Precision Turfgrass Irrigation: Capturing Spatial Soil Moisture Patterns with ECa and Drone Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Methods
2.2. Numerical Analysis
3. Results and Discussion
3.1. West Stadium Field
3.1.1. Spatial Patterns in Variables
3.1.2. RMSEs for EC and Drone Data
3.2. Harmon Field
3.2.1. Spatial Patterns in Variables
3.2.2. RMSEs for EC Data
3.2.3. RMSEs for Drone Data
3.3. MTC Field
3.3.1. Spatial Patterns in Variables
3.3.2. RMSEs for EC Data
3.3.3. RMSEs for Drone Data
4. Conclusions
4.1. Limitations
4.2. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coats, S.; Smerdon, J.E.; Cook, B.I.; Seager, R. Are Simulated Megadroughts in the North American Southwest Forced? J. Clim. 2015, 28, 124–142. [Google Scholar] [CrossRef]
- Harvey, C. Climate Change Has Helped Fuel a Megadrought in the Southwest. E&E News, 17 April 2020. [Google Scholar]
- Williams, A.P.; Cook, E.R.; Smerdon, J.E.; Cook, B.I.; Abatzoglou, J.T.; Bolles, K.; Baek, S.H.; Badger, A.M.; Livne, B. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 2020, 368, 314–318. [Google Scholar] [CrossRef]
- Abbott, B.W.; Baxter, B.K.; Busche, K.; de Freitas, L.; Frei, R.; Gomez, T.; Karren, M.A.; Buck, R.L.; Price, J.; Frutos, S.; et al. Emergency Measures Needed to Rescue Great Salt Lake from Ongoing Collapse. 2023. Available online: https://pws.byu.edu/GSL%20report%202023 (accessed on 30 May 2024).
- Derouin, S. Utah’s Great Salt Lake has Lost Half of its Water Due to Thirsty Humans. Science 2017. [Google Scholar] [CrossRef]
- Wine, M.L.; Laronne, J.B. In Water-Limited Landscapes, an Anthropocene Exchange: Trading Lakes for Irrigated Agriculture. Earth’s Future 2020, 8, e2019EF001274. [Google Scholar] [CrossRef]
- Kem, C. Gardner Policy Institute. Census 2020: Utah Fastest Growing State in the US. 2021. Available online: https://gardner.utah.edu/news/utah-population-reaches-estimated-3343552-people-net-in-migration-surges/#:~:text=Gardner%20Policy%20Institute%2C%20indicate%20the,is%20the%20highest%20since%202017 (accessed on 13 March 2024).
- Banta, M.; Utah Cities Added Hundreds of Thousands of People in a Decade. Salt Lake Tribune. 4 August 2023. Available online: https://www.sltrib.com/news/2023/08/04/most-utahs-growth-happens-1-its/ (accessed on 13 April 2024).
- Milesi, C.; Running, S.W.; Elvidge, C.D.; Dietz, J.B.; Tuttle, B.T.; Nemani, R.R. Mapping and Modeling the Biogeochemical Cycling of Turf Grasses in the United States. Environ. Manag. 2005, 36, 426–438. [Google Scholar] [CrossRef]
- Fidanza, M.; Turfgrass Is Not the Largest Irrigated Crop. June 2022. Available online: https://gcmonline.com/course/environment/news/turfgrass-crop-irrigation (accessed on 30 May 2024).
- AghaKouchak, S.; Sorooshian, S.; Hsu, K.; Gao, X. The Potential of Precipitation Remote Sensing for Water Resources Vulnerability Assessment in Arid Southwestern United States. In Climate Vulnerability; Pielke, R.A., Ed.; Academic Press: San Diego, CA, USA, 2013; pp. 141–149. [Google Scholar]
- EPA. Water Efficiency Management Guide: Landscaping and Irrigation. 832-F-17-016b. Environmental Protection Agency. 2017. Available online: https://www.epa.gov/sites/default/files/2017-12/documents/ws-commercialbuildings-waterscore-irrigation-landscape-guide.pdf (accessed on 11 April 2024).
- Fisher, M.J.; Rao, I.M.; Ayarza, M.A.; Lascano, C.E.; Sanz, J.I.; Thomas, R.J.; Vera, R.R. Carbon Storage by Introduced Deep-Rooted Grasses in the South American Savannas. Nature 1994, 371, 236–238. [Google Scholar] [CrossRef]
- Dass, P.; Houlton, B.Z.; Wang, Y.; Warlind, D. Grasslands May Be More Reliable Carbon Sinks Than Forests in California. Environ. Res. Lett. 2018, 13, 074027. [Google Scholar] [CrossRef]
- Wood, R.A.; Burchett, M.D.; Alquezar, R.; Orwell, R.L.; Tarran, J.; Torpy, F. The Potted-Plant Microcosm Substantially Reduces Indoor Air VOC Pollution: I. Office Field-Study. Water Air Soil Pollut. 2006, 175, 163–180. [Google Scholar] [CrossRef]
- Gibbons, P.; Gill, A.M.; Shore, N.; Moritz, M.A.; Dovers, S.; Cary, G.J. Options for Reducing House-Losses during Wildfires without Clearing Trees and Shrubs. Landsc. Urban Plan. 2018, 174, 10–17. [Google Scholar] [CrossRef]
- Carrow, R.N.; Krum, J.M.; Flitcroft, I.; Cline, V. Precision Turfgrass Management: Challenges and Field Applications for Mapping Turfgrass Soil and Stress. Precis. Agric. 2010, 11, 115–134. [Google Scholar] [CrossRef]
- Carrow, R.N.; Cline, V. Precision Turfgrass Management for Athletic Fields. SportsTurf, July 2011. Available online: https://sturf.lib.msu.edu/article/2011jul16.pdf (accessed on 30 May 2024).
- Krum, J.M.; Carrow, R.N.; Karnok, K. Spatial Mapping of Complex Turfgrass Sites: Site-Specific Management Units and Protocols. Crop Sci. 2010, 50, 301–315. [Google Scholar] [CrossRef]
- Fenton, J.P. On-Farm Experience of Precision Agriculture; The International Fertiliser Society: York, UK, 1998. [Google Scholar]
- Earth Institute, Columbia University. 2010. Available online: https://blogs.ei.columbia.edu/2011/03/15/a-solution-to-the-problem-of-lawns/ (accessed on 30 May 2024).
- Evans, S.R.; Kopp, K.; Johnson, P.G.; Hopkins, B.G.; Dai, X.; Schaible, C. Comparing Smart Irrigation Controllers for Turfgrass Landscapes. HortTechnology 2022, 32, 415–424. [Google Scholar] [CrossRef]
- Serena, M.; Leinauer, B.; Velasco-Cruz, C.; Sevostianova, E. Optimizing frequency and amount of irrigation needed to establish cool-season turfgrasses. Agron. J. 2022, 114, 1851–1858. [Google Scholar] [CrossRef]
- Serena, M.; Velasco-Cruz, C.; Friell, J.; Schiavon, M.; Sevostianova, E.; Sallenave, B.R.; Leinauer, B. Irrigation scheduling technologies reduce water use and maintain turfgrass quality. Agron. J. 2020, 112, 3456–3469. [Google Scholar] [CrossRef]
- O’Shaughnessy, S.A.; Evett, S.R.; Colaizzi, P.D. Dynamic Prescription Maps for Site-Specific Variable Rate Irrigation of Cotton. Agric. Water Manag. 2015, 159, 123–138. [Google Scholar] [CrossRef]
- Throssell, C.; Reicher, Z. Irrigation Practices for Homelawns. Purdue Extension. 2024. Available online: https://www.extension.purdue.edu/extmedia/ay/ay-7-w.pdf (accessed on 1 March 2024).
- Sandor, D. Smart Irrigation Month. University of Minnesota. 2019. Available online: https://turf.umn.edu/news/smart-irrigation-month (accessed on 1 March 2024).
- Bastug, R.; Buyuktas, D. The effects of different irrigation levels applied in golf courses on some quality characteristics of turfgrass. Irrig. Sci. 2003, 22, 87–93. [Google Scholar] [CrossRef]
- Miller, G.L. Analysis of Soccer Field Surface Hardness. In Proceedings of the First International Conference on Turfgrass Management and Science for Sports Fields, Leuven, Belgium, 12–16 September 2004; Nektarios, P.A., Ed.; ISHS: Leuven, Belgium, 2004; pp. 287–294. [Google Scholar]
- Caple, M.; James, I.; Bartlett, M. Spatial Analysis of the Mechanical Behaviour of Natural Turf Sports Pitches. Sports Eng. 2012, 15, 143–157. [Google Scholar] [CrossRef]
- Freeland, R.S.; Sorochan, J.C.; Goddard, M.J.; McElroy, J.S. Using Ground-Penetrating Radar to Evaluate Soil Compaction of Athletic Turfgrass Fields. Appl. Eng. Agric. 2008, 24, 509–514. [Google Scholar] [CrossRef]
- Flitcroft, I.; Krum, J.M.; Carrow, R.N.; Rice, K.; Carson, T.; Cline, V. Spatial Mapping of Penetrometer Resistance on Turfgrass Soils for Site-Specific Cultivation. In Proceedings of the 10th International Conference on Precision Agriculture, Denver, CO, USA, 18–21 July 2010; ISPA: Monticello, IL, USA, 2010. [Google Scholar]
- Hong, M.; Bremer, D.J.; van der Merwe, D. Thermal Imaging Detects Early Drought Stress in Turfgrass Utilizing Small Unmanned Aircraft Systems. Agrosyst. Geosci. Environ. 2019, 2, 1–9. [Google Scholar] [CrossRef]
- Hong, M.U.; Bremer, D.J.; van Der Merwe, D. Using Small Unmanned Aircraft Systems for Early Detection of Drought Stress in Turfgrass. Crop Sci. 2019, 59, 2829–2844. [Google Scholar] [CrossRef]
- Viscarra-Rossel, R.A.; McBratney, A.B. Soil Chemical Analytical Accuracy and Costs: Implications from Precision Agriculture. Aust. J. Exp. Agric. 1998, 38, 765–775. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Sample Adequately to Estimate Variograms of Soil Properties. J. Soil Sci. 1992, 43, 177–192. [Google Scholar] [CrossRef]
- Kerry, R.; Ingram, B.; Hammond, K.; Shumate, S.; Gunther, D.; Jensen, R.R.; Schill, S.; Hansen, N.C.; Hopkins, B.G. Spatial Analysis of Soil Moisture and Turfgrass Health to Determine Zones for Spatially Variable Irrigation Management. Agronomy 2023, 13, 1267. [Google Scholar] [CrossRef]
- Kerry, R.; Escolà, A. Sensing Approaches for Precision Agriculture; Springer Nature: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Straw, C.M. Evaluation of Sampling Procedures for Spatial Analysis of Surface and Edaphic Properties on Sports Fields. Master’s Thesis, University of Georgia, Athens, GA, USA, 2014. [Google Scholar]
- Burbink, C.; Straw, C. Spatiotemporal variability of a stadium football pitch during a professional tournament. Sports Eng. 2023, 26, 8. [Google Scholar] [CrossRef]
- Carlson, M.G.; Gaussoin, R.E.; Puntel, L.A. A review of precision management for golf course turfgrass. Crop Forage Turfgrass Manag. 2022, 8, e20183. [Google Scholar] [CrossRef]
- Espevig, T.; Aamlid, T.S. Effects of root zone composition and irrigation regime on performance of velvet bentgrass putting greens. II. Thatch, root development and playability. Acta Agricult. Scand. Sect. B Soil Plant Sci. 2012, 62 (Suppl. 1), 106–112. [Google Scholar] [CrossRef]
- Straw, C.; Friell, J.; Horgan, B. Precision Irrigation for Golf Courses Using Sensor and Mapping Technologies. 2019. Available online: https://conservancy.umn.edu/handle/11299/214353 (accessed on 13 March 2024).
- Liakos, V.; Vellidis, G. Sensing with Wireless Sensor Networks. In Sensing Approaches for Precision Agriculture; Kerry, R., Escolà, A., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 133–157. [Google Scholar]
- Straw, C.; Bolton, C.; Young, J.; Hejl, R.; Friell, J.; Watkins, E. Soil Moisture Variability on Golf Course Fairways across the United States: An Opportunity for Water Conservation with Precision Irrigation. Agrosyst. Geosci. Environ. 2022, 5, e20323. [Google Scholar] [CrossRef]
- Yue, C.; Lai, Y.; Watkins, E.; Patton, A.; Braun, R. A Behavioral Approach to Identify Barriers to Adoption of New Technology: A Case Study of Low-Input Turfgrasses. J. Agric. Appl. Econ. 2023, 55, 72–99. [Google Scholar] [CrossRef]
- Swensen, A.; Kerry, R. Incentivized Efficient Watering Practices in Five Western States with a Focus on Utah. In Proceedings of the AAG Annual Meeting, Honolulu, HI, USA, 16–20 April 2024. [Google Scholar]
- Straw, C.M.; Henry, G.M. Spatiotemporal Variation of Site-Specific Management Units on Natural Turfgrass Sports Fields during Dry Down. Precis. Agric. 2018, 19, 395–420. [Google Scholar] [CrossRef]
- Straw, C.; Grubbs, R.A.; Henry, G.M. Short-Term Spatiotemporal Relationship between Plant and Soil Properties on Natural Turfgrass Sports Fields. Agrosyst. Geosci. Environ. 2020, 3, e20043. [Google Scholar] [CrossRef]
- Straw, C.M.; Henry, G.M.; Shannon, J.; Thompson, J.J. Athletes’ Perceptions of within-Field Variability on Natural Turfgrass Sports Fields. Precis. Agric. 2019, 20, 118–137. [Google Scholar] [CrossRef]
- Straw, C.M.; Wardrop, W.S.; Horgan, B.P. Golf Course Superintendents’ Knowledge of Variability within Fairways: A Tool for Precision Turfgrass Management. Precis. Agric. 2020, 21, 637–654. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Hummel, J.W.; Morgan, M.T.; Upadhyaya, S.K. On-the-go soil sensors for precision agriculture. Comput. Electron. Agric. 2004, 44, 71–91. [Google Scholar] [CrossRef]
- Brevik, E.C.; Fenton, T.E.; Lazari, A. Soil electrical conductivity as a function of soil water content and implications for soil mapping. Precis. Agric. 2006, 7, 393–404. [Google Scholar] [CrossRef]
- Kühn, J.; Brenning, A.; Wehrhan, M.; Koszinski, S.; Sommer, M. Interpretation of Electrical Conductivity Patterns by Soil Properties and Geological Maps for Precision Agriculture. Precis. Agric. 2009, 10, 490–507. [Google Scholar] [CrossRef]
- Adao, T.; Hruska, J.; Padua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2018, 9, 1110. [Google Scholar] [CrossRef]
- Agili, H.; Chokmani, K.; Cambouris, A.; Perron, I.; Poulin, J. Site-Specific Management Zones Delineation Using Drone-Based Hyperspectral Imagery. In Proceedings of the 14th International Conference for Precision Agriculture, Montreal, QC, Canada, 24–27 June 2018; Available online: https://ispag.org/proceedings (accessed on 1 May 2024).
- Alchanatis, V.; Cohen, Y.; Cohen, S.; Moller, M.; Sprinstin, M.; Meron, M.; Tsipris, J.; Saranga, Y.; Sela, E. Evaluation of different approaches for estimating and mapping crop water status in cotton with thermal imaging. Precis. Agric. 2010, 11, 27–41. [Google Scholar] [CrossRef]
- Cohen, Y.; Alchanatis, V.; Meron, M.; Saranga, Y.; Tsipris, J. Estimation of leaf water potential by thermal imagery and spatial analysis. J. Exp. Bot. 2005, 56, 1843–1852. [Google Scholar] [CrossRef]
- Cohen, Y.; Alchanatis, V.; Sela, E.; Saranga, Y.; Cohen, S.; Meron, M.; Bosak, A.; Tsipris, J.; Ostrovsky, V.; Orolov, V.; et al. Crop water status estimation using thermography: Multi-year model development using ground-based thermal images. Precis. Agric. 2015, 16, 311–329. [Google Scholar] [CrossRef]
- Cohen, Y.; Vellidis, G.; Campillo, C.; Liakos, V.; Graff, N.; Saranga, Y.; Snider, J.L.; Casadesús, J.; Millán, S.; del Henar Prieto, M. Applications of Sensing to Precision Irrigation. In Sensing Approaches for Precision Agriculture; Kerry, R., Escolà, A., Eds.; Springer: Cham, Switzerland, 2021; p. 415. [Google Scholar]
- Straw, C.M.; Grubbs, R.A.; Tucker, K.A.; Henry, G.M. Handheld versus Mobile Data Acquisitions for Spatial Analysis of Natural Turfgrass Sports Fields. HortScience 2016, 51, 1176–1183. [Google Scholar] [CrossRef]
- Grubbs, R.A.; Straw, C.M.; Bowling, W.J.; Radcliffe, D.E.; Taylor, Z.; Henry, G.M. Predicting Spatial Structure of Soil Physical and Chemical Properties of Golf Course Fairways Using an Apparent Electrical Conductivity Sensor. Precis. Agric. 2019, 20, 496–519. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Biswas, A.; Huang, H.; Holland, J.E.; Taylor, J.A.; Stenberg, B.; Wetterlind, J.; Minasny, B.; Fidelis, C.; Yinil, D.; et al. Soil Sensing. In Sensing Approaches for Precision Agriculture; Kerry, R., Escolà, A., Eds.; Springer Nature: Cham, Switzerland, 2021; p. 415. [Google Scholar]
- Kerry, R.; Ingram, B.; Oliver, M.A.; Frogbrook, Z.L. Soil Sampling and Sensed Ancillary Data Requirements for Soil Mapping in Precision Agriculture I. Delineation of Management Zones to Determine Zone Averages of Soil Properties. Precis. Agric. 2024, 25, 1181–1211. [Google Scholar] [CrossRef]
- Kerry, R.; Ingram, B.; Oliver, M.A.; Frogbrook, Z.L. Soil Sampling and Sensed Ancillary Data Requirements for Soil Mapping in Precision Agriculture II: Contour Mapping of Soil Properties with Sensed Z-Score Data for Comparison with Management Zone Averages. Precis. Agric. 2024, 25, 1212–1234. [Google Scholar] [CrossRef]
- Kerry, R.; Ingram, B.; Sanders, K.; Hammond, K.; Hansen, N.; Jensen, R.; Hopkins, B. Assessing the Ability of ECa and Drone Data to Capture Spatial Patterns in Soil Moisture for More Precise Turfgrass Irrigation. In Proceedings of the 14th European Conference on Precision Agriculture’23, Bologna, Italy, 2–6 July 2023. [Google Scholar] [CrossRef]
- Burgin, H.R.; Wear, G.A.; Hansen, N.C.; Hopkins, B.G. Variable Impacts on Growth of Deficit Irrigation on Cynodon dactylon (L.) Pers. × Cynodon transvaalensis Burtt Davy and Poa pratensis L. Int. Turfgrass Soc. Res. J. 2022, 14, 152–156. [Google Scholar] [CrossRef]
- Heil, K.; Schmidhalter, U. The Application of EM38: Determination of Soil Parameters, Selection of Soil Sampling Points and Use in Agriculture and Archaeology. Sensors 2017, 17, 2540. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel Algorithms for Remote Estimation of Vegetation Fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Jacquez, G.M.; Goovaerts, P.; Kaufmann, A.; Rommel, R. SpaceStat 4.0 User Manual: Software for the Space-Time Analysis of Dynamic Complex Systems, 4th ed.; BioMedware: Ann Arbor, MI, USA, 2014. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows; Version 28.0; IBM Corp: Armonk, NY, USA, 2021. [Google Scholar]
- Rogerson, P.A. Statistical Methods for Geography. A Student’s Guide, 5th ed.; Sage: London, UK, 2020; p. 405. [Google Scholar]
- Kerry, R.; Oliver, M.A. Variograms of ancillary data to aid sampling for soil surveys. Precis. Agric. 2003, 4, 261–278. [Google Scholar] [CrossRef]
- Rahman, M.M.; McDermid, G.J.; McKeeman, T.; Lovitt, J. A Workflow to Minimize Shadows in UAV-Based Orthomosaics. J. Unmanned Veh. Syst. 2019, 7, 2. [Google Scholar] [CrossRef]
- UN. The Sustainable Development Goals Report. 2020. Available online: https://unstats.un.org/sdgs/report/2020/ (accessed on 31 May 2024).
Data and Collection Date in 2022 | Regression Calibration | z-Score Calibration | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
(Month and Day) | Min. | Max. | Mean | St. Dev. | RMSE | RMSE | Min. | Max. | Mean | St. Dev. |
VWC 24 May 2022 | 1.47 | 45.84 | 8.98 | 6.04 | – | – | 1.47 | 45.84 | 8.98 | 6.04 |
HzEC 24 May 20 m | 0.68 | 36.72 | 9.31 | 4.94 | 4.07 | 5.23 | −4.05 | 52.76 | 9.56 | 7.89 |
HzEC 24 May 40 m | 0.54 | 34.76 | 8.73 | 4.69 | 4.04 | 4.77 | −3.39 | 48.13 | 8.95 | 7.06 |
HzEC 24 May 60 m | 0.29 | 45.76 | 11.18 | 6.23 | 4.91 | 7.25 | −8.18 | 67.91 | 10.04 | 10.04 |
VtEC 24 May 20 m | 2.60 | 14.12 | 9.65 | 1.49 | 5.83 | 11.18 | −13.86 | 46.52 | 9.56 | 7.79 |
VtEC 24 May 40 m | 4.46 | 11.94 | 9.04 | 0.96 | 5.84 | 10.55 | −12.29 | 42.47 | 8.95 | 7.06 |
VtEC 24 May 60 m | 0.71 | 17.01 | 10.68 | 2.10 | 6.04 | 13.54 | −21.33 | 59.55 | 10.04 | 10.43 |
Th.IR 24 May 20 m | 9.39 | 10.10 | 9.53 | 0.15 | 6.04 | 10.78 | −21.03 | 16.54 | 9.56 | 7.79 |
Th.IR 24 May 40 m | 7.64 | 9.24 | 8.94 | 0.33 | 6.12 | 10.17 | −18.79 | 15.28 | 8.95 | 7.06 |
Th.IR 24 May 60 m | 3.82 | 12.34 | 10.76 | 1.77 | 6.86 | 13.10 | −30.94 | 19.39 | 10.04 | 10.43 |
VARI 24 May 20 m | 6.40 | 18.84 | 9.47 | 3.50 | 6.21 | 10.99 | −11.28 | 16.37 | 9.56 | 7.79 |
VARI 24 May 40 m | 5.44 | 20.14 | 9.06 | 4.14 | 6.43 | 10.36 | −9.95 | 15.13 | 8.95 | 7.06 |
VARI 24 May 60 m | 3.12 | 37.07 | 11.48 | 9.56 | 10.28 | 13.32 | −17.88 | 19.17 | 10.04 | 10.43 |
Regression Calibration | z-Score Calibration | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Data | Min. | Max. | Mean | St. Dev. | RMSE | RMSE | Min. | Max. | Mean | St. Dev. |
VWC 4 May 2022 | 12.83 | 45.64 | 26.74 | 6.22 | – | – | 12.83 | 45.64 | 26.74 | 6.22 |
HzEC 6 May 15 m | 8.68 | 40.30 | 26.03 | 3.82 | 5.15 | 7.22 | −13.24 | 57.68 | 25.67 | 8.56 |
HzEC 6 May 30 m | 4.89 | 42.39 | 25.46 | 4.52 | 5.34 | 7.00 | −11.76 | 56.16 | 25.51 | 8.20 |
HzEC 6 May 45 m | 12.12 | 38.83 | 26.77 | 3.22 | 5.11 | 7.05 | −12.05 | 57.31 | 26.01 | 8.37 |
HzEC 6 May sensors | 22.01 | 31.55 | 27.24 | 1.15 | 5.66 | 5.24 | 16.24 | 36.22 | 27.02 | 2.41 |
HzEC 9 May 15 m | 16.20 | 33.78 | 25.88 | 2.87 | 5.36 | 7.54 | −3.18 | 49.22 | 25.67 | 8.56 |
HzEC 9 May 30 m | 8.72 | 40.42 | 26.17 | 5.18 | 5.64 | 7.32 | −2.12 | 48.07 | 25.51 | 8.20 |
HzEC 9 May 45 m | 11.16 | 40.62 | 27.38 | 4.81 | 5.53 | 7.37 | −2.21 | 49.05 | 26.01 | 8.37 |
HzEC 9 May sensors | 13.81 | 37.28 | 26.73 | 3.83 | 5.31 | 5.37 | 19.07 | 33.84 | 27.02 | 2.41 |
VtEC 9 May 15 m | 21.46 | 27.99 | 25.69 | 1.18 | 6.23 | 9.83 | −5.07 | 42.46 | 25.67 | 8.56 |
VtEC 9 May 30 m | 15.56 | 31.02 | 25.56 | 2.78 | 6.52 | 9.57 | −3.94 | 41.59 | 25.51 | 8.20 |
VtEC 9 May 45 m | 17.83 | 29.90 | 25.64 | 2.17 | 6.36 | 9.66 | −4.06 | 42.43 | 26.01 | 8.37 |
VtEC 9 May sensors | 24.59 | 28.40 | 27.06 | 0.69 | 6.16 | 6.33 | 18.54 | 31.93 | 27.02 | 2.41 |
HzEC 13 May 15 m | 24.70 | 26.30 | 25.67 | 0.53 | 7.00 | 10.37 | 9.90 | 35.79 | 25.67 | 8.56 |
HzEC 13 May 30 m | 23.15 | 26.91 | 25.44 | 1.24 | 5.59 | 10.10 | 10.20 | 35.19 | 25.51 | 8.19 |
HzEC 13 May 45 m | 20.98 | 30.04 | 26.50 | 2.99 | 3.77 | 10.19 | 10.59 | 35.90 | 26.01 | 8.37 |
VtEC 13 May 15 m | 20.46 | 36.59 | 25.84 | 1.74 | 8.45 | 9.39 | −0.85 | 78.66 | 25.67 | 8.56 |
VtEC 13 May 30 m | 17.11 | 42.39 | 25.54 | 2.72 | 8.39 | 9.13 | 0.14 | 76.21 | 25.51 | 8.19 |
VtEC 13 May 45 m | 16.74 | 42.32 | 25.27 | 2.75 | 8.13 | 9.21 | 0.08 | 77.82 | 26.01 | 8.37 |
HzEC 17 May 15 m | 18.16 | 36.48 | 26.03 | 3.21 | 4.04 | 7.01 | 4.73 | 53.50 | 25.67 | 8.56 |
HzEC 17 May 30 m | 13.51 | 42.05 | 25.76 | 5.01 | 1.44 | 6.79 | 5.47 | 52.14 | 25.51 | 8.19 |
HzEC 17 May 45 m | 14.84 | 42.31 | 26.64 | 4.82 | 2.56 | 6.84 | 5.53 | 53.23 | 26.01 | 8.37 |
VtEC 17 May 15 m | 11.12 | 31.85 | 25.65 | 2.25 | 8.96 | 9.18 | −29.58 | 49.26 | 25.67 | 8.56 |
VtEC 17 May 30 m | 5.60 | 32.29 | 24.30 | 2.90 | 7.95 | 8.92 | −27.36 | 48.08 | 25.51 | 8.19 |
VtEC 17 May 45 m | −2.80 | 38.67 | 26.26 | 4.50 | 10.71 | 9.00 | −28.02 | 49.07 | 26.01 | 8.37 |
HzEC 23 May 15 m | 24.70 | 26.30 | 25.67 | 0.53 | 7.00 | 10.37 | 9.90 | 35.79 | 25.67 | 8.56 |
HzEC 23 May 30 m | 23.14 | 26.90 | 25.43 | 1.24 | 5.58 | 10.10 | 10.42 | 35.19 | 25.51 | 8.19 |
HzEC 23 May 45 m | 20.98 | 30.04 | 26.50 | 2.99 | 3.77 | 10.19 | 10.59 | 35.90 | 26.01 | 8.37 |
VtEC 23 May 15 m | 23.67 | 27.71 | 25.68 | 0.67 | 7.97 | 9.95 | −0.07 | 51.75 | 25.67 | 8.56 |
VtEC 23 May 30 m | 16.91 | 34.12 | 25.46 | 2.84 | 8.08 | 9.68 | 0.88 | 50.46 | 25.51 | 8.19 |
VtEC 23 May 45 m | 24.88 | 27.12 | 26.01 | 0.37 | 8.14 | 9.77 | 0.84 | 51.51 | 26.01 | 8.37 |
VtEC 27 May 15 m | 22.84 | 29.29 | 25.83 | 1.41 | 6.25 | 9.14 | 7.51 | 46.61 | 25.67 | 8.56 |
VtEC 27 May 30 m | 19.10 | 34.05 | 26.04 | 3.27 | 4.13 | 8.88 | 8.14 | 45.55 | 25.51 | 8.19 |
VtEC 27 May 45 m | 17.54 | 36.90 | 26.53 | 4.24 | 3.41 | 8.96 | 8.26 | 46.49 | 26.01 | 8.37 |
HzEC 30 May 15 m | 18.38 | 34.84 | 25.67 | 2.65 | 7.54 | 7.90 | 2.07 | 55.34 | 25.67 | 8.56 |
HzEC 30 May 30 m | 11.57 | 43.47 | 25.71 | 5.13 | 7.28 | 7.67 | 2.93 | 53.89 | 25.51 | 8.19 |
HzEC 30 May 45 m | 22.80 | 30.26 | 26.11 | 1.20 | 8.15 | 7.73 | 2.93 | 55.02 | 26.01 | 8.37 |
VtEC 30 May 15 m | 16.69 | 29.36 | 25.65 | 1.50 | 7.76 | 9.19 | −25.52 | 46.93 | 25.67 | 8.56 |
VtEC 30 May 30 m | 2.60 | 34.31 | 25.01 | 3.75 | 7.00 | 8.94 | −23.46 | 45.85 | 25.51 | 8.19 |
VtEC 30 May 45 m | 11.76 | 31.94 | 26.02 | 2.39 | 8.08 | 9.02 | −24.04 | 46.79 | 26.01 | 8.37 |
Regression Calibration | z-Score Calibration | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Data | Min. | Max. | Mean | St. Dev. | RMSE | RMSE | Min. | Max. | Mean | St. Dev. |
VWC 26 April 2022 | −0.83 | 32.63 | 13.71 | 5.52 | – | – | −0.83 | 32.63 | 13.71 | 5.52 |
Th.IR 8 April 15 m | 19.75 | 28.15 | 25.76 | 1.63 | 6.36 | 10.18 | −5.91 | 38.18 | 25.67 | 8.56 |
Th.IR 8 April 30 m | −4.29 | 40.74 | 27.97 | 8.74 | 10.34 | 9.91 | −4.74 | 37.49 | 25.51 | 8.20 |
Th.IR 8 April 45 m | 19.32 | 29.15 | 26.36 | 1.91 | 6.35 | 10.00 | −4.88 | 38.25 | 26.02 | 8.37 |
Th.IR 8 April sensors | 25.39 | 33.62 | 27.72 | 1.60 | 6.63 | 6.48 | 18.30 | 30.72 | 27.20 | 2.41 |
Gr. 8 April 15 m | 20.00 | 33.52 | 25.83 | 1.82 | 5.98 | 8.95 | −1.74 | 61.79 | 25.67 | 8.56 |
Gr. 8 April 30 m | 18.07 | 36.63 | 26.08 | 2.50 | 5.97 | 8.70 | −0.74 | 60.10 | 25.51 | 8.20 |
Gr. 8 April 45 m | 20.48 | 34.02 | 26.32 | 1.82 | 5.93 | 8.78 | −0.80 | 61.34 | 26.02 | 8.37 |
Gr. 8 April sensors | 25.75 | 29.03 | 27.17 | 0.44 | 6.11 | 5.95 | 19.48 | 37.38 | 27.20 | 2.41 |
VWC 6 October 2022 | 14.07 | 43.22 | 29.74 | 7.52 | – | – | 14.07 | 43.22 | 29.74 | 7.52 |
RGB 5 October 15 m | 20.50 | 35.18 | 29.11 | 2.44 | 8.58 | 15.75 | −18.40 | 63.46 | 29.64 | 13.62 |
RGB 5 October 30 m | 26.79 | 29.15 | 28.18 | 0.39 | 8.41 | 14.34 | −13.47 | 57.79 | 28.35 | 11.86 |
RGB 5 October 45 m | 19.18 | 27.16 | 23.86 | 1.33 | 10.17 | 16.54 | −23.57 | 60.03 | 25.49 | 13.91 |
RGB 12 October 15 m | 3.26 | 45.25 | 29.54 | 5.48 | 9.43 | 15.18 | −35.73 | 68.70 | 29.64 | 13.62 |
RGB 12 October 30 m | 11.48 | 38.11 | 28.15 | 3.47 | 8.76 | 13.79 | −28.56 | 62.35 | 28.35 | 11.86 |
RGB 12 October 45 m | 17.33 | 30.68 | 25.69 | 1.74 | 9.19 | 15.98 | −41.27 | 65.38 | 25.49 | 13.91 |
Th.IR 12 October 15m | 24.89 | 39.39 | 29.25 | 2.26 | 8.35 | 15.15 | 3.34 | 90.89 | 29.64 | 13.62 |
Th. IR 12 October 30m | 23.25 | 37.10 | 27.41 | 2.15 | 8.62 | 13.76 | 5.45 | 81.66 | 28.35 | 11.86 |
Th.IR 12 October 45 m | 21.28 | 33.01 | 24.80 | 1.83 | 9.60 | 15.95 | −1.37 | 88.04 | 25.49 | 13.91 |
Regression Calibration | z-Score Calibration | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Data | Min. | Max. | Mean | St. Dev. | RMSE | RMSE | Min. | Max. | Mean | St. Dev. |
VWC 5 May 2022 | 8.46 | 47.38 | 24.37 | 5.75 | – | – | 8.46 | 47.38 | 24.37 | 5.74 |
HzEC 9 May 20 m | 16.08 | 35.63 | 24.08 | 3.66 | 5.01 | 5.05 | 7.44 | 47.69 | 23.92 | 7.53 |
HzEC 9 May 40 m | 18.32 | 32.57 | 24.15 | 2.67 | 4.96 | 8.03 | 3.72 | 53.11 | 23.95 | 9.24 |
HzEC 9 May 60 m | 17.29 | 30.05 | 22.52 | 2.39 | 5.31 | 7.12 | 5.81 | 47.88 | 23.04 | 7.87 |
HzEC 9 May sensors | 19.80 | 33.01 | 25.21 | 4.65 | 5.04 | 5.05 | 17.97 | 35.89 | 25.31 | 3.35 |
VtEC 9 May 20 m | −58.32 | 27.26 | 23.94 | 1.49 | 5.66 | 8.53 | −392.47 | 40.745 | 23.92 | 7.53 |
VtEC 9 May 40 m | −51.84 | 26.91 | 23.85 | 1.37 | 5.66 | 9.87 | −487.00 | 44.59 | 23.95 | 9.24 |
VtEC 9 May 60 m | −152.80 | 29.38 | 22.31 | 3.17 | 6.33 | 8.88 | −412.15 | 40.62 | 23.04 | 7.87 |
VtEC 9 May sensors | 14.26 | 215.36 | 22.07 | 3.50 | 7.65 | 6.12 | −160.10 | 32.80 | 25.31 | 3.35 |
HzEC 13 May 20 m | 22.77 | 30.42 | 23.94 | 0.52 | 5.74 | 9.05 | 6.98 | 117.91 | 23.92 | 7.53 |
HzEC 13 May 40 m | 23.43 | 26.96 | 23.97 | 0.24 | 5.75 | 10.43 | 3.17 | 139.26 | 23.95 | 9.24 |
HzEC 13 May 60 m | 19.72 | 40.27 | 22.86 | 1.40 | 5.98 | 9.40 | 5.33 | 121.27 | 23.04 | 7.87 |
HzEC 13 May sensors | 18.05 | 62.33 | 24.81 | 3.01 | 6.25 | 6.45 | 17.77 | 67.14 | 25.31 | 3.35 |
HzEC 17 May 20 m | 23.64 | 24.28 | 24.02 | 0.10 | 5.66 | 9.41 | 4.47 | 51.65 | 23.92 | 7.53 |
HzEC 17 May 40 m | 18.84 | 30.53 | 23.66 | 1.87 | 5.60 | 10.78 | 0.09 | 57.97 | 23.95 | 9.09 |
HzEC 17 May 60 m | 17.03 | 31.07 | 22.82 | 2.24 | 5.20 | 9.75 | 2.70 | 52.01 | 23.04 | 7.45 |
HzEC 17 May sensors | 17.76 | 29.14 | 24.45 | 1.82 | 6.54 | 6.70 | 16.65 | 37.65 | 25.31 | 3.30 |
VtEC 17 May 20 m | 9.38 | 32.91 | 24.16 | 4.06 | 4.52 | 5.99 | −3.53 | 40.19 | 23.92 | 7.53 |
VtEC 17 May 40 m | 5.60 | 36.08 | 24.74 | 5.25 | 4.80 | 7.23 | −9.72 | 43.91 | 23.95 | 9.24 |
VtEC 17 May 60 m | 6.29 | 32.88 | 22.98 | 4.58 | 4.80 | 6.35 | −5.65 | 40.04 | 23.04 | 7.87 |
VtEC 17 May sensors | 20.35 | 29.09 | 25.84 | 1.51 | 5.16 | 4.59 | 13.09 | 32.55 | 25.31 | 3.35 |
HzEC 23 May 20 m | 9.26 | 32.80 | 24.26 | 3.15 | 4.90 | 6.67 | −11.95 | 44.33 | 23.92 | 7.53 |
HzEC 23 May 40 m | 7.80 | 34.58 | 24.86 | 3.58 | 4.95 | 7.93 | −20.06 | 49.00 | 23.95 | 9.24 |
HzEC 23 May 60 m | 8.04 | 33.49 | 24.26 | 3.41 | 4.91 | 7.02 | −14.45 | 44.38 | 23.04 | 7.87 |
HzEC 23 May sensors | 12.77 | 47.54 | 25.38 | 4.65 | 9.15 | 4.99 | 9.34 | 34.40 | 25.31 | 3.35 |
VtEC 23 May 20 m | 15.77 | 25.09 | 23.89 | 0.46 | 5.77 | 9.29 | −107.89 | 43.53 | 23.92 | 7.53 |
VtEC 23 May 40 m | 20.45 | 49.69 | 24.24 | 1.45 | 5.99 | 10.68 | −137.79 | 48.02 | 23.95 | 9.24 |
VtEC 23 May 60 m | 20.28 | 43.84 | 23.33 | 1.17 | 6.01 | 9.64 | −114.72 | 43.54 | 23.04 | 7.87 |
VtEC 23 May sensors | 9.44 | 130.10 | 25.07 | 6.00 | 8.51 | 6.60 | −33.84 | 34.04 | 25.31 | 3.35 |
HzEC 27 May 20 m | 15.54 | 33.29 | 24.08 | 2.55 | 5.48 | 7.85 | −1.25 | 51.08 | 23.92 | 7.53 |
HzEC 27 May 40 m | 17.86 | 31.08 | 24.22 | 1.90 | 5.44 | 9.16 | −6.94 | 57.28 | 23.95 | 9.24 |
HzEC 27 May 60 m | 13.28 | 33.62 | 23.06 | 2.93 | 5.69 | 8.20 | −3.27 | 51.43 | 23.04 | 7.87 |
HzEC 27 May sensors | 18.27 | 30.00 | 24.36 | 1.69 | 6.50 | 5.71 | −16.33 | 25.68 | 25.31 | 3.35 |
VtEC 27 May 20 m | 8.00 | 29.44 | 24.02 | 1.10 | 5.51 | 8.96 | −69.58 | 24.76 | 23.92 | 7.53 |
VtEC 27 May 40 m | −3.76 | 33.21 | 23.87 | 1.90 | 5.47 | 10.33 | 90.79 | 24.98 | 23.95 | 9.24 |
VtEC 27 May 60 m | 22.08 | 25.95 | 23.06 | 23.06 | 5.96 | 9.31 | −74.68 | 23.91 | 23.04 | 7.87 |
VtEC 27 May sensors | −24.79 | 43.21 | 26.03 | 3.50 | 5.94 | 6.39 | 14.10 | 37.41 | 25.31 | 3.35 |
HzEC 30 May 20 m | 19.31 | 29.37 | 24.07 | 1.84 | 5.59 | 8.28 | 4.41 | 45.63 | 23.92 | 7.53 |
HzEC 30 May 40 m | 23.26 | 24.59 | 23.95 | 0.24 | 5.83 | 9.61 | 0.01 | 50.59 | 23.95 | 9.24 |
HzEC 30 May 60 m | 16.91 | 28.73 | 23.14 | 2.16 | 6.74 | 8.63 | 2.65 | 45.73 | 23.04 | 7.87 |
HzEC 30 May sensors | 18.02 | 34.38 | 25.77 | 2.99 | 5.95 | 5.97 | 16.62 | 34.98 | 25.31 | 3.35 |
VtEC 30 May 20 m | 14.14 | 33.62 | 24.09 | 3.00 | 5.42 | 7.61 | −1.04 | 47.80 | 23.92 | 7.53 |
VtEC 30 May 40 m | 15.70 | 31.93 | 23.99 | 2.50 | 5.37 | 8.90 | 6.68 | 53.25 | 23.95 | 9.24 |
VtEC 30 May 60 m | 12.06 | 33.50 | 23.02 | 3.31 | 5.63 | 7.95 | 3.05 | 47.99 | 23.04 | 7.87 |
VtEC 30 May sensors | 11.49 | 41.72 | 26.94 | 4.66 | 6.44 | 5.56 | 14.20 | 35.94 | 25.31 | 3.35 |
Regression Calibration | z-Score Calibration | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Data | Min. | Max. | Mean | St. Dev. | RMSE | RMSE | Min. | Max. | Mean | St. Dev. |
VWC 7 April 2022 | 11.93 | 16.19 | 14.40 | 0.93 | – | – | 11.93 | 16.19 | 14.40 | 0.93 |
Gr. 8 April 20 m | 12.24 | 17.84 | 14.45 | 0.59 | 1.09 | 3.38 | 2.27 | 33.19 | 14.93 | 3.28 |
Gr. 8 April 40 m | 13.84 | 15.22 | 14.77 | 14.38 | 0.98 | 3.19 | 3.20 | 32.19 | 14.66 | 14.66 |
Gr. 8 April 60 m | 16.06 | 16.32 | 16.22 | 0.03 | 2.04 | 3.18 | 7.02 | 30.28 | 16.21 | 2.47 |
Gr. 8 April sensors | 12.77 | 16.33 | 14.93 | 0.38 | 1.14 | 1.14 | 13.23 | 17.48 | 14.91 | 0.45 |
Th. IR 8 April 20 m | 14.48 | 14.49 | 14.49 | 0.002 | 0.93 | 3.48 | 4.96 | 19.64 | 14.93 | 3.28 |
Th. IR 8 April 40 m | 14.14 | 14.96 | 14.67 | 0.18 | 1.00 | 3.29 | 5.72 | 19.49 | 14.66 | 3.08 |
Th. IR 8 April 60 m | 14.78 | 16.96 | 16.20 | 0.49 | 2.10 | 3.26 | 9.04 | 20.09 | 16.21 | 2.47 |
Th. IR 8 April sensors | 14.83 | 14.93 | 14.93 | 0.02 | 1.05 | 1.18 | 13.60 | 15.62 | 14.91 | 0.45 |
Gr. 19 May 20 m | 14.38 | 25.31 | 21.02 | 1.16 | 6.98 | 8.32 | −3.84 | 66.99 | 23.92 | 7.53 |
Gr. 19 May 40 m | 22.88 | 23.56 | 23.29 | 0.07 | 5.87 | 9.65 | −10.11 | 76.81 | 23.95 | 9.24 |
Gr. 19 May 60 m | 24.28 | 24.39 | 24.32 | 0.01 | 5.75 | 8.66 | −5.98 | 68.06 | 23.04 | 7.87 |
Gr. 19 May sensors | 28.54 | 28.55 | 28.55 | 0.001 | 7.11 | 5.99 | 12.94 | 44.49 | 25.31 | 25.31 |
Th. IR 19 May 20 m | 21.24 | 25.62 | 25.08 | 0.63 | 5.85 | 9.35 | 17.57 | 69.47 | 23.92 | 7.53 |
Th. IR 19 May 40 m | 22.81 | 22.88 | 22.89 | 0.01 | 5.94 | 10.74 | 16.15 | 79.83 | 26.95 | 9.24 |
Th. IR. 19 May 60 m | 28.44 | 28.45 | 28.45 | 0.001 | 7.05 | 9.70 | 16.40 | 70.64 | 23.04 | 7.87 |
Th. IR. 19 May sensors | 24.31 | 24.31 | 24.31 | 0.001 | 5.75 | 6.64 | 22.48 | 45.59 | 25.31 | 3.53 |
VWC 5 October 2022 | 21.97 | 41.99 | 34.81 | 4.03 | – | – | 21.97 | 41.99 | 34.81 | 4.03 |
Gr. 5 October 20 m | 33.88 | 34.28 | 34.13 | 0.05 | 4.08 | 11.92 | 1.79 | 86.83 | 34.13 | 11.05 |
Gr. 5 October 40 m | 25.59 | 25.64 | 25.63 | 0.01 | 10.03 | 10.08 | 6.94 | 75.68 | 33.08 | 8.93 |
Gr. 5 October 60 m | 22.39 | 22.40 | 22.40 | 0.001 | 13.05 | 11.57 | 2.34 | 84.01 | 33.40 | 10.61 |
Gr. 12 October 20 m | 32.15 | 37.60 | 34.11 | 0.82 | 4.02 | 11.05 | 7.83 | 80.87 | 34.13 | 11.05 |
Gr. 12 October 40 m | 37.00 | 37.42 | 37.27 | 0.06 | 4.73 | 9.25 | 11.82 | 70.86 | 33.08 | 8.93 |
Gr. 12 October 60 m | 27.91 | 27.95 | 27.93 | 0.006 | 7.97 | 14.15 | 8.14 | 78.28 | 33.40 | 10.61 |
Th. IR 12 October 20 m | 20.48 | 39.23 | 34.50 | 4.33 | 4.26 | 9.77 | −1.61 | 46.21 | 34.13 | 11.05 |
Th. IR 12 October 40 m | 26.91 | 27.64 | 27.46 | 0.17 | 8.34 | 8.00 | 4.19 | 42.84 | 33.08 | 8.93 |
Th. IR 12 October 60 m | 17.49 | 17.57 | 17.55 | 0.02 | 17.72 | 14.64 | −0.92 | 44.99 | 33.40 | 10.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerry, R.; Ingram, B.; Sanders, K.; Henrie, A.; Hammond, K.; Hawks, D.; Hansen, N.; Jensen, R.; Hopkins, B. Precision Turfgrass Irrigation: Capturing Spatial Soil Moisture Patterns with ECa and Drone Data. Agronomy 2024, 14, 1238. https://doi.org/10.3390/agronomy14061238
Kerry R, Ingram B, Sanders K, Henrie A, Hammond K, Hawks D, Hansen N, Jensen R, Hopkins B. Precision Turfgrass Irrigation: Capturing Spatial Soil Moisture Patterns with ECa and Drone Data. Agronomy. 2024; 14(6):1238. https://doi.org/10.3390/agronomy14061238
Chicago/Turabian StyleKerry, Ruth, Ben Ingram, Kirsten Sanders, Abigail Henrie, Keegan Hammond, Dave Hawks, Neil Hansen, Ryan Jensen, and Bryan Hopkins. 2024. "Precision Turfgrass Irrigation: Capturing Spatial Soil Moisture Patterns with ECa and Drone Data" Agronomy 14, no. 6: 1238. https://doi.org/10.3390/agronomy14061238
APA StyleKerry, R., Ingram, B., Sanders, K., Henrie, A., Hammond, K., Hawks, D., Hansen, N., Jensen, R., & Hopkins, B. (2024). Precision Turfgrass Irrigation: Capturing Spatial Soil Moisture Patterns with ECa and Drone Data. Agronomy, 14(6), 1238. https://doi.org/10.3390/agronomy14061238