRef]
- Skovgård, H.; Stoddard, F.L. Reproductive Potential of the Black Bean Aphid (Aphis fabae Scop.) on a Range of Faba Bean (Vicia faba L.) Accessions. Legume Sci. 2023, 5, e199. [Google Scholar] [CrossRef]
- Sun, J.; Tan, X.; Li, Q.; Francis, F.; Chen, J. Effects of Different Temperatures on the Development and Reproduction of Sitobion miscanthi from Six Different Regions in China. Front. Ecol. Evol. 2022, 10, 794495. [Google Scholar] [CrossRef]
- Dampc, J.; Mołoń, M.; Durak, T.; Durak, R. Changes in Aphid—Plant Interactions under Increased Temperature. Biology 2021, 10, 480. [Google Scholar] [CrossRef]
- Brabec, M.; Honěk, A.; Pekár, S.; Martinková, Z. Population Dynamics of Aphids on Cereals: Digging in the Time-Series Data to Reveal Population Regulation Caused by Temperature. PLoS ONE 2014, 9, 106228. [Google Scholar] [CrossRef] [PubMed]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The Impact of Climate Change on Agricultural Insect Pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Lee, S.; Vitale, J.; Lambert, D.; Vitale, P.; Elliot, N.; Giles, K. Effects of Weather on Sugarcane Aphid Infestation and Movement in Oklahoma. Agriculture 2023, 13, 613. [Google Scholar] [CrossRef]
- Fidelis, E.G.; Farias, E.S.; Lopes, M.C.; Sousa, F.F.; Zanuncio, J.C.; Picanço, M.C. Contributions of Climate, Plant Phenology and Natural Enemies to the Seasonal Variation of Aphids on Cabbage. J. Appl. Entomol. 2019, 143, 365–370. [Google Scholar] [CrossRef]
- Soares, J.R.S.; da Silva Paes, J.; de Araújo, V.C.R.; de Araújo, T.A.; Ramos, R.S.; Picanço, M.C.; Zanuncio, J.C. Spatiotemporal Dynamics and Natural Mortality Factors of Myzus persicae (Sulzer) (Hemiptera: Aphididae) in Bell Pepper Crops. Neotrop. Entomol. 2020, 49, 445–455. [Google Scholar] [CrossRef]
- Romo, C.M.; Tylianakis, J.M. Elevated Temperature and Drought Interact to Reduce Parasitoid Effectiveness in Suppressing Hosts. PLoS ONE 2013, 8, e58136. [Google Scholar] [CrossRef]
- Mohamed, G.S.; Allam, R.O.H.; Mohamed, H.A.; Bakry, M.M.S. Impact of Certain Weather Factors and Plant Age on the Population Density of Aphis craccivora (Koch) on Faba Bean Plants. SVU-Int. J. Agric. Sci. 2021, 3, 84–104. [Google Scholar] [CrossRef]
- Challinor, A.J.; Koehler, A.K.; Ramirez-Villegas, J.; Whitfield, S.; Das, B. Current Warming Will Reduce Yields Unless Maize Breeding and Seed Systems Adapt Immediately. Nat. Clim. Change 2016, 6, 954–958. [Google Scholar] [CrossRef]
- Jovičić, I.S.; Vujadinović, M.P.; Vuković, A.J.; Radonjić, A.B.; Petrović-Obradović, O.T. Effects of Temperature on Acyrthosiphon pisum and Therioaphis trifolii (Hemiptera: Aphididae) Abundance in Alfalfa Crops: A Case Study in Northern Serbia. J. Agric. Sci. 2022, 67, 269–283. [Google Scholar] [CrossRef]
- Pathipati, V.L.; Lakshmi, T.V.; Rajani, R.K.; Ramana, C.V.; Naidu, L.N. Impact of Weather Parameters on Incidence of Aphids, Myzus Persicae Sulzeron Chilli in Andhra Pradesh, India. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 3975–3982. [Google Scholar] [CrossRef]
- Debnath, P.; Pal, S. Population Dynamics of Mustard Aphid (Lipaphis erysimi) with Relation to Some Micro-Meteorological Parameters P Debnath and S Pal. J. Pharmacogn. Phytochem. 2021, 10, 879–884. [Google Scholar] [CrossRef]
- Bavisa, R.; Parmar, G.; Hirapara, M.; Acharya, M. Population Dynamics of Mustard Aphid, Lipaphis erysimi (Kaltenbach) on Mustard in Relation to Different Weather Parameters. J. Pharmacogn. Phytochem. 2018, 7, 394–396. [Google Scholar]
- Abbasi, Z.; Sultana, R.; Wagan, M. Impact of Abiotic Factors on Population Fluctuation of Aphid (Hemiptera: Aphididae) on the Different Wheat Varieties from Larkana District. J. Entomol. Zool. Stud. 2019, 7, 608–611. [Google Scholar]
- Akca, I.; Ayvaz, T.; Yazici, E.; Smith, C.; Chi, H. Demography and Population Projection of Aphis fabae (Hemiptera: Aphididae): With Additional Comments on Life Table Research Criteria. J. Econ. Entomol. 2015, 108, 1466–1478. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Wu, K.; Wyckhuys, K.A.G.; Heimpel, G.E. Flight Performance of the Soybean Aphid, Aphis glycines (Hemiptera: Aphididae) Under Different Temperature and Humidity Regimens. Environ. Entomol. 2008, 37, 301–306. [Google Scholar] [CrossRef]
- Barton, B.T. Reduced Wind Strengthens Top-down Control of an Insect Herbivore. Ecology 2014, 95, 2375–2381. [Google Scholar] [CrossRef]
- Norris, R.J.; Memmott, J.; Lovell, D.J. The Effect of Rainfall on the Survivorship and Establishment of a Biocontrol Agent. J. Appl. Ecol. 2002, 39, 226–234. [Google Scholar] [CrossRef]
- Knott, C.M. A Key for Stages of Development of the Faba Bean (Vicia faba). Ann. Appl. Biol. 1990, 116, 391–404. [Google Scholar] [CrossRef]
- Gomez, K.; Gomez, A. Statistical Procedures for Agricultural Research; John Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Schober, P.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, J.; Liu, H.; Qiao, G.; Huang, X. Investigating the Impact of Climate Warming on Phenology of Aphid Pests in China Using Long-Term Historical Data. Insects 2020, 11, 167. [Google Scholar] [CrossRef] [PubMed]
- Stack Whitney, K.; Meehan, T.D.; Kucharik, C.J.; Zhu, J.; Townsend, P.A.; Hamilton, K.; Gratton, C. Explicit Modeling of Abiotic and Landscape Factors Reveals Precipitation and Forests Associated with Aphid Abundance. Ecol. Appl. 2016, 26, 2600–2610. [Google Scholar] [CrossRef] [PubMed]
- Thornley, J.H.M.; Newman, J.A. Climate Sensitivity of the Complex Dynamics of the Green Spruce Aphid—Spruce Plantation Interactions: Insight from a New Mechanistic Model. PLoS ONE 2022, 17, e0252911. [Google Scholar] [CrossRef] [PubMed]
- Freier, B.; Triltsch, H.; Möwes, M.; Moll, E. The Potential of Predators in Natural Control of Aphids in Wheat: Results of a Ten-Year Field Study in Two German Landscapes. BioControl 2007, 52, 775–788. [Google Scholar]
- Messelink, G.J.; Bloemhard, C.M.J.; Sabelis, M.W.; Janssen, A. Biological Control of Aphids in the Presence of Thrips and Their Enemies. BioControl 2013, 58, 45–55. [Google Scholar] [CrossRef]
- Karthik, S.; Reddy, M.S.S.; Yashaswini, G.; Karthik, S.; Reddy, M.S.S.; Yashaswini, G. Climate Change and Its Potential Impacts on Insect-Plant Interactions. In The Nature, Causes, Effects and Mitigation of Climate Change on the Environment; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Kobori, Y.; Amano, H. Effect of Rainfall on a Population of the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae). Appl. Entomol. Zool. 2003, 38, 249–253. [Google Scholar] [CrossRef]
- Kamel, H. The Effect of Planting Dates and Nitrogen Fertilizer on Aphis Craccivora (Koch) Infestation in Faba Bean (Vicia faba, L.) Fields. Egypt. Acad. J. Biol. Sci. 2021, 14, 1–8. [Google Scholar] [CrossRef]
- Castex, V.; Beniston, M.; Calanca, P.; Fleury, D.; Moreau, J. Pest Management under Climate Change: The Importance of Understanding Tritrophic Relations. Sci. Total Environ. 2018, 616–617, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Zhao, L.; Wang, W.; Wang, Z.; Ni, X.; Cai, W.; He, K. Changes in Life History Parameters of Rhopalosiphum maidis (Homoptera: Aphididae) under Four Different Elevated Temperature and CO2 Combinations. J. Econ. Entomol. 2014, 107, 1411–1418. [Google Scholar] [CrossRef]
- Banfield-Zanin, J.A.; Leather, S.R. Prey-Mediated Effects of Drought on the Consumption Rates of Coccinellid Predators of Elatobium abietinum. Insects 2016, 7, 49. [Google Scholar] [CrossRef] [PubMed]
- Leybourne, D.J.; Preedy, K.F.; Valentine, T.A.; Bos, J.I.B.; Karley, A.J. Drought Has Negative Consequences on Aphid Fitness and Plant Vigor: Insights from a Meta-Analysis. Ecol. Evol. 2021, 11, 11915–11929. [Google Scholar] [CrossRef] [PubMed]
- Williams, I.S.; Dixon, A.F.G. Life Cycles and Polymorphism. In Aphids as Crop Pests; CAB International: Wallingford, UK, 2007; pp. 69–81. [Google Scholar]
- Nguyen, T.T.A.; Michaud, D.; Cloutier, C. A Proteomic Analysis of the Aphid Macrosiphum euphorbiae under Heat and Radiation Stress. Insect Biochem. Mol. Biol. 2009, 39, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Del Rei, J.; João, S.; Rei, D. Climate Change and Its Effects on Terrestrial Insects and Herbivory Patterns. Neotrop. Entomol. 2011, 40, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Weisser, W.W.; Volkl, W.; Hassell, M.P. The Importance of Adverse Weather Conditions for Behaviour and Population Ecology of an Aphid Parasitoid. J. Anim. Ecol. 1997, 66, 386. [Google Scholar] [CrossRef]
- Mann, J.A.; Tatchell, G.M.; Dupuch, M.J.; Harrington, R.; Clark, S.J.; McCartney, H.A. Movement of Apterous Sitobion avenae (Homoptera: Aphididae) in Response to Leaf Disturbances Caused by Wind and Rain. Ann. Appl. Biol. 1995, 126, 417–427. [Google Scholar] [CrossRef]
- Saljoqi, A.U.R.; Tayeb, M.; Salim, M. Response of Different Wheat Cultivars Towards Wheat Aphids, (Rhopalosiphum padi L.) and Their Associated Natural Enemies. Sarhad J. Agric. 2022, 38, 1540–1546. [Google Scholar] [CrossRef]
- Abbas, M.; Asghar, R.M.; Hussain, K.; Saleem, M.; Hussain, D.; Hussain, N.; Irshad, M.; Khaliq, M.; Parveen, Z.; Nadeem, M.; et al. Responses of Different Aphid Species on Wheat Crop with Relation to Abiotic Factors. Pure Appl. Biol. 2023, 12, 991–999. [Google Scholar] [CrossRef]
- Wains, M.; Ali, M.; Hussain, M.; Anwar, J.; Zulkiffal, M.; Sabir, W. Aphid Dynamics in Relation to Meteorological Factors and Various Management Practices in Bread Wheat. J. Plant Prot. Res. 2010, 50, 385–392. [Google Scholar] [CrossRef]
- Kishor, R.; Malik, Y.P.; Sirajuddin; Mishra, P.K.; Kushwaha, D.; Verma, S.K. Correlation between the Seasonal Incidence of Aphids and Coccinellids on the Indian Mustard in Different Varieties and Sowing Dates. Int. J. Environ. Clim. Change 2023, 13, 1452–1466. [Google Scholar] [CrossRef]
- Mahmoud, M.A.; El-Khawass, K.A.; Hammad, S.A.; Ali, M.I. Effect of Temperature, Relative Humidity and Natural Enemies on Some Insect Pests Infesting Faba Bean Plants at El-Monofia Governorate. J. Plant Prot. Pathol. 2017, 8, 447–451. [Google Scholar] [CrossRef]
- Sharmin, M.A.; Amin, M.R.; Miah, M.R.U.; Akanda, A.M. Seasonal Dynamics of Bean Aphids and Its Relationship with the Abundance of Lady Bird Beetles. J. Zool. 2021, 48, 357–363. [Google Scholar] [CrossRef]
- Sharma, R.; Khokhar, Y. Effect of Weather Parameters on the Seasonal Abundance of Peach Leaf Curl Aphid, Brachycaudus helichrysi (Kaltenbach) on Peach in Lower Shiwaliks of Punjab. J. Pharmacogn. Phytochem. 2018, 7, 1730–1733. [Google Scholar]
- Shipa, A.S.; Amin, M.R.; Swapon, M.A.H.; Akanda, A.M. Incidence of Sucking Insect Pests on Cotton Plants Based on the Weather Conditions. J. Bangladesh Agric. Univ. 2021, 19, 8. [Google Scholar] [CrossRef]
- Mandal, E.; Ruhul Amin, M.; Rahman, H.; Akanda, M. Infestation Level and Population Dynamics of Aphid on Mustard. Bangladesh J. Agric. Res. 2018, 43, 611–618. [Google Scholar] [CrossRef]
- Saleem, S.; Ullah, F.; Ashfaque, M. Population Dynamics and Natural Enemies of Aphids on Winter Wheat in Peshawar, Pakistan. Pak. J. Zool. 2009, 41, 505–513. [Google Scholar]
- Wellings, P.; Chambers, R.; Dixon, A.; Aikman, D. Sycamore Aphid Numbers and Population Density. I. Some Patterns. J. Anim. Ecol. 1985, 54, 411–424. [Google Scholar] [CrossRef]
- Borowiak-Sobkowiak, B.; Durak, R. Biology and Ecology of Appendiseta robiniae (Hemiptera: Aphidoidea)—An Alien Species in Europe. Cent. Eur. J. Biol. 2012, 7, 487–494. [Google Scholar]
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Herbivory in Global Climate Change Research: Direct Effects of Rising Temperature on Insect Herbivores. Glob. Change Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Yamamura, K.; Yokozawa, M.; Nishimori, M.; Ueda, Y.; Yokosuka, T. How to Analyze Long-Term Insect Population Dynamics under Climate Change: 50-Year Data of Three Insect Pests in Paddy Fields. Popul. Ecol. 2006, 48, 31–48. [Google Scholar]
- Reza, S.N.; Masum, A. Influence of Environmental Factors on Aphid Incidence of Different Bean Varieties. Indian J. Entomol. 2000, 62, 273–279. [Google Scholar]
- Hammad, S.A.; Mahmoud, M.A.; El-Khawass, K.A.; Ali, M.I. Susceptibility of Three Faba Bean Cultivars to Field Infestation with Legume Aphids Aphis craccivora Koch (Homoptera: Aphididae). Int. J. Environ. 2015, 4, 116–120. [Google Scholar]
Weather Parameters | Vertigo | Fuego | |||||
---|---|---|---|---|---|---|---|
3 Days Prior | 7 Days Prior | 14 Days Prior | 3 Days Prior | 7 Days Prior | 14 Days Prior | ||
2021 | |||||||
Temperature (°C) | Maximum | −0.268 | 0.068 | 0.074 | −0.191 | 0.200 | 0.341 |
Minimum | −0.003 | 0.516 | 0.205 | 0.066 | 0.593 | 0.501 | |
Mean | −0.258 | 0.097 | 0.078 | −0.163 | 0.227 | 0.349 | |
Total Rainfall (mm) | −0.754 | 0.242 | −0.332 | −0.99 * | −0.206 | −0.552 | |
Relative Humidity (%) | 0.151 | −0.058 | −0.611 | 0.435 | 0.155 | −0.668 | |
2023 | |||||||
Temperature (°C) | Maximum | 0.672 | 0.795 * | 0.826 * | 0.614 | 0.738 * | 0.763 * |
Minimum | 0.711 * | 0.738 | 0.706 | 0.811 * | 0.751 * | 0.631 | |
Mean | 0.718 | 0.738 * | 0.777 * | 0.793 * | 0.716 | 0.719 | |
Total Rainfall (mm) | −0.658 * | 0.595 | 0.482 | −0.535 | 0.606 | 0.372 | |
Relative Humidity (%) | 0.791 * | 0.692 | 0.463 | 0.834 * | 0.684 | 0.302 |
Days Prior to Monitoring | Regression Equation | R2 | 100.R2 | Role of Individual Factor (%) | p-Value |
---|---|---|---|---|---|
Vertigo Cultivar | |||||
3 | Y = 97.297 − 1.721X1 | 0.013 | 1.3 | 1.3 | 0.805 |
Y = 47.403 + 5.417X1 − 9.719X2 | 0.060 | 6.0 | 4.7 | 0.883 | |
Y = −845.432 + 214.560X1 + 52.887X2 − 272.856X3 | 0.589 | 58.9 | 52.9 | 0.387 | |
Y = −670.824 + 190.534X1 + 49.673X2 − 247.721X3 − 0.898X4 | 0.666 | 66.6 | 7.7 | 0.556 | |
Y = −3215.277 + 439.868X1 + 65.847X2 − 514.707X3 + 13.603X4 + 16.614X5 | 0.856 | 85.6 | 19.0 | 0.598 | |
7 | Y = 79.936 − 1.001X1 | 0.004 | 0.4 | 0.4 | 0.891 |
Y = 47.458 + 4.217X1 − 7.433X2 | 0.031 | 3.1 | 2.7 | 0.938 | |
Y = −778.522 + 290.440X1 + 89.404X2 − 400.172X3 | 0.820 | 82.0 | 78.9 | 0.122 | |
Y = −426.702 + 242.617X1 + 89.197X2 − 354.394X3 − 1.862X4 | 0.986 | 98.6 | 16.6 | 0.026 | |
Y = −619.331 + 269.507X1 + 92.197X2 − 385.453X3 − 1.022X4 + 0.925X5 | 0.999 | 99.9 | 1.3 | 0.016 | |
14 | Y = 157.285 − 4.379X1 | 0.063 | 6.3 | 6.3 | 0.587 |
Y = 67.501 + 8.244X1 − 17.185X2 | 0.102 | 10.2 | 3.9 | 0.806 | |
Y = −339.457 + 152.181X1 + 46.944X2 − 212.624X3 | 0.227 | 22.7 | 12.5 | 0.829 | |
Y = 146.462 + 138.430X1 + 86.440X2 − 243.302X3 − 3.607X4 | 0.823 | 82.3 | 59.6 | 0.322 | |
Y = 1930.188 − 177.576X1 − 6.536X2 + 176.855X3 − 7.234X4 − 8.177X5 | 0.893 | 89.3 | 7.0 | 0.525 | |
Fuego Cultivar | |||||
3 | Y = 87.146 − 1.529X1 | 0.008 | 0.8 | 0.8 | 0.841 |
Y = 65.532 + 1.562X1 − 4.211X2 | 0.016 | 1.6 | 0.8 | 0.967 | |
Y = −573.105 + 151.161X1 + 40.571X2 − 195.172X3 | 0.243 | 24.3 | 22.7 | 0.811 | |
Y = −391.469 + 126.168X1 + 37.228X2 − 169.025X3 − 0.934X4 | 0.313 | 31.3 | 7.0 | 0.902 | |
Y = −4202.241 + 499.589X1 + 61.451X2 − 568.885X3 + 20.785X4 + 24.882X5 | 0.671 | 67.1 | 35.8 | 0.821 | |
7 | Y = 39.569 + 0.477X1 | 0.001 | 0.1 | 0.1 | 0.952 |
Y = 19.855 + 3.645X1 − 4.512X2 | 0.009 | 0.9 | 0.8 | 0.981 | |
Y = −876.292 + 314.182X1 + 100.552X2 − 434.166X3 | 0.788 | 78.8 | 77.9 | 0.154 | |
Y = −646.591 + 282.959X1 + 100.417X2 − 404.278X3 − 1.216X4 | 0.848 | 84.8 | 6.0 | 0.281 | |
Y = −1167.638 + 355.693X1 + 108.532X2 − 488.291X3 + 1.056X4 + 2.503X5 | 0.930 | 93.0 | 8.2 | 0.432 | |
14 | Y = 77.204 − 1.146X1 | 0.003 | 0.3 | 0.3 | 0.897 |
Y = −0.146 + 9.728X1 − 14.805X2 | 0.027 | 2.7 | 2.4 | 0.945 | |
Y = −734.871 + 269.594X1 + 100.974X2 − 383.872X3 | 0.369 | 36.9 | 34.2 | 0.663 | |
Y = −242.003 + 255.646X1 + 141.035X2 − 414.989X3 − 3.659X4 | 0.884 | 88.4 | 54.2 | 0.217 | |
Y = 64.291 + 201.382X1 + 125.069X2 − 342.841X3 − 4.282X4 − 1.404X5 | 0.886 | 88.6 | 0.2 | 0.540 |
Days Prior to Monitoring | Regression Equation | R2 | 100.R2 | Role of Individual Factor (%) | p-Value |
---|---|---|---|---|---|
Vertigo Cultivar | |||||
3 | Y = −14007 + 664.223X1 | 0.452 | 45.2 | 45.2 | 0.098 |
Y = −9583.079 + 381.082X1 + 216.690X2 | 0.601 | 60.1 | 14.9 | 0.159 | |
Y = −3082.638 + 1235.462X1 + 1055.654X2 − 2090.387X3 | 0.709 | 70.9 | 10.8 | 0.241 | |
Y = −6830.942 + 870.302X1 + 562.424X2 − 1080.944X3 + 92.527X4 | 0.726 | 72.6 | 1.7 | 0.472 | |
Y = −42561 − 1409.684X1 − 2794.035X2 + 5469.363X3 + 203.268X4 + 204.677X5 | 0.947 | 94.7 | 22.1 | 0.379 | |
7 | Y = −12190 + 579.957X1 | 0.632 | 63.2 | 63.2 | 0.032 |
Y = −10122 + 443.276X1 + 108.772X2 | 0.645 | 64.5 | 1.3 | 0.125 | |
Y = −15847 + 2777.473X1 + 1262.681X2 − 3608.479X3 | 0.951 | 95.1 | 30.6 | 0.018 | |
Y = −14878 + 2888.786X1 + 1534.861X2 − 3961.851X3 − 55.771X4 | 0.957 | 95.7 | 0.6 | 0.083 | |
Y = −22818 + 2067.945X1 + 755.545X2 − 2321.839X3 − 139.117X4 + 131.470X5 | 0.994 | 99.4 | 3.7 | 0.129 | |
14 | Y = −15105 + 708.023X1 | 0.682 | 68.2 | 68.2 | 0.022 |
Y = −29503 + 1581.267X1 − 596.56X2 | 0.773 | 77.3 | 9.1 | 0.051 | |
Y = −30251 + 2048.346X1 − 347.953X2 − 758.318X3 | 0.775 | 77.5 | 0.2 | 0.167 | |
Y = −27352 + 4063.086X1 + 2278.938X2 − 5122.338X3 − 238.558X4 | 0.933 | 93.3 | 15.8 | 0.129 | |
Y = −37094 + 4092.076X1 + 1841.458X2 − 4680.104X3 − 276.463X4 + 107.728X5 | 0.953 | 95.3 | 2.0 | 0.357 | |
Fuego Cultivar | |||||
3 | Y = −12520 + 594.275X1 | 0.377 | 37.7 | 37.7 | 0.142 |
Y = −6291.349 + 195.620X1 + 305.094X2 | 0.684 | 68.4 | 30.7 | 0.099 | |
Y = −2797.058 + 654.889X1 + 756.077X2 − 1123.681X3 | 0.717 | 71.7 | 3.3 | 0.231 | |
Y = 515.4857 + 977.598X1 + 1191.966X2 − 2015.772X3 − 81.771X4 | 0.731 | 73.1 | 1.4 | 0.465 | |
Y = −33977 − 1223.423X1 − 2048.244X2 + 4307.671X3 + 25.134X4 + 197.588X5 | 0.945 | 94.5 | 21.4 | 0.384 | |
7 | Y = −11085 + 527.136X1 | 0.544 | 54.4 | 54.4 | 0.050 |
Y = −6966.246 + 254.931X1 + 216.624X2 | 0.598 | 59.8 | 5.4 | 0.161 | |
Y = −11939 + 2282.296X1 + 1218.850X2 − 3134.141X3 | 0.839 | 83.9 | 24.1 | 0.104 | |
Y = −9890.675 + 2517.630X1 + 1794.282X2 − 3881.225X3 − 117.909X4 | 0.868 | 86.8 | 2.9 | 0.246 | |
Y = −13678 + 2126.049X1 + 1422.512X2 − 3098.861X3 − 157.670X4 + 62.717X5 | 0.876 | 87.6 | 0.8 | 0.559 | |
14 | Y = −13667 + 640.613X1 | 0.582 | 58.2 | 58.2 | 0.045 |
Y = −30224 + 1644.838X1 − 686.046X2 | 0.708 | 70.8 | 12.6 | 0.085 | |
Y = −27061 − 328.461X1 − 1736.378X2 + 3203.724X3 | 0.747 | 74.7 | 3.9 | 0.198 | |
Y = −24467 + 1473.501X1 + 613.086X2 − 699.409X3 − 213.364X4 | 0.878 | 87.8 | 13.1 | 0.228 | |
Y = −22522 + 1467.712X1 + 700.442X2 − 787.714X3 − 205.795X4 − 21.511X5 | 0.879 | 87.9 | 0.1 | 0.554 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almogdad, M.; Lavrukaitė, K.; Semaškienė, R. Temporal Analysis of the Relationship between Black Bean Aphid (Aphis fabae) Infestation and Meteorological Conditions in Faba Bean (Vicia faba). Agronomy 2024, 14, 1182. https://doi.org/10.3390/agronomy14061182
Almogdad M, Lavrukaitė K, Semaškienė R. Temporal Analysis of the Relationship between Black Bean Aphid (Aphis fabae) Infestation and Meteorological Conditions in Faba Bean (Vicia faba). Agronomy. 2024; 14(6):1182. https://doi.org/10.3390/agronomy14061182
Chicago/Turabian StyleAlmogdad, Mohammad, Karolina Lavrukaitė, and Roma Semaškienė. 2024. "Temporal Analysis of the Relationship between Black Bean Aphid (Aphis fabae) Infestation and Meteorological Conditions in Faba Bean (Vicia faba)" Agronomy 14, no. 6: 1182. https://doi.org/10.3390/agronomy14061182
APA StyleAlmogdad, M., Lavrukaitė, K., & Semaškienė, R. (2024). Temporal Analysis of the Relationship between Black Bean Aphid (Aphis fabae) Infestation and Meteorological Conditions in Faba Bean (Vicia faba). Agronomy, 14(6), 1182. https://doi.org/10.3390/agronomy14061182