Regulation of Different Lights on Energy Acquisitions, Microtuber Formation, and Growth of In Vitro-Grown Solanum tuberosum L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Measurements of Morphology and Dry Weight
2.3. Measurement of Solute Consumption in the Culture Medium
2.4. Measurements of Root Activity and Photosynthetic Pigment
2.5. Evaluation of Photoautotrophic and Heterotrophic Contributions of Plantlets
2.6. Quantitative Real-Time Polymerase Chain Reaction
2.7. Statistical Analysis
3. Results
3.1. Microtuber and Leaf Growths of Potato Plantlets
3.2. Increase in Dry Weight of Different Organs in Potato Plantlets
3.3. Photosynthetic Pigment Content in Leaves
3.4. MS-Consumption and Root Activity of Plantlets
3.5. The Photoautotrophic and Heterotrophic Performance of Plantlets
3.6. The Expression of StSUT1 and StSUT4 in Leaves and Roots
3.7. Correlation Analysis between Plantlet Growth and MS-Consumption
4. Discussion
4.1. Short-Wavelength Light Benefit for Rapid Formation of Microtuber
4.2. Microtuber Growth Is Positively Associated with the Heterotrophic Ability of the Plantlet
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Kaur, G.; Jain, S.; Bhushan, S.; Das, N.; Sharma, M.; Sharma, D. Role of microRNAs and their putative mechanism in regulating potato (Solanum tuberosum L.) life cycle and response to various environmental stresses. Plant Physiol. Biochem. 2024, 207, 108334. [Google Scholar] [CrossRef]
- Zhou, Q.; Tang, D.; Huang, W.; Yang, Z.; Zhang, Y.; Hamilton, J.P.; Visser, R.G.; Bachem, C.W.; Robin, B.C.; Zhang, Z.; et al. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nat. Genet. 2020, 52, 1018–1023. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; Tang, D.; Zhu, Y.; Wang, P.; Li, D.; Huang, S. Genome design of hybrid potato. Cell 2021, 184, 3873–3883. [Google Scholar] [CrossRef]
- Halterman, D.; Guenthner, J.; Collinge, S.; Butler, N.; Douches, D. Biotech Potatoes in the 21st Century: 20 Years Since the First Biotech Potato. Am. J. Potato Res. 2016, 93, 1–20. [Google Scholar] [CrossRef]
- Li, R.; You, J.; Miao, C.; Kong, L.; Long, J.; Yan, Y.; Xu, Z.; Liu, X. Monochromatic lights regulate the formation, growth, and dormancy of in vitro-grown Solanum tuberosum L. microtubers. Sci. Hortic. 2020, 261, 108947. [Google Scholar] [CrossRef]
- Fujiwara, K.; Kira, S.; Kozai, T. Time Course of CO2 Exchange of Potato Cultures In Vitro with Different Sucrose Concentrations in the Culture Medium. J. Agric. Meteorol. 1992, 48, 49–56. [Google Scholar] [CrossRef]
- Jiao, Y.; Lau, O.S.; Deng, X.W. Light-regulated transcriptional networks in higher plants. Nat. Rev. Genet. 2007, 8, 217–230. [Google Scholar] [CrossRef]
- Donnelly, D.J.; Coleman, W.K.; Coleman, S.E. Potato microtuber production and performance: A review. Am. J. Potato Res. 2003, 80, 103–115. [Google Scholar] [CrossRef]
- Krahmer, J.; Ganpudi, A.; Abbas, A.; Romanowski, A.; Halliday, K.J. Phytochrome, Carbon Sensing, Metabolism, and Plant Growth Plasticity. Plant Physiol. 2018, 176, 1039–1048. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Z.; Jin, G.; Lu, D.; Li, X. Responses of Favorita Potato Plantlets Cultured in Vitro under Fluorescent and Light-Emitting Diode (LED) Light Sources. Am. J. Potato Res. 2019, 96, 96–402. [Google Scholar] [CrossRef]
- Chen, L.L.; Zhang, K.; Gong, X.C.; Wang, H.Y.; GAO, Y.H.; Wang, X.Q.; Hu, Y. Effects of different LEDs light spectrum on the growth, leaf anatomy, and chloroplast ultrastructure of potato plantlets in vitro and minituber production after transplanting in the greenhouse. J. Integr. Agr. 2020, 19, 108–119. [Google Scholar] [CrossRef]
- Landi, M.; Zivcak, M.; Sytar, O.; Brestic, M.; Allakhverdiev, S.I. Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. Biochim. Biophys. Acta Bioenerg. 2020, 1861, 148131. [Google Scholar] [CrossRef]
- Martirosyan, Y.T.; Dilovarova, T.A.; Martirosyan, V.V.; Kreslaversuskii, V.D.; Kosobryukhov, A.A. Photosynthetic apparatus of potato plants (Solanum tuberosum L.) grown in vitro as influenced by different spectral composition of led radiation. Agric. Biol. 2016, 51, 680–687. [Google Scholar] [CrossRef]
- Chen, L.L.; Yang, Y.; Jiang, Y.; Zhao, J.; Zang, H.; Wang, X.; Hu, Y.; Xue, X. RNA-Seq Analysis Reveals Differential Responses of Potato (Solanum tuberosum L.) Plantlets Cultured in vitro to Red, Blue, Green, and White Light-emitting Diodes (LEDs). J. Plant Growth Regul. 2019, 38, 1412–1427. [Google Scholar] [CrossRef]
- Chen, L.L.; Xue, X.; Yang, Y.; Chen, F.; Zhao, J.; Wang, X.; Hu, Y. Effects of red and blue LEDs on in vitro growth and microtuberization of potato single-node cuttings. FASE 2018, 5, 197–205. [Google Scholar] [CrossRef]
- Shan, J.; Song, W.; Zhou, J.; Wang, X.; Xie, C.; Gao, X.; Xie, T.; Liu, J. Transcriptome analysis reveals novel genes potentially involved in photoperiodic tuberization in potato. Genomics 2013, 102, 388–396. [Google Scholar] [CrossRef]
- He, W.; Miao, C.; You, J.; Gan, L.; Xu, Z. Effects of Red and Blue Light with Supplemental White Light on Growth, Carbohydrate Metabolism, and Yield of Virus-Free Potato in Plant Factories. Am. J. Potato Res. 2020, 97, 554–564. [Google Scholar] [CrossRef]
- Puzanskiy, R.K.; Romanyuk, D.A.; Kirpichnikova, A.A.; Yemelyanov, V.V.; Shishova, M.F. Plant Heterotrophic Cultures: No Food, No Growth. Plants 2024, 13, 227. [Google Scholar] [CrossRef]
- Smith, E.N.; Ratcliffe, R.G.; Kruger, N.J. Isotopically non-stationary metabolic flux analysis of heterotrophic Arabidopsis thaliana cell cultures. Front. Plant Sci. 2023, 13, 1049559. [Google Scholar] [CrossRef]
- Herrera-Isidron, L.; Valencia-Lozano, E.; Rosiles-Loeza, P.Y.; Robles-Hernández, M.G.; Napsuciale-Heredia, A.; Cabrera-Ponce, J.L. Gene Expression Analysis of Microtubers of Potato Solanum tuberosum L. Induced in Cytokinin Containing Medium and Osmotic Stress. Plants 2021, 10, 876. [Google Scholar] [CrossRef]
- Yu, B.; Chao, D.Y.; Zhao, Y. How plants sense and respond to osmotic stress. J. Integr. Plant Biol. 2024, 66, 394–423. [Google Scholar] [CrossRef]
- Ali, S.; Khan, N.; Nouroz, F.; Erum, S.; Nasim, W. Effects of sucrose and growth regulators on the microtuberization of cip potato (Solanum tuberosum L.) germplasm. Pak. J. Bot. 2018, 1, 763–768. [Google Scholar]
- Desjardins, Y. Photosynthesis in vitro-on the factors regulating CO2 assimilation in micropropagation systems. Acta Hortic. 1994, 393, 45–62. [Google Scholar] [CrossRef]
- Khuri, S.; Moorby, J. Investigation into the role of sucrose in potato cv. Estima microtuber production in vitro. Ann. Bot. 1995, 75, 295–303. [Google Scholar] [CrossRef]
- Patrick, J.W. Phloem unloading: Sieve element unloading and post-sieve element transport. Annu. Rev. Plant Biol. 1997, 48, 191–222. [Google Scholar] [CrossRef]
- Braun, D.M.; Wang, L.; Ruan, Y.L. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J. Exp. Bot. 2014, 65, 1713–1735. [Google Scholar] [CrossRef]
- Rosche, E.; Blackmore, D.; Tegeder, M.; Richardson, T.; Schroeder, H.; Higgins, T.J.; Frommer, W.B.; Offler, C.E.; Patrick, J.W. Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons. Plant J. 2002, 30, 165–175. [Google Scholar] [CrossRef]
- Marco, F.D.; Batailler, B.; Thorpe, M.R.; Razan, F.; Le, H.R.; Vilaine, F.; Bouchereau, A.; Martin-Magniette, M.; Eveillard, S.; Dinant, S. Involvement of SUT1 and SUT2 Sugar Transporters in the Impairment of Sugar Transport and Changes in Phloem Exudate Contents in Phytoplasma-Infected Plants. Int. J. Mol. Sci. 2021, 22, 745. [Google Scholar] [CrossRef]
- Hajirezaei, M.R.; Takahata, Y.; Trethewey, R.N.; Willmitzer, L.; Sonnewald, U. Impact of elevated cytosolic and apoplastic invertase activity on carbon metabolism during potato tuber development. J. Exp. Bot. 2000, 51, 439–445. [Google Scholar] [CrossRef]
- He, B.; Wang, H.; Liu, G.; Chen, A.; Calvo, A.; Cai, Q.; Jin, H. Fungal small RNAs ride in extracellular vesicles to enter plant cells through clathrin-mediated endocytosis. Nat. Commun. 2023, 14, 4383. [Google Scholar] [CrossRef]
- Kraus, M.; Pleskot, R.; Van, D.D. Structural and Evolutionary Aspects of Plant Endocytosis. Annu. Rev. Plant Biol. 2024, 75, 1. [Google Scholar] [CrossRef]
- Chincinska, I.A.; Liesche, J.; Krügel, U.; Michalska, J.; Geigenberger, P.; Grimm, B.; Kühn, C. Sucrose Transporter StSUT4 from Potato Affects Flowering, Tuberization, and Shade Avoidance Response. Plant Physiol. 2008, 146, 323–324. [Google Scholar] [CrossRef]
- Li, H.; Xu, Z.; Tang, C. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tiss. Org. 2010, 103, 155–163. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Y.; Liu, M.; Xu, J.; Xu, Z. Effects of green and red lights on the growth and morphogenesis of potato (Solanum tuberosum L.) plantlets in vitro. Sci. Hortic. 2015, 190, 104–109. [Google Scholar] [CrossRef]
- Gu, S.; Fan, G.; Guo, Q. Study on the determination method of δ13 C values of the stable isotope 13C-labeled wheat plant. J. Nucl. Agric. Sci. 2016, 30, 770–775. [Google Scholar]
- Wolf, S.; Kalman-Rotem, N.; Yakir, D.; Zrv, M. Autotrophic and heterotrophic carbon assimilation of in vitro grown potato (Solanum tuberosum L) plants. J. Plant Physiol. 1998, 153, 574–580. [Google Scholar] [CrossRef]
- Yakir, D.; Osmond, B.; Giles, L. Autotrophy in maize husk leaves: Evaluation using natural abundance of stable isotopes. Plant Physiol. 1991, 97, 1196–1198. [Google Scholar] [CrossRef]
- Seabrook, J.E. Light effects on the growth and morphogenesis of potato(Solanum tuberosum) in vitro: A review. Am. J. Pot Res 2005, 82, 353–367. [Google Scholar] [CrossRef]
- Ai, Y.; Jing, S.; Cheng, Z.; Song, B.; Xie, C.; Liu, J.; Zhou, J. DNA methylation affects photoperiodic tuberization in potato (Solanum tuberosum L.) by mediating the expression of genes related to the photoperiod and GA pathways. Hortic. Res. 2021, 8, 181. [Google Scholar] [CrossRef]
- Lovell, P.H.; Booth, A. Effects of GA on growth, tuber formation and carbohydrate distribution in Solanum tuberosum. New Phytol. 1967, 66, 525–537. [Google Scholar] [CrossRef]
- Roumeliotis, E.; Visser, R.G.; Bachem, C.W. A crosstalk of auxin and GA during tuber development. Plant Signal. Behav. 2012, 7, 1360–1363. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Shi, Q.; Yang, F.; Wei, M. Mixed red and blue light promotes tomato seedlings growth by influencing leaf anatomy, photosynthesis, CO2 assimilation and endogenous hormones. Sci. Hortic. 2021, 290, 110500. [Google Scholar] [CrossRef]
- Shang, W.; Song, Y.; Zhang, C.; Shi, L.; Shen, Y.; Li, X.; Wang, Z.; He, S. Effects of light quality on growth, photosynthetic characteristics, and endogenous hormones in in vitro-cultured Lilium plantlets. Hortic. Environ. Biote. 2023, 64, 65–81. [Google Scholar] [CrossRef]
- Ouyang, F.; Mao, J.; Wang, J.; Zhang, S.; Li, Y. Transcriptome Analysis Reveals that Red and Blue Light Regulate Growth and Phytohormone Metabolism in Norway Spruce [Picea abies (L.) Karst.]. PLoS ONE 2015, 10, 83–85. [Google Scholar] [CrossRef]
- Volmaro, C.; Pontin, M.; Luna, V.; Baraldi, R.; Bottini, R. Blue light control of hypocotyl elongation in etiolated seedlings of Lactuca sativa (L.) cv. Grand Rapids related to exogenous growth regulators and endogenous IAA, GA3 and abscisic acid. Plant Growth Regul. 1998, 26, 165–173. [Google Scholar] [CrossRef]
- Zakhartsev, M.; Medvedeva, I.; Orlov, Y.; Akberdin, I.; Krebs, O.; Schulze, W.X. Metabolic model of central carbon and energy metabolisms of growing Arabidopsis thaliana in relation to sucrose translocation. BMC Plant Biol. 2016, 16, 262. [Google Scholar] [CrossRef]
- Kühn, C. A Comparison of the Sucrose Transporter Systems of Different Plant Species. Plant Biol. 2003, 5, 215–232. [Google Scholar] [CrossRef]
- Barker, L.; Kuhn, C.; Weise, A.; Schulz, A.; Gebhardt, C.; Hirner, B.; Hellmann, H.; Schulze, W.; Ward, J.M.; Frommer, W.B. SUT2, a putative sucrose sensor in sieve elements. Plant Cell 2000, 12, 1153–1164. [Google Scholar] [CrossRef]
- He, W.; Li, J.; Pu, M.; Xu, Z.; Gan, L. Response of photosynthate distribution in potato plants to different LED spectra. Funct. Plant Biol. 2020, 47, 1128–1137. [Google Scholar] [CrossRef]
- Farrar, J.; Hawes, M.; Jones, D.; Lindow, S. How roots control the flux of carbon to the rhizosphere. Ecology 2003, 84, 827–837. [Google Scholar] [CrossRef]
- Farrar, J.F.; Jones, D.L. The control of carbon acquisition by roots. New Phytol. 2000, 147, 43–53. [Google Scholar] [CrossRef]
- Nguyen, C. Rhizodeposition of organic C by plants: Mechanisms and controls. Agronomie 2003, 23, 375–396. [Google Scholar] [CrossRef]
- Durand, M.; Mainson, D.; Porcheron, B.; Maurousset, L.; Lemoine, R.; Pourtau, N. Carbon source-sink relationship in Arabidopsis thaliana: The role of sucrose transporters. Planta 2018, 247, 587–611. [Google Scholar] [CrossRef]
Light Treatments | δ13C | PN (%) | 1 − PN (%) | Dry Weight (mg) | |
---|---|---|---|---|---|
Photosynthesis | Culture Medium | ||||
B | −11.78 a | 8.86 b | 91.14 a | 12.23 b | 125.91 a |
G | −11.51 a | 7.14 b | 92.86 a | 7.63 b | 99.13 d |
Y | −11.69 a | 8.27 b | 91.73 a | 9.47 b | 105.04 c |
R | −11.99 a | 10.16 b | 89.84 a | 12.61 ab | 111.52 b |
W | −12.81 b | 15.46 a | 84.54 b | 17.44 a | 95.38 d |
Parameter | Dry Weight | |||||
---|---|---|---|---|---|---|
Root | Stem | Leaf | Tuber | MS-Consumption | ||
Dry weight | Root | 1.000 | −0.519 * | −0.073 | 0.356 | 0.463 * |
Stem | −0.519 * | 1.000 | 0.172 | −0.671 ** | −0.581 ** | |
Leaf | −0.073 | 0.172 | 1.000 | −0.518 * | −0.555 * | |
Tuber | 0.356 | −0.671 ** | −0.518 * | 1.000 | 0.898 ** | |
MS-consumption | 0.463 * | −0.581 ** | −0.555 * | 0.898 ** | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, J.; Yu, F.; Wu, Y.; Xu, Z.; Liu, X. Regulation of Different Lights on Energy Acquisitions, Microtuber Formation, and Growth of In Vitro-Grown Solanum tuberosum L. Agronomy 2024, 14, 1232. https://doi.org/10.3390/agronomy14061232
Long J, Yu F, Wu Y, Xu Z, Liu X. Regulation of Different Lights on Energy Acquisitions, Microtuber Formation, and Growth of In Vitro-Grown Solanum tuberosum L. Agronomy. 2024; 14(6):1232. https://doi.org/10.3390/agronomy14061232
Chicago/Turabian StyleLong, Jiahuan, Fan Yu, Yinyue Wu, Zhigang Xu, and Xiaoying Liu. 2024. "Regulation of Different Lights on Energy Acquisitions, Microtuber Formation, and Growth of In Vitro-Grown Solanum tuberosum L." Agronomy 14, no. 6: 1232. https://doi.org/10.3390/agronomy14061232
APA StyleLong, J., Yu, F., Wu, Y., Xu, Z., & Liu, X. (2024). Regulation of Different Lights on Energy Acquisitions, Microtuber Formation, and Growth of In Vitro-Grown Solanum tuberosum L. Agronomy, 14(6), 1232. https://doi.org/10.3390/agronomy14061232