Effect of Salt-Induced Stress on the Calorific Value of Two Miscanthus sacchariflorus (Amur Silvergrass) Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Cultures and NaCl Treatment
2.2. Determination of Plant Growth Parameters and Leaf Photosynthetic Efficiency
2.3. X-ray Analysis of Root Cross-Section
2.4. Measurement of Na+ and K+ Concentrations in the Plants
2.5. Measurement of the Calorific Value
2.6. Data Analysis
3. Results
3.1. Changes in the Growth Parameters of Amur Silvergrass Varieties under Salt Stress
3.2. Changes in the Photosynthetic Properties of Amur Silvergrass Varieties under Salt Stress
3.3. Changes in the Na+ and K+ Uptake Properties of Amur Silvergrass Varieties under Salt Stress
3.4. Changes in the Calorific Properties of Amur Silvergrass Varieties under Salt Stress and the Relationship with Na+ and K+
3.5. Distribution of Na+ and K+ in Amur Silvergrass Varieties under Salt Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chernousenko, G.I.; Pankova, E.I.; Kalinina, N.V.; Ubugunova, V.I.; Rukhovich, D.I.; Ubugunov, V.L.; Tsyrempilov, E.G. Salt-affected soils of the Barguzin depression. Eurasian Soil Sci. 2017, 50, 646–663. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Shen, X.J. Progress of Water and Salt Transport in Saline Lands and Hydrus Model: A Review. Acad. J. Sci. Technol. 2023, 6, 33–39. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef]
- Kataria, S.; Verma, S.K. Salinity stress responses and adaptive mechanisms in major glycophytic crops: The story so far. Salin. Responses Toler. Plants 2018, 1, 1–39. [Google Scholar]
- Ndiate, N.I.; Saeed, Q.; Haider, F.U.; Liqun, C.; Nkoh, J.N.; Mustafa, A. Co-application of biochar and Arbuscular mycorrhizal fungi improves salinity tolerance, growth and lipid metabolism of maize (Zea mays L.) in an alkaline soil. Plants 2021, 10, 2490. [Google Scholar] [CrossRef]
- Gomes Silveira, J.A.; De Almeida Viégas, R.; Almeida Da Rocha, I.M.; De Oliveira Monteiro Moreira, A.C.; De Azevedo Moreira, R.D.; Abreu Oliveira, J.T. Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. J. Plant Physiol. 2003, 160, 115–123. [Google Scholar] [CrossRef]
- Lu, C.X.; Zhang, Y.Z.; Mi, P.; Guo, X.Y.; Wen, Y.X.; Han, G.L.; Wang, B.S. Proteomics of Salt Gland–Secreted Sap Indicates a Pivotal Role for Vesicle Transport and Energy Metabolism in Plant Salt Secretion. Int. J. Mol. Sci. 2022, 23, 13885. [Google Scholar] [CrossRef]
- Zhu, J.K. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 2003, 6, 441–445. [Google Scholar] [CrossRef]
- Hossain, Z.; Mandal, A.K.A.; Datta, S.K.; Biswas, A.K. Development of NaCl-tolerant line in Chrysanthemum morifolium Ramat. through shoot organogenesis of selected callus line. J. Biotechnol. 2007, 129, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Türkan, I.; Demiral, T. Recent developments in understanding salinity tolerance. Environ. Exp. Bot. 2009, 67, 2–9. [Google Scholar] [CrossRef]
- Blumwald, E.; Aharon, G.S.; Apse, M.P. Sodium transport in plant cells. BBA-Biomembranes 2000, 1465, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Mäser, P.; Gierth, M.; Schroeder, J.I. Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil 2002, 247, 43–54. [Google Scholar] [CrossRef]
- Płażek, A.; Dubert, F.; Kościelniak, J.; Tatrzańska, M.; Maciejewski, M.; Gondek, K.; Żurek, G. Tolerance of Miscanthus × giganteus to salinity depends on initial weight of rhizomes as well as high accumulation of potassium and proline in leaves. Ind. Crop. Prod. 2014, 52, 278–285. [Google Scholar] [CrossRef]
- Shin, R.; Schachtman, D.P. Hydrogen peroxide mediates plant rootcell response to nutrient deprivation. Proc. Natl. Acad. Sci. USA 2004, 101, 8827–8832. [Google Scholar] [CrossRef] [PubMed]
- Schachtman, D.P.; Shin, R. Nutrient sensing and signaling: NPKS. Annu. Rev. Plant Biol. 2007, 58, 47–69. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.Y.; Shin, R.; Schachtman, D.P. Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell 2009, 21, 607–621. [Google Scholar] [CrossRef]
- Kim, M.J.; Ruzicka, D.; Shin, R.; Schachtman, D.P. The Arabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol. Plant 2012, 5, 1042–1057. [Google Scholar] [CrossRef] [PubMed]
- Adams, E.; Shin, R. Transport, signaling, and homeostasis of potassium and sodium in plants. J. Integr. Plant Biol. 2014, 56, 231–249. [Google Scholar] [CrossRef]
- Shankar, A.; Singh, A.; Kanwar, P.; Srivastava, A.K.; Pandey, A.; Suprasanna, P.; Kapoor, S.; Pandey, G.K. Gene expression analysis of rice seedling under potassium deprivation reveals major changes in metabolism and signaling components. PLoS ONE 2013, 8, e70321. [Google Scholar] [CrossRef]
- Sarath, N.G.; Shackira, A.M.; Puthur, J.T. Adaptive physio-anatomical modulations and ionomics of Volkameria inermis L. in response to NaCl. Int. J. Phytoremed. 2024, 26, 114–130. [Google Scholar] [CrossRef]
- Baranova, E.N.; Gulevich, A.A. Asymmetry of plant cell divisions under salt stress. Symmetry 2021, 13, 1811. [Google Scholar] [CrossRef]
- Ashraf, M.; O’Leary, J.W. Ion distribution in leaves of varying age in salt-tolerant lines of alfalfa under salt stress. J. Plant Nutr. 1994, 17, 1463–1476. [Google Scholar] [CrossRef]
- Stavridou, E.; Webster, R.J.; Robson, P.R.H. Novel Miscanthus genotypes selected for different drought tolerance phenotypes show enhanced tolerance across combinations of salinity and drought treatments. Ann. Bot. 2019, 124, 653–674. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xue, S.; Kang, W.W.; Qian, Z.X.; Yi, Z.L. Genetic diversity and population structure of Miscanthus lutarioriparius, an endemic plant of China. PLoS ONE 2019, 14, e0211471. [Google Scholar] [CrossRef] [PubMed]
- Brosse, N.; Dufour, A.; Meng, X.Z.; Sun, Q.N.; Ragauskas, A. Miscanthus: A fast-growing crop for biofuels and chemicals production. Biofuel. Bioprod. Bior. 2012, 6, 580–598. [Google Scholar] [CrossRef]
- Heaton, E.A.; Dohleman, F.G.; Long, S.P. Meeting US biofuel goals with less land: The potential of Miscanthus. Global Change Biol. 2008, 14, 2000–2014. [Google Scholar] [CrossRef]
- Atkinson, C. Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus. Biomass Bioenerg. 2009, 33, 752–759. [Google Scholar] [CrossRef]
- Clifton-Brown, J.C.; Lewandowski, I. Screening Miscanthus genotypes in field trials to optimize biomass yield and quality in Southern Germany. Eur. J. Agron. 2002, 16, 97–110. [Google Scholar] [CrossRef]
- Mann, J.J.; Barney, J.N.; Kyser, G.B.; DiTomaso, J.M. Root system dynamics of miscanthus × giganteus and Panicum virgatum in response to rainfed and irrigated conditions in California. Bioenerg. Res. 2013, 6, 678–687. [Google Scholar] [CrossRef]
- Pope, C.; Mays, N. The Role of Theory in Qualitative Research Differences in Ontology and Epistemology. In Qualitative Research in Health Care, 4th ed.; Pope, C., Mays, N., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2020; pp. 15–26. [Google Scholar]
- Yost, M.A.; Randall, B.K.; Kitchen, N.R.; Heaton, E.A.; Myers, R.L. Yield potential and nitrogen requirements of miscanthus × giganteus on eroded soil. Agron. J. 2017, 109, 684–695. [Google Scholar] [CrossRef]
- Szulczewski, W.; Zyromski, A.; Jakubowski, W.; Biniak-Pierog, M. A new method for the estimation of biomass yield of giant miscanthus (Miscanthus giganteus) in the course of vegetation. Renew. Sust. Energy Rev. 2018, 82, 1787–1795. [Google Scholar] [CrossRef]
- Deuter, M. Breeding approaches to improvement of yield and quality in Miscanthus grown in Europe. In European Miscanthus Improvement Final Report September; Lewandowski, I., Clifton-Brown, J.C., Eds.; Institute of Crop Production and Grassland Research, University of Hohenheim: Stuttgart, Germany, 2000; Volume 2000, pp. 28–52. [Google Scholar]
- Farrell, A.D.; Clifton-Brown, J.C.; Lewandowski, I.; Jones, M.B. Genotypic variation in cold tolerance influences the yield of Miscanthus. Ann. Appl. Biol. 2006, 149, 337–345. [Google Scholar] [CrossRef]
- Miles, T.R.; Miles, T.R., Jr.; Baxter, L.L.; Bryers, R.W.; Jenkins, B.M.; Oden, L.L. Boiler deposits from firing biomass fuels. Biomass Bioenergy 1996, 10, 125–138. [Google Scholar] [CrossRef]
- Obernberger, I.; Biedermann, F.; Widmann, W.; Riedl, R. Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass Bioenergy 1997, 12, 211–224. [Google Scholar] [CrossRef]
- Marcum, K.B.; Anderson, S.J.; Engelke, M.C. Salt gland ion secretion: A salinity tolerance mechanism among five zoysiagrass species. Crop Sci. 1998, 38, 806–810. [Google Scholar] [CrossRef]
- Xie, Y.J.; Ling, T.F.; Han, Y.; Liu, K.L.; Zheng, Q.S.; Huang, L.Q.; Yuan, X.X.; He, Z.Y.; Hu, B.; Fang, L.; et al. Carbon Monoxide Enhances Salt Tolerance by Nitric Oxide-Mediated Maintenance of Ion Homeostasis and Up-Regulation of Antioxidant Defence in Wheat Seedling Roots. Plant Cell Environ. 2008, 31, 1864–1881. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, N.; Matoh, T. Characterization of Na+ exclusion mechanisms of salt-tolerant reed plants in comparison with salt-sensitive rice plants. Physiol. Plant. 1991, 83, 170–176. [Google Scholar] [CrossRef]
- Wang, S.M.; Zheng, W.J.; Ren, J.Z.; Zhang, C.L. Selectivity of various types of salt-resistant plants for K+ over Na+. J. Arid Environ. 2002, 52, 457–472. [Google Scholar] [CrossRef]
- Yue, X.; Chen, D.Z.; Luo, J.; Xin, Q.F.; Huang, Z. Upgrading of reed pyrolysis oil by using its biochar-based catalytic esterification and the influence of reed sources. Appl. Energy 2020, 268, 114970. [Google Scholar] [CrossRef]
- Marcum, K.B.; Pessarakli, M.; Kopec, D.M. Relative salinity tolerance of 21 turf-type desert salt grasses compared to bermudagrass. HortScience 2005, 40, 827–829. [Google Scholar] [CrossRef]
- Lewandowski, I.; Heinz, A. Delayed harvest of miscanthus—Influences on biomass quantity and quality and environmental impacts of energy production. Eur. J. Agron. 2003, 19, 45–63. [Google Scholar] [CrossRef]
- Lewandowski, I.; Kicherer, A. Combustion quality of biomass: Practical relevance and experiments to modify the biomass quality of Miscanthus × giganteus. Eur. J. Agron. 1997, 6, 163–177. [Google Scholar] [CrossRef]
- Monti, A.; Di Virgilio, N.; Venturi, G. Mineral composition and ash content of six major energy crops. Biomass Bioenergy 2008, 32, 216–223. [Google Scholar] [CrossRef]
- Singh, M.P.; Erickson, J.E.; Sollenberger, L.E.; Woodard, K.R.; Vendramini, J.M.B.; Fedenko, J.R. Mineral composition and biomass partitioning of sweet sorghum grown for bioenergy in the southeastern USA. Biomass Bioenergy 2012, 47, 1–8. [Google Scholar] [CrossRef]
- Ge, X.M.; Xu, F.Q.; Vasco-Correa, J.; Li, Y.B. Giant reed: A competitive energy crop in comparison with miscanthus. Renew. Sust. Energy Rev. 2016, 54, 350–362. [Google Scholar] [CrossRef]
- Ashraf, M.; O’Leary, J.W. Distribution of cations in leaves of salt-tolerant and salt-sensitive lines of sunflower under saline conditions. J. Plant Nutr. 1995, 18, 2379–2388. [Google Scholar] [CrossRef]
- Bhatti, A.S.; Steinert, S.; Sarwar, G.; Hilpert, A.; Jeschke, W.D. Ion distribution in relation to leaf age in Leptochloa fusca* (L.) Kunth (Kallar grass) I. K, Na, Ca and Mg. New Phytol. 1993, 123, 539–545. [Google Scholar] [CrossRef]
- Plaut, Z.; Meinzer, F.C.; Federman, E. Leaf development, transpiration and ion uptake and distribution in sugarcane cultivars grown under salinity. Plant Soil 2000, 218, 59–69. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.Q. How do plants maintain pH and ion homeostasis under saline-alkali stress? Front. Plant Sci. 2023, 14, 1217193. [Google Scholar]
- Wang, L.; Liu, Y.H.; Li, D.; Feng, S.J.; Yang, J.W.; Zhang, J.J.; Zhang, J.L.; Wang, D.; Gan, Y.T. Improving salt tolerance in potato through overexpression of AtHKT1 gene. BMC Plant Biol. 2019, 19, 357. [Google Scholar] [CrossRef]
- Kim, S.; Rayburn, A.L.; Voigt, T.; Parrish, A.; Lee, D.K. Salinity effects on germination and plant growth of prairie cordgrass and switchgrass. Bioenerg. Res. 2012, 5, 225–235. [Google Scholar] [CrossRef]
- Chen, J.B.; Zong, J.Q.; Li, D.D.; Chen, Y.; Wang, Y.; Guo, H.L.; Li, J.J.; Li, L.; Guo, A.G.; Liu, J.X. Growth response and ion homeostasis in two bermudagrass (Cynodon dactylon) cultivars differing in salinity tolerance under salinity stress. Soil Sci. Plant Nutr. 2019, 65, 419–429. [Google Scholar] [CrossRef]
- Peng, Z.; He, S.P.; Sun, J.L.; Pan, Z.E.; Gong, W.F.; Lu, Y.L.; Du, X.M. Na+ compartmentalization related to salinity stress tolerance in upland cotton (Gossypium hirsutum) seedlings. Sci. Rep. 2016, 6, 34548. [Google Scholar]
- Chen, C.L.; Van der Schoot, H.; Dehghan, S.; Alvim Kamei, C.L.; Schwarz, K.U.; Meyer, H.; Visser, R.G.F.; Van der Linden, C.G. Genetic diversity of salt tolerance in Miscanthus. Front. Plant Sci. 2017, 8, 187. [Google Scholar]
- Shabala, S.; Cuin, T.A. Potassium transport and plant salt tolerance. Physiol. Plant. 2008, 133, 651–669. [Google Scholar] [CrossRef] [PubMed]
- Bose, J.; Shabala, L.; Pottosin, I.; Zeng, F.R.; Velarde-Buendía, A.M.; Massart, A.; Poschenrieder, C.; Hariadi, Y.; Shabala, S. Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: Physiological traits that differentiate salinity tolerance between pea and barley. Plant Cell Environ. 2014, 37, 589–600. [Google Scholar] [CrossRef]
- Wu, H.H.; Shabala, L.; Zhou, M.X.; Su, N.N.; Wu, Q.; Ul-Haq, T.; Zhu, J.J.; Mancuso, S.; Azzarello, E.; Shabala, S. Root vacuolar Na+ sequestration but not exclusion from uptake correlates with barley salt tolerance. Plant J. 2019, 100, 55–67. [Google Scholar] [CrossRef]
Varieties | M022 | M127 | |||||||
---|---|---|---|---|---|---|---|---|---|
NaCl (mmol L−1) | 0 | 90 | 180 | 270 | 0 | 90 | 180 | 270 | |
Na+ (mmol kg−1) | Roots | 0.08 | 15.31 | 26.03 | 28.22 | 0.14 | 20.78 | 26.31 | 28.91 |
Stems | 0.07 | 10.03 | 11.44 | 14.46 | 0.11 | 16.18 | 25.28 | 33.08 | |
Aging leaves | 0.14 | 20.56 | 22.29 | 28.21 | 0.13 | 21.81 | 30.28 | 33.41 | |
Functional leaves | 0.08 | 4.38 | 9.39 | 18.94 | 0.12 | 21.8 | 37.20 | 40.59 | |
Spear leaves | 0.05 | 3.28 | 9.39 | 19.58 | 0.08 | 17.38 | 32.32 | 36.16 | |
K+ (mmol kg−1) | Roots | 35.81 | 19.98 | 14.73 | 11.59 | 43.82 | 30.95 | 23.35 | 23.60 |
Stems | 18.14 | 18.78 | 18.24 | 16.49 | 38.86 | 32.5 | 23.23 | 17.18 | |
Aging leaves | 33.22 | 25.68 | 23.81 | 17.36 | 40.05 | 22.67 | 20.90 | 17.93 | |
Functional leaves | 35.25 | 32.88 | 27.59 | 29.16 | 48.25 | 37.22 | 28.91 | 19.68 | |
Spear leaves | 39.64 | 37.55 | 35.02 | 31.97 | 49.97 | 45.87 | 34.23 | 27.95 | |
K+/Na+ | Roots | 442.63 | 1.31 | 0.57 | 0.41 | 313.71 | 1.49 | 0.89 | 0.82 |
Stems | 262.43 | 1.87 | 1.60 | 1.14 | 356.31 | 2.01 | 0.92 | 0.52 | |
Aging leaves | 238.01 | 1.25 | 1.07 | 0.62 | 310.44 | 1.04 | 0.69 | 0.54 | |
Functional leaves | 472.67 | 7.51 | 2.94 | 1.54 | 419.51 | 1.71 | 0.78 | 0.49 | |
Spear leaves | 846.98 | 11.44 | 3.73 | 1.63 | 651.08 | 2.64 | 1.06 | 0.77 | |
Selective transport capacity (ST) | Stems | 0.59 | 1.44 | 2.82 | 2.78 | 1.14 | 1.35 | 1.04 | 0.64 |
Aging leaves | 0.54 | 0.96 | 1.89 | 1.50 | 0.99 | 0.70 | 0.78 | 0.66 | |
Functional leaves | 1.07 | 5.76 | 5.19 | 3.75 | 1.34 | 1.15 | 0.88 | 0.59 | |
Spear leaves | 1.91 | 8.76 | 6.599 | 3.98 | 2.08 | 1.77 | 1.19 | 0.95 |
Element | Varieties | Root Cross-Sectional Structure | Weight (%) |
---|---|---|---|
Na+ | M022 | Exodermis | 2.6225 |
Middle cortex | 2.4675 | ||
Stele | 1.315 | ||
M127 | Exodermis | 1.1925 | |
Middle cortex | 1.205 | ||
Stele | 1.4375 | ||
K+ | M022 | Exodermis | 1.635 |
Middle cortex | 3.5475 | ||
Stele | 3.445 | ||
M127 | Exodermis | 2.9 | |
Middle cortex | 2.935 | ||
Stele | 2.235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Li, L.; Chen, J.; Nkoh, J.N.; Hao, D.; Li, J.; Wang, J.; Li, D.; Liu, J.; Guo, H.; et al. Effect of Salt-Induced Stress on the Calorific Value of Two Miscanthus sacchariflorus (Amur Silvergrass) Varieties. Agronomy 2024, 14, 1259. https://doi.org/10.3390/agronomy14061259
Lu H, Li L, Chen J, Nkoh JN, Hao D, Li J, Wang J, Li D, Liu J, Guo H, et al. Effect of Salt-Induced Stress on the Calorific Value of Two Miscanthus sacchariflorus (Amur Silvergrass) Varieties. Agronomy. 2024; 14(6):1259. https://doi.org/10.3390/agronomy14061259
Chicago/Turabian StyleLu, Hailong, Ling Li, Jingbo Chen, Jackson Nkoh Nkoh, Dongli Hao, Jianjian Li, Jingjing Wang, Dandan Li, Jianxiu Liu, Hailin Guo, and et al. 2024. "Effect of Salt-Induced Stress on the Calorific Value of Two Miscanthus sacchariflorus (Amur Silvergrass) Varieties" Agronomy 14, no. 6: 1259. https://doi.org/10.3390/agronomy14061259
APA StyleLu, H., Li, L., Chen, J., Nkoh, J. N., Hao, D., Li, J., Wang, J., Li, D., Liu, J., Guo, H., & Zong, J. (2024). Effect of Salt-Induced Stress on the Calorific Value of Two Miscanthus sacchariflorus (Amur Silvergrass) Varieties. Agronomy, 14(6), 1259. https://doi.org/10.3390/agronomy14061259