Germination Performance of Physalis peruviana L. Seeds under Thermal and Water Stress Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Conduct and Plant Material
2.2. Influence of Temperature on Seed Germination and Vigor
2.3. Combination of Temperature and Water Restriction on Seed Germination and Vigor
2.4. Variables Analyzed and Statistical Analysis
3. Results and Discussion
3.1. Experiment I: Effect of Temperatures on Seed Germination and Vigor
3.2. Experiment II: Germination and Vigor of Seeds under Different Moisture and Thermal Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diniz, F.O.; Chamma, L.; Novembre, A.D.L.C. Germination of Physalis peruviana L. seeds under varying conditions of temperature, light, and substrate. Rev. Ciênc. Agron. 2020, 51, e20166493. [Google Scholar] [CrossRef]
- Silva, D.F.; Pio, R.; Soares, J.D.R.; Nogueira, P.V.; Peche, P.M.; Villa, F. The production of Physalis spp. seedlings grown under different-colored shade nets. Acta Sci. Agron. 2016, 38, 257–263. [Google Scholar] [CrossRef]
- Feng, S.; Zheng, K.; Jiao, K.; Cai, Y.; Chen, C.; Mao, Y.; Wang, L.; Zhan, X.; Ying, Q.; Wang, H. Complete chloroplast genomes of four Physalis species (Solanaceae): Lights into genome structure, comparative analysis, and phylogenetic relationships. BMC Plant Biol. 2020, 20, 242. [Google Scholar] [CrossRef] [PubMed]
- Ponce, O.V.; Martínez, J.S.; Tavares, M.D.P.Z.; Mares, L.E.V. Traditional management of a small-scale crop of Physalis angulata in Western Mexico. Genet. Resour. Crop Evol. 2016, 63, 1383–1395. [Google Scholar] [CrossRef]
- Melo, E.S.; Assis, F.A.; Carvalho, F.J.; Assis, G.A.; Rodrigues, F.A. Does diatomaceous earth improve agronomic characteristics and induce resistance to arthropod pest in physalis? Rev. Ciênc. Agrovet. 2022, 21, 504–515. [Google Scholar] [CrossRef]
- Silva, L.S.; Villa, F.; Silva, D.F.; Silva, E.C.; Ritter, G.; Eberling, T. Micropropagation of Physalis species with economic potential. Ceres 2021, 68, 521–529. [Google Scholar] [CrossRef]
- Barroso, N.S.; Fonseca, J.S.T.; Ramos, C.A.S.; Nascimento, M.N.; Soares, T.L.; Pelacani, C.R. Impact of the maturity stage on harvest point of fruits and physiological quality of Physalis peruviana L. seeds. Rev. Bras. Frutic. 2022, 44, e-848. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Gonçalves, F.J.A.; Oliveira, S.F.; Correia, P.M.R. Evaluation of phenolic compounds, antioxidant activity and bioaccessibility in Physalis peruviana L. Int. J. Fruit Sci. 2020, 20, 470–490. [Google Scholar] [CrossRef]
- Freitas, E.M.; Vital, T.N.B.; Guimarães, G.F.C.; Silveira, F.A.; Gomes, C.N.; Cunha, F.F. Determination of the permanent wilting point of Physalis peruviana L. Horticulturae 2023, 9, 873. [Google Scholar] [CrossRef]
- Lima, J.E.; Cruz, M.C.M.; Alves, D.A.; Santos, N.C.; Guimarães, A.G. Pruning, training system, and climate conditions for the perennial cultivation of physalis. Pesq. Agropec. Bras. 2021, 56, e01850. [Google Scholar] [CrossRef]
- Souza, H.B.F.; Silva, M.S.; Rodrigues, M.S.; Nóbrega, R.S.A.; Conceição, A.L.S. Physalis peruviana L. cultivated in dystrocohesive yellow latosol is responsive to organic fertilization. Rev. Cienc. Agrar. 2021, 64, 1635. [Google Scholar]
- Hayati, P.; Hosseinifarahi, M.; Abdi, G.; Radi, M.; Taghipour, L. Melatonin treatment improves nutritional value and antioxidant enzyme activity of Physalis peruviana fruit during storage. Food Meas. 2023, 17, 2782–2791. [Google Scholar] [CrossRef]
- Bendlin, L.; Senff, C.O.; Franco, C.K.; Souza, A.; Veiga, C.P.; Duclós, L.C. Agribusiness management of Physalis peruviana L. fruit in Brazil. Bulg. J. Agric. Sci. 2016, 22, 691–704. [Google Scholar]
- Chaudhry, S.; Sidhu, G.P.S. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 2022, 41, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Krishna, R.; Karkute, S.G.; Ansari, W.A.; Jaiswal, D.K.; Verma, J.P.; Singh, M. Transgenic tomatoes for abiotic stress tolerance: Status and way ahead. Biotech 2019, 9, 13205. [Google Scholar] [CrossRef] [PubMed]
- Sandrini, M.; Nerva, L.; Sillo, F.; Balestrini, R.; Chitarra, W.; Zampieri, E. Abiotic stress and belowground microbiome: The potential of omics approaches. Int. J. Mol. Sci. 2022, 23, 1091. [Google Scholar] [CrossRef] [PubMed]
- Velandia, D.M.; Barrera, E.C. Effect of salt stress on growth and metabolite profiles of cape gooseberry (Physalis peruviana L.) along three growth stages. Molecules 2021, 26, 2756. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.P.; Bharadwaj, R.; Nayak, H.; Mahto, R.; Singh, R.K.; Prasad, S.K. Impact of salt stress on growth, productivity and physicochemical properties of plants: A Review. Int. J. Chem. Stud. 2019, 7, 1793–1798. [Google Scholar]
- Johnson, R.; Puthur, J.T. Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiol. Biochem. 2021, 162, 247–2571. [Google Scholar] [CrossRef]
- Reed, R.C.; Bradford, K.J.; Khanday, I. Seed germination and vigor: Ensuring crop sustainability in a changing climate. Heredity 2022, 128, 450–459. [Google Scholar] [CrossRef]
- Nunes, A.L.; Sossmeier, S.; Gotz, A.P.; Bispo, N.B. Germination eco-physiology and emergence of Physalis peruviana seedlings. J. Agr. Sci. Technol. 2018, 8, 352–359. [Google Scholar] [CrossRef]
- Farooq, S.; Onen, H.; Ozaslan, C.; El-Shehawi, A.M.; Elseehy, M.M. Characteristics and methods to release seed dormancy of two ground cherry (Physalis) species. J. Appl. Res. Med. Aromat. Plants 2021, 25, 100337. [Google Scholar] [CrossRef]
- Freitas, E.M.; Silva, G.H.; Guimarães, G.F.C.; Vital, T.N.B.; Vieira, J.H.; Silveira, F.A.; Gomes, C.N.; Cunha, F.F. Evapotranspiration and crop coefficient of Physalis peruviana cultivated with recycled paper as mulch. Sci. Hortic. 2023, 320, 112212. [Google Scholar] [CrossRef]
- Souza, C.L.M.; Souza, M.O.; Oliveira, R.S.; Pelacani, C.R. Physalis peruviana seed storage. Rev. Bras. Cienc. Agrar. 2016, 20, 263–268. [Google Scholar] [CrossRef]
- Tenorio, M.L.O.; Dekker, M.; van Boekel, M.A.J.S.; Verkerk, R. Evaluating the effect of storage conditions on the shelf life of cape gooseberry (Physalis peruviana L.). LWT 2017, 80, 523–530. [Google Scholar] [CrossRef]
- Costa, C.J.; Meneghello, G.E.; Jorge, M.H.A.; Costa, E. The importance of physiological quality of seeds for agriculture. Colloq. Agrar. 2021, 17, 102–119. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Debaeke, P.; Steinberg, C.; You, M.P.; Barbetti, M.J.; Aubertot, J.N. Abiotic and biotic factors affecting crop seed germination and seedling emergence: A conceptual framework. Plant Soil 2018, 432, 1–28. [Google Scholar] [CrossRef]
- Xue, X.; Du, S.; Jiao, F.; Xi, M.; Wang, A.; Xu, H.; Jiao, Q.; Zhang, X.; Jiang, H.; Chen, J.; et al. The regulatory network behind maize seed germination: Effects of temperature, water, phytohormones, and nutrients. Crop J. 2021, 9, 718–724. [Google Scholar] [CrossRef]
- Staniak, M.; Krok, E.S.; Kocira, A. Responses of soybean to selected abiotic stresses—Photoperiod, temperature and water. Agriculture 2023, 13, 146. [Google Scholar] [CrossRef]
- Araújo, E.D.; Assis, M.O.; Guimarães, C.M.; Araújo, E.F.; Borges, A.C.; Cunha, F.F. Superabsorbent polymers and sanitary sewage change water availability during the cowpea emergence phase. Nativa 2024, 12, 37–48. [Google Scholar] [CrossRef]
- Bewley, J.D.; Bradford, K.; Hilhorst, H.; Nonogaki, H. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013; 405p. [Google Scholar]
- Prazeres, C.S.; Coelho, C.M.M. Osmolyte accumulation and antioxidant metabolism during germination of vigorous maize seeds subjected to water deficit. Acta Sci. Agron. 2020, 42, e42476. [Google Scholar] [CrossRef]
- Shahid, M.A.; Sarkhosh, A.; Khan, N.; Balal, R.M.; Ali, S.; Rossi, L.; Gómez, C.; Mattson, N.; Nasim, W.; Sanchez, F.G. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 2020, 10, 938. [Google Scholar] [CrossRef]
- Kamatchi, K.A.M.; Anitha, K.; Kumar, K.A.; Senthil, A.; Kalarani, M.K.; Djanaguiraman, M. Impacts of combined drought and high-temperature stress on growth, physiology, and yield of crops. Plant Physiol. Rep. 2024, 29, 28–36. [Google Scholar] [CrossRef]
- Bouteau, H.M. The seed and the metabolism regulation. Biology 2022, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Waraich, E.A.; Skalicky, M.; Hussain, S.; Zulfiqar, U.; Anjum, M.Z.; Habib, R.M.; Brestic, M.; Ratnasekera, D.; Tamayo, L.L.; et al. Adaptation strategies to improve the resistance of oilseed crops to heat stress under a changing climate: An overview. Front. Plant Sci. 2021, 12, 767150. [Google Scholar] [CrossRef] [PubMed]
- Brasil, Ministério da Agricultura e Reforma Agrária. Regras para Análise de Sementes, 1st ed.; SNDA/DNDV/CLAV: Brasília, Brazil, 2009; 399p. [Google Scholar]
- Ma, L.; Wei, J.; Han, G.; Sun, X.; Yang, X. Seed osmopriming with polyethylene glycol (PEG) enhances seed germination and seedling physiological traits of Coronilla varia L. under water stress. PLoS ONE 2024, 19, e0303145. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.J.; Medeiros, A.D.; Oliveira, A.M.S. SeedCalc, a new automated R software tool for germination and seedling length data processing. J. Seed Sci. 2019, 41, 250–257. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing, 4.0.5 version; R Development Core Team: Vienna, Austria, 2021; Available online: www.r-project.org/ (accessed on 27 March 2024).
- ISTA. The germination test. In International Rules for Seed Testing; ISTA: Zurich, Switzerland, 2015. [Google Scholar] [CrossRef]
- Maguire, J.D. Speed of germination-aid selection and evaluation for seedling emergence and vigor. Crop Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- Farooq, M.; Basra, S.M.A.; Ahmad, N.; Hafeez, K. Thermal hardening: A new seed vigor enhancement tool in rice. J. Integr. Plant Biol. 2005, 47, 187–193. [Google Scholar] [CrossRef]
- Labouriau, L.G. Uma nova linha de pesquisa na fisiologia da germinação das sementes. In Congresso Nacional de Botânica; Sociedade Botânica do Brasil: Porto Alegre, Brazil, 1983. [Google Scholar]
- Primack, R.B. Variation in the phenology of natural populations of montane shrubs in New Zealand. J. Ecol. 1980, 68, 849–862. [Google Scholar] [CrossRef]
- Demilly, D.; Ducournau, S.; Wagner, M.H.; Dürr, C. Digital imaging of seed germination. Plant Im. Anal. 2014, 1, 147–164. [Google Scholar] [CrossRef]
- Ozaslan, C.; Farooq, S.; Onen, H.; Ozcan, S.; Bukun, B.; Gunal, H. Germination biology of two invasive physalis species and implications for their management in arid and semi-arid regions. Sci. Rep. 2017, 7, 16960. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, N.M.; Nakagawa, J. Sementes: Ciência, Tecnologia e Produção, 5th ed.; FUNEP: Jaboticabal, Brazil, 2012; 590p. [Google Scholar]
- Barroso, N.S.; Fonseca, J.S.T.; Nascimento, M.N.; Soares, T.L.; Pelacani, C.R. Physiological quality of Physalis ixocarpa Brot. ex Hornem seeds in relation to maturation stage and growing season. Pesqui. Agropecu. Trop. 2023, 53, e74090. [Google Scholar] [CrossRef]
- Santiago, W.R.; Gama, J.S.N.; Benedito, C.P.; Sousa, E.M.; Torres, S.B. Ecophysiological aspects of the germination of Physalis angulata L. seeds. Caatinga 2023, 36, 980–987. [Google Scholar] [CrossRef]
- Silva, M.S.A.; Yamashita, P.O.M.; Rossi, A.A.B.; Carvalho, M.A.C.; Concenço, G.; Sá, M.E. Influence of light and temperature on seed germination of Macroptilium lathyroides. South Am. J. Basic Educ. Tech. Technol. 2020, 7, 311–324. [Google Scholar]
- Cafaro, V.; Alexopoulou, E.; Cosentino, S.L.; Patanè, C. Germination response of different castor bean genotypes to temperature for early and late sowing adaptation in the Mediterranean regions. Agriculture 2023, 13, 1569. [Google Scholar] [CrossRef]
- Cochrane, J.A. Thermal requirements underpinning germination allude to risk of species decline from climate warming. Plants 2020, 9, 796. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Shen, Y.; Shi, F. Effect of temperature, light, and storage time on the seed germination of Pinus bungeana Zucc. Ex Endl.: The role of seed-covering layers and abscisic acid changes. Forests 2020, 11, 300. [Google Scholar] [CrossRef]
- Visscher, A.M.; Lorenzo, E.C.; Toorop, P.E.; Silva, L.J.; Yeo, M.; Pritchard, H.W. Pseudophoenix ekmanii (Arecaceae) seeds at suboptimal temperature show reduced imbibition rates and enhanced expression of genes related to germination inhibition. Plant Biol. 2022, 22, 1041–1051. [Google Scholar] [CrossRef]
- Li, S.; Yang, W.; Guo, J.; Li, X.; Lin, J.; Zhu, X. Changes in photosynthesis and respiratory metabolism of maize seedlings growing under low temperature stress may be regulated by arbuscular mycorrhizal fungi. Plant Physiol. Biochem. 2020, 154, 1–10. [Google Scholar] [CrossRef]
- Catiempo, R.L.; Photchanachai, S.; Bayogan, E.R.V.; Aree, C.W. Impact of hydropriming on germination and seedling establishment of sunflower seeds at elevated temperature. Plant Soil Environ. 2021, 67, 491–498. [Google Scholar] [CrossRef]
- Maldonado, S.S.; Salanueva, C.A.O.; Mattana, E.; Ulian, T.; Way, M.; Lorenzo, E.C.; Aranda, P.D.D.; Saade, R.L.; Valdéz, O.T.; Arevalo, N.I.R.; et al. Thermal time and cardinal temperatures for germination of Cedrela odorata L. Forests 2019, 10, 841. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, Q.; Zhang, R.; Ma, Y.; Xing, J.; Zhou, S.; Liu, Y.; Meng, F.; Sun, J. A seed vigour test based on radicle emergence during germination at 5 °C for four forage species. Seed Sci. Technol. 2023, 51, 361–369. [Google Scholar] [CrossRef]
- Leal, C.C.P.; Torres, S.B.; Dantas, N.B.D.L.; Aquino, G.S.M.; Alves, T.R.C. Water stress on germination and vigor of “mofumbo” (Combretum leprosum Mart.) seeds at different temperatures. Rev. Ciênc. Agron. 2020, 51, e20186357. [Google Scholar] [CrossRef]
- Cheng, W.; Zhang, A.; Zhu, J.; Li, Y.; Wang, P. Study of salicylic acid influence on seedling growth and nitrogen metabolism in watermelon (Citrullus lanatus L.). J. Food Eng. Technol. 2018, 7, 47–53. [Google Scholar] [CrossRef]
- Ortiz, T.A.; Gomes, G.R.; Takahashi, L.S.A. Standardization of the accelerated aging test methodology for snap bean seed to differentiate batches by physiological quality. Int. J. Veg. Sci. 2024, 30, 1–7. [Google Scholar] [CrossRef]
- Feng, W.; Lindner, H.; Robbins, N.E.; Dinneny, J.R. Growing out of stress: The role of cell-and organ-scale growth control in plant water-stress responses. Plant Cell 2016, 28, 1769–1782. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.H.C.S.; Azerêdo, G.A.D. Germination of cactus seeds under saline stress. Caatinga 2022, 35, 79–86. [Google Scholar] [CrossRef]
- Oliveira, F.N.; Oliveira, J.R.; Torres, S.B.; Freitas, R.M.O.; Nogueira, N.W. Germination and initial development of Simira gardneriana seedling under water stress and at different temperatures. Rev. Bras. Eng. Agríc. Ambient. 2017, 21, 333–338. [Google Scholar] [CrossRef]
- Felix, F.C.; Araújo, F.S.; Silva, M.D.; Ferrari, C.S.; Pacheco, M.V. Water and thermal stress on the germination Leucaena leucocephala (Lam.) de wit seeds. Rev. Bras. Cienc. Agrar. 2018, 13, e5515. [Google Scholar] [CrossRef]
- Oliveira, A.K.M.; Ribeiro, J.W.F.; Pereira, K.C.L.; Silva, C.A.A. Effects of temperature on the germination of Diptychandra aurantiaca (Fabaceae) seeds. Acta Sci. Agron. 2013, 35, 203–208. [Google Scholar] [CrossRef]
- Ling, Y.; Zhao, Y.; Cheng, B.; Tan, M.; Zhang, Y.; Li, Z. Seed priming with chitosan improves germination characteristics associated with alterations in antioxidant defense and dehydration-responsive pathway in white clover under water stress. Plants 2022, 11, 2015. [Google Scholar] [CrossRef] [PubMed]
- Bano, H.; Bhat, J.I.A.; Lone, F.A.; Noor, F.; Bhat, M.A.; Nazir, N. Effect of phytohormones and other dormancy breaking chemicals on seed germination of Inula racemosa. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 866–876. [Google Scholar] [CrossRef]
- Ataíde, G.M.; Borges, E.E.L.; Gonçalves, J.F.C.; Guimarães, V.M.; Flores, A.V. Physiological changes during hydration of Dalbergia nigra ((Vell.) Fr. All. ex Benth.) seeds. Ciênc. Florest. 2016, 26, 615–625. [Google Scholar] [CrossRef]
- Gomes, J.P.; Oliveira, L.M.; França, C.S.S.; Dacoregio, H.M.; Bortoluzzi, R.L.C. Morphological characterization of seedlings during the germination seeds of Psidium cattleianum and Acca sellowiana (myrtaceae). Ciênc. Florest. 2015, 25, 1035–1041. [Google Scholar] [CrossRef]
Temperature (°C) | Osmotic Potential (MPa) | |||
---|---|---|---|---|
0 | −0.3 | −0.6 | −0.9 | |
20 | 0 | 2.40 | 3.03 | 3.80 |
20/30 | 0 | 2.60 | 3.36 | 4.18 |
30 | 0 | 2.27 | 3.33 | 4.14 |
Function | Formula | Reference |
---|---|---|
Percentage of germinated seeds (Gmax) | “n” is the number of germinated seeds, and “N” is the total number of seeds. | ISTA [41] |
Germination speed index (GSI) | “ni” is the number of germinated seeds on each day of daily counting up to the final count, and “ti” is the number of days after the start of the test at each counting. | Maguire [42] |
Time to reach 10% germination (T10) | “N” is the final number of germinated seeds, and “ni” and “nf” are the total number of seeds germinated in adjacent counts at times “ti” and “tf”, respectively, when | Farooq et al. [43] |
Time to reach 50% germination (T50) | Same coding as T10. | Farooq et al. [43] |
Time to reach 90% germination (T90) | Same coding as T10. | Farooq et al. [43] |
Mean germination time (MGT) | “ni” is the number of seeds germinated per day (not the cumulative number, but the number corresponding to the i-th observation), and “ti” is the time from the beginning of the germination test to the i-th observation. | Labouriau [44] |
Mean germination rate (MGR) | “” is the mean germination time, and “CoGS” is the coefficient of germination speed. | Labouriau [44] |
Germination synchrony (Sync) | Cni, 2 = ni(ni − 1)/2e “Cni” is the combination of germinated seeds at time “i”, two by two, and “ni” is the number of seeds germinated at time “i”. | Primack [45] |
Germination uniformity (UnifG) | “T90” is the time required for 90% germination of the seeds, and “T10” is the time required for germination of 10% of the seeds. | Demilly et al. [46] |
Temperature (°C) | Gmax (%) | GSI | MGT (Days) | T10 (Days) | T50 (Days) | T90 (Days) | MGR (%) | Sync | UnifG | NNS (%) |
---|---|---|---|---|---|---|---|---|---|---|
20/30 (control) | 97 | 3.50 | 8.26 | 7.30 | 10.55 | 12.70 | 4.77 | 0.23 | 4.62 | 97 |
10 | 25 * | 0.28 * | 20.40 * | 19.04 * | 21.83 * | 22.14 * | 1.38 * | 0.17 * | 2.98 * | 0 * |
15 | 89 ns | 1.18 * | 19.07 * | 15.85 * | 18.34 * | 21.61 * | 2.84 * | 0.16 * | 5.19 * | 0 * |
20 | 90 ns | 2.14 * | 10.89 * | 7.40 ns | 10.55 ns | 12.70 ns | 4.77 ns | 0.15 * | 5.45 * | 71 * |
25 | 95 ns | 2.40 * | 10.31 * | 6.04 ns | 7.25 * | 10.85 ns | 5.76 * | 0.19 * | 2.83 * | 94 ns |
30 | 97 ns | 3.10 ns | 7.15 ns | 5.39 ns | 6.35 * | 8.23 ns | 7.27 * | 0.36 * | 7.27 * | 97 ns |
35 | 90 ns | 2.65 ns | 9.13 ns | 6.26 ns | 7.57 ns | 13.54 ns | 5.20 * | 0.20 * | 5.75 * | 76 * |
40 | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * | 0 * |
CV (%) | 9.06 | 8.73 | 6.02 | 4.11 | 11.79 | 35.67 | 4.84 | 7.38 | 8.65 | 11.50 |
MS Temp | 2.7 × 103 | 4.9 × 100 | 1.2 × 102 | 1.4 × 102 | 1.2 × 102 | 1.3 × 102 | 4.0 × 10−3 | 1.9 × 101 | 3.0 × 100 | 2.8 × 103 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.039 | <0.001 |
ѱs (MPa) | Gmax (%) | GSI | MGT (Days) | T10 (Days) | T50 (Days) | |||||
20/30 °C | 30 °C | 20/30 °C | 30 °C | 20/30 °C | 30 °C | 20/30 °C | 30 °C | 20/30 °C | 30 °C | |
0 | 98 a | 98 a | 2.305 b | 3.521 a | 11.28 a | 7.23 b | 7.46 a | 5.39 b | 10.89 a | 6.36 b |
−0.3 | 96 a | 88 b | 1.915 a | 1.624 a | 14.83 a | 16.39 a | 7.79 a | 8.25 a | 14.44 a | 16.22 a |
−0.6 | 82 a | 65 b | 1.310 a | 0.956 a | 17.08 a | 18.80 a | 10.40 a | 11.55 a | 16.96 b | 19.65 a |
−0.9 | 50 a | 0 b | 0.806 a | 0.000 b | 16.38 a | 0.00 b | 11.08 a | 0.00 b | 16.63 a | 0.00 b |
T | 2.81 × 103 ** | 2.77 × 10−2 ns | 1.47 × 102 ** | 6.65 × 101 ** | 1.39 × 102 ** | |||||
ѱs | 8.77 × 103 ** | 9.06 × 100 ** | 1.82 × 102 ** | 4.57 × 101 ** | 1.97 × 102 ** | |||||
T × ѱs | 9.65 × 102 ** | 1.55 × 100 ** | 1.45 × 102 ** | 6.35 × 101 ** | 1.58 × 102 ** | |||||
CV (%) | 5.86 | 16.45 | 15.90 | 16.96 | 9.74 | |||||
ѱs (MPa) | T90 (Days) | MGR (%) | UnifG | Sync | ||||||
20/30 °C | 30 °C | 20/30 °C | 30 °C | 20/30 °C | 30 °C | 20/30 °C | 30 °C | |||
0 | 12.82 a | 8.34 b | 0.089 b | 0.139 a | 5.36 a | 2.95 a | 0.183 b | 0.351 a | ||
−0.3 | 21.06 a | 22.77 a | 0.069 a | 0.062 a | 13.27 a | 14.53 a | 0.091 a | 0.121 a | ||
−0.6 | 21.25 a | 21.37 a | 0.059 a | 0.054 a | 10.85 a | 9.81 a | 0.192 a | 0.249 a | ||
−0.9 | 19.57 a | 0.00 b | 0.062 a | 0.000 b | 8.49 a | 0.00 b | 0.162 a | 0.000 b | ||
T | 2.47 × 102 ** | 2.89 × 10−4 ns | 5.71 × 102 ** | 4.37 × 10−3 ns | ||||||
ѱs | 3.50 × 102 ** | 9.61 × 10−3 ** | 1.84 × 102 ** | 6.36 × 10−2 ** | ||||||
T × ѱs | 1.88 × 102 ** | 4.17 × 10−3 ** | 3.47 × 101 ** | 3.77 × 10−2 ** | ||||||
CV (%) | 10.05 | 13.41 | 22.14 | 29.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Freitas, E.M.; Gomes, C.N.; da Silva, L.J.; da Cunha, F.F. Germination Performance of Physalis peruviana L. Seeds under Thermal and Water Stress Conditions. Agronomy 2024, 14, 1213. https://doi.org/10.3390/agronomy14061213
de Freitas EM, Gomes CN, da Silva LJ, da Cunha FF. Germination Performance of Physalis peruviana L. Seeds under Thermal and Water Stress Conditions. Agronomy. 2024; 14(6):1213. https://doi.org/10.3390/agronomy14061213
Chicago/Turabian Stylede Freitas, Elis Marina, Carlos Nick Gomes, Laércio Junio da Silva, and Fernando França da Cunha. 2024. "Germination Performance of Physalis peruviana L. Seeds under Thermal and Water Stress Conditions" Agronomy 14, no. 6: 1213. https://doi.org/10.3390/agronomy14061213
APA Stylede Freitas, E. M., Gomes, C. N., da Silva, L. J., & da Cunha, F. F. (2024). Germination Performance of Physalis peruviana L. Seeds under Thermal and Water Stress Conditions. Agronomy, 14(6), 1213. https://doi.org/10.3390/agronomy14061213