Enhanced Estimation of Rice Leaf Nitrogen Content via the Integration of Hybrid Preferred Features and Deep Learning Methodologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experimental Design
2.2. Data and Pre-Processing
2.2.1. Collection and Pre-Processing of UAV Hyperspectral Imagery
2.2.2. Acquisition of Rice Agronomic Parameters
2.3. Vegetation Index Construction
2.4. Identification of Characteristic Variables for LNC Estimation
- Pearson correlation coefficient
- Extreme gradient boosting
2.5. Model Construction and Validation
- Partial least squares regression
- Random forest
- Deep neural network
- Accuracy verification
3. Results
3.1. Determining the Characteristic Variables for the Estimation of LNC
3.1.1. Spectral Characteristics of Rice at Different Growth Stages
3.1.2. Screening of Characteristic Variables for LNC Estimation
3.2. Estimation and Accuracy Assessment of LNC
3.3. Mapping LNC at the Field Scale
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, D.; Chen, J.M.; Yan, Y.; Zheng, H.B.; Yao, X.; Zhu, Y.; Cao, W.X.; Cheng, T. Estimating leaf nitrogen content by coupling a nitrogen allocation model with canopy reflectance. Remote Sens. Environ. 2022, 283, 113314. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, T.; Lassaletta, L.; Mueller, N.D.; Tubiello, F.N.; Lisk, M.D.; Lu, C.Q.; Conant, R.T.; Dorich, C.D.; Gerber, J.; et al. Quantification of global and national nitrogen budgets for crop production. Nat. Food 2021, 2, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.J.; Zhang, X.M.; Lam, S.K.; Yu, Y.L.; Grinsven, H.J.M.; Zhang, S.H.; Wang, X.X.; Bodirsky, B.L.; Wang, S.T.; Duan, J.K.; et al. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 2023, 613, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.Y.; Jin, Z.Y.; Guo, Z.H.; Yang, L.; Bai, J.C.; Feng, S.; Yu, F.H. Simultaneous inversion method of nitrogen and phosphorus contents in rice leaves using CARS-RUN-ELM algorithm. Trans. CSAE 2022, 38, 148–155. [Google Scholar]
- Liu, H.Y.; Zhu, H.C.; Li, Z.H.; Yang, G.J. Quantitative analysis and hyperspectral remote sensing of the nitrogen nutrition index in winter wheat. Int. J. Remote Sens. 2020, 41, 858–881. [Google Scholar] [CrossRef]
- Fu, Y.Y.; Yang, G.J.; Pu, R.L.; Li, Z.H.; Li, H.L.; Xu, X.G.; Song, X.Y.; Yang, X.D.; Zhao, C.J. An overview of crop nitrogen status assessment using hyperspectral remote sensing: Current status and perspectives. Eur. J. Agron. 2021, 124, 126241. [Google Scholar] [CrossRef]
- Yu, F.H.; Bai, J.C.; Jin, Z.Y.; Guo, Z.H.; Yang, J.X.; Chen, C.L. Combining the critical nitrogen concentration and machine learning algorithms to estimate nitrogen deficiency in rice from UAV hyperspectral data. J. Integr. Agric. 2023, 22, 1216–1229. [Google Scholar] [CrossRef]
- Wang, D.L.; Li, R.; Liu, T.; Liu, S.P.; Sun, C.M.; Guo, W.S. Combining vegetation, color, and texture indices with hyperspectral parameters using machine-learning methods to estimate nitrogen concentration in rice stems and leaves. Field Crops Res. 2023, 304, 109175. [Google Scholar] [CrossRef]
- Feng, S.; Xu, T.Y.; Yu, F.H.; Chen, C.L.; Yang, X.; Wang, N.Y. Research of method for inverting nitrogen content in canopy leaves of japonica rice in northeastern China based on hyperspectral remote sensing of unmanned aerial vehicle. Spectrosc. Spectr. Anal. 2019, 39, 3281–3287. [Google Scholar]
- Feilhauer, H.; Asner, G.P.; Martin, R.E. Multi-method ensemble selection of spectral bands related to leaf biochemistry. Remote Sens. Environ. 2015, 164, 57–65. [Google Scholar] [CrossRef]
- Fu, Y.Y.; Yang, G.J.; Li, Z.H.; Li, H.L.; Li, Z.H.; Xu, X.G.; Song, X.Y.; Zhang, Y.H.; Duan, D.D.; Zhao, C.J.; et al. Progress of hyperspectral data processing and modelling for cereal crop nitrogen monitoring. Comput. Electron. Agric. 2020, 172, 105321. [Google Scholar] [CrossRef]
- Yang, H.Y.; Zhou, Q.; Yang, J.; Sun, Y.T.; Lu, Y.; Yin, H. Study on nitrogen nutrition diagnosis of rice leaves based on hyperspectrum. Acta Agric. Zhejiangensis 2019, 31, 1575–1582. [Google Scholar]
- Yu, F.H.; Xing, S.M.; Guo, Z.H.; Bai, J.C.; Xu, T.Y. Remote sensing inversion of the nitrogen content in rice leaves using character transfer vegetation index. Trans. CSAE 2022, 38, 175–182. [Google Scholar]
- Zeng, Y.L.; Hao, D.L.; Huete, A.; Dechant, B.; Berry, J.; Chen, J.M.; Joiner, J.; Frankenberg, C.; Bond-Lamberty, B.; Ryu, Y.; et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Environ. 2022, 3, 477–493. [Google Scholar] [CrossRef]
- Feng, H.K.; Fan, Y.G.; Tao, H.L.; Yang, F.Q.; Yang, G.J.; Zhao, C.J. Monitoring of nitrogen content in winter wheat based on UAV hyperspectral imagery. Spectrosc. Spectr. Anal. 2023, 43, 3239–3246. [Google Scholar]
- Tian, Y.C.; Yao, X.; Yang, J.; Cao, W.X.; Hannaway, D.B.; Zhu, Y. Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance. Field Crops Res. 2011, 120, 299–310. [Google Scholar] [CrossRef]
- Tao, H.L.; Feng, H.K.; Xu, L.J.; Miao, M.K.; Yang, G.J.; Yang, X.D.; Fan, L.L. Estimation of the yield and plant height of winter wheat using UAV-Based hyperspectral images. Sensors 2020, 20, 1231. [Google Scholar] [CrossRef] [PubMed]
- Zagajewski, B.; Kycko, M.; Tmmervik, H.; Bochenek, Z.; Wojtun, B.; Bjerke, J.; Klos, A. Feasibility of hyperspectral vegetation indices for the detection of chlorophyll concentration in three high arctic plants: Salix polaris, bistorta vivipara, and dryas octopetala. Acta Soc. Bot. Pol. 2018, 87, 3604. [Google Scholar] [CrossRef]
- Chen, P.F.; Haboudane, D.; Tremblay, N.; Wang, J.H.; Vigneault, P.; Li, B.G. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sens. Environ. 2010, 114, 1987–1997. [Google Scholar] [CrossRef]
- Tan, K.Z.; Wang, S.W.; Song, Y.Z.; Liu, Y.; Gong, Z.P. Estimating nitrogen status of rice canopy using hyperspectral reflectance combined with BPSO-SVR in cold region. Chemom. Intell. Lab. Syst. 2018, 172, 68–79. [Google Scholar] [CrossRef]
- Bu, Y.H.; Jiang, X.N.; Tian, J.P.; Hu, X.J.; Fei, X.; Huang, D.; Luo, H.B. Rapid and accurate detection of starch content in mixed sorghum by hyperspectral imaging combined with data fusion technology. J. Food Process Eng. 2022, 45, e14129. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, W.; Peng, Y.P.; Hu, Y.M.; Ma, T.; Xie, Y.K.; Wang, L.Y.; Liu, J.C.; Liu, Z.H. A new AG-AGB estimation model based on MODIS and SRTM data in Qinghai Province, China. Ecol. Indic. 2021, 133, 108378. [Google Scholar] [CrossRef]
- Wang, Q.; Chang, Q.R.; Li, K.; Chen, X.K.; Miao, H.L.; Shi, B.T.; Zeng, X.L.; Li, Z.F. Estimation of winter wheat canopy chlorophyll content based on principal component analysis and random forest regression. J. Triticeae Crops 2024, 44, 532–542. [Google Scholar]
- Feng, Q.; Liu, J.; Gong, J. UAV Remote sensing for urban vegetation mapping using random forest and texture analysis. Remote Sens. 2015, 7, 1074–1094. [Google Scholar] [CrossRef]
- Gao, M.; Huang, X.Y.; Wang, F.; Zhang, H.L.; Zhao, H.X.; Gao, X.Y. Sea surface salinity inversion based on DNN model. Adv. Mar. Sci. 2022, 40, 496–504. [Google Scholar]
- Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient processing of deep neural networks: A tutorial and survey. Proc. IEEE 2017, 105, 2295–2329. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, X.L.; Chen, S.C.; Lu, R.; Wang, Z.; Wang, N.; Hong, Y.S.; Chen, X.Y.; Xiao, Y.; Ma, Y.X.; et al. The validity domain of sensor fusion in sensing soil quality indicators. Geoderma 2023, 438, 116657. [Google Scholar] [CrossRef]
- Shen, W.Z.; He, J.; Li, S.S.; Zhuang, Y.H.; Wang, H.Y.; Liu, H.B.; Zhang, L.; Kappler, A. Opportunity and shift of nitrogen use in China. Geogr. Sustain. 2024, 5, 33–40. [Google Scholar] [CrossRef]
- Gu, J.F.; Yang, J.C. Nitrogen (N) transformation in paddy rice field: Its effect on N uptake and relation to improved N management. Crop Environ. 2022, 1, 7–14. [Google Scholar] [CrossRef]
- Li, W.C.; Xu, W.; Yin, G.F.; Zhang, X.L.; Zhang, Z.H.; Xi, B.; Lei, Q.L.; Zhai, L.M.; Zhang, Q.; Yang, L.Z.; et al. Critical processes and major factors that drive nitrogen transport from farmland to surface water bodies. Front. Agric. Sci. Eng. 2023, 10, 541–552. [Google Scholar] [CrossRef]
- Wang, W.H.; Zheng, H.B.; Wu, Y.P.; Yao, X.; Zhu, Y.; Cao, W.X.; Cheng, T. An assessment of background removal approaches for improved estimation of rice leaf nitrogen concentration with unmanned aerial vehicle multispectral imagery at various observation times. Field Crops Res. 2022, 283, 108543. [Google Scholar] [CrossRef]
- Tian, Y.C.; Yang, J.; Yao, X.; Zhu, Y.; Cao, W.X. A newly developed blue nitrogen index for estimating canopy leaf nitrogen concentration of rice. Chin. J. Appl. Ecol. 2010, 21, 966–972. [Google Scholar]
- Thorp, K.R.; Wang, G.; Bronson, K.F.; Badaruddin, M.; Mon, J. Hyperspectral data mining to identify relevant canopy spectral features for estimating durum wheat growth, nitrogen status, and grain yield. Comput. Electron. Agric. 2017, 136, 1–12. [Google Scholar] [CrossRef]
Instrumentation | Flight Altitude | Block Size | Spectral Range | Forward Overlap | Side Overlap |
---|---|---|---|---|---|
Gaiasky mini 3-VN | 50 m | No.1–6: 19.0 m2 No. 7–30: 22.5 m2 | 400–1000 nm | 80% | 65% |
Growth Stages | Minimum | Maximum | Mean | SD | CV (%) |
---|---|---|---|---|---|
tillering | 2.02 | 3.66 | 2.63 | 0.44 | 16.90 |
jointing-to-booting | 1.69 | 2.55 | 2.03 | 0.23 | 11.56 |
heading-to-flowering | 1.42 | 2.06 | 1.69 | 0.18 | 10.38 |
VI | Formula | Reference | VI | Formula | Reference |
---|---|---|---|---|---|
NPCI | (R670 − R460)/(R670 + R460) | [15] | SIPI | (R800 − R445)/(R800 − R680) | [16] |
SR | R750/R550 | [15] | PSRI | (R680 − R500)/R750 | [17] |
MSR | (R800/R760 − 1)/(R800/R670 + 1)0.5 | [15] | GI | R554/R677 | [17] |
PBI | R810/R560 | [15] | PSND | (R800 − R470)/(R800 + R470) | [17] |
LCI | (R850 − R710)/(R850 + R680) | PSSR | R800/R500 | [17] | |
GNDVI | (R750 − R550)/(R750 + R550) | [16] | RARS | R760/R500 | [17] |
SRPI | R430/R680 | [16] | OSAVI | 1.16 × (R800 − R670)/(R800 + R670 + 0.16) | [17] |
PRI | (R570 − R531)/(R570 + R531) | [16] | RENDVI | (R750 − R705)/(R750 + R705) | [18] |
MTCI | (R750 − R710)/(R710 − R680) | [16] | DCNI | (R720 − R700)/(R700 − R670)/(R720 − R670 + 0.03) | [19] |
NDRE | (R790 − R720)/(R790 + R720) | [16] | NDVI | (R800 − R670)/(R800 + R670) | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Zhong, W.; Peng, Z.; Tu, Y.; Xu, Y.; Li, Z.; Liang, J.; Huang, J.; Liu, X.; Fu, Y. Enhanced Estimation of Rice Leaf Nitrogen Content via the Integration of Hybrid Preferred Features and Deep Learning Methodologies. Agronomy 2024, 14, 1248. https://doi.org/10.3390/agronomy14061248
Peng Y, Zhong W, Peng Z, Tu Y, Xu Y, Li Z, Liang J, Huang J, Liu X, Fu Y. Enhanced Estimation of Rice Leaf Nitrogen Content via the Integration of Hybrid Preferred Features and Deep Learning Methodologies. Agronomy. 2024; 14(6):1248. https://doi.org/10.3390/agronomy14061248
Chicago/Turabian StylePeng, Yiping, Wenliang Zhong, Zhiping Peng, Yuting Tu, Yanggui Xu, Zhuxian Li, Jianyi Liang, Jichuan Huang, Xu Liu, and Youqiang Fu. 2024. "Enhanced Estimation of Rice Leaf Nitrogen Content via the Integration of Hybrid Preferred Features and Deep Learning Methodologies" Agronomy 14, no. 6: 1248. https://doi.org/10.3390/agronomy14061248
APA StylePeng, Y., Zhong, W., Peng, Z., Tu, Y., Xu, Y., Li, Z., Liang, J., Huang, J., Liu, X., & Fu, Y. (2024). Enhanced Estimation of Rice Leaf Nitrogen Content via the Integration of Hybrid Preferred Features and Deep Learning Methodologies. Agronomy, 14(6), 1248. https://doi.org/10.3390/agronomy14061248