Interannual Evolution Characteristics of the Carbon and Nitrogen Footprints of Maize Production in Inner Mongolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area, Crops, and Data Sources
2.2. System Boundaries and Emission Factors
2.3. Indicator Accounting and Methods
2.3.1. Carbon Footprint
GHG = GHGinput + TotalN2O × 44/28 × 298
N2Oemission = 0.68 × e(0.0035 × Nrate)
NO3−leaching = 2.38 × e(0.0041 × Nrate)
NH3 volatilization = 2.53 + 0.058 × Nrate
Nsurplus = N − Nuptake
Nuptake = Y × 0.86/0.845 × seed nitrogen uptake
2.3.2. Nitrogen Footprint
NFtotal = NFinputs + NFN2O + NFNH3 + NFNH4+ + NFNO3−
NFNH3 = NH3 volatilization × 17/14 × 0.833
NFNH4+ = N × γ × 18/14 × 0.786
NFNO3− = N × σ × 62/14 × 0.238
PFPN = Y/N
2.3.3. Net Ecosystem Carbon Budget
Cinput = CFRW + CNPP
Coutput = CHR + CGHG= CHR + GHG × 12/44
CG = YP × 0.45
CS = YP × (1 − HI)/HI × 0.45
CR = YP/(S/R × HI) × 0.45
CEER = CR × YER
2.3.4. Sustainability Index
CP = CG + CS + CR + CER
2.4. Statistical Analysis
3. Results
3.1. Interannual Variation in Maize Sowing Area and Yield in Inner Mongolia
3.2. Characteristics of Interannual Variation in Maize Production Inputs in Inner Mongolia
3.3. Temporal Changes in Carbon Emissions and Carbon Footprint of Maize Production
3.4. Characterization of Interannual Variation in Reactive Nitrogen Losses and Nitrogen Footprint of Maize Production
3.5. Characterizing Interannual Variability in the Net Ecosystem Carbon Balance and Sustainability Index of Maize Production
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Litskas, V.D.; Platis, D.P.; Anagnostopoulos, C.D.; Tsaboula, A.C.; Menexes, G.C.; Kalburtji, K.L.; Stavrinides, M.C.; Mamolos, A.P. Climate change and agriculture: Carbon footprint estimation for agricultural products and labeling for emissions mitigation. In Sustainability of the Food System; Academic Press: Cambridge, MA, USA, 2020; pp. 33–49. [Google Scholar]
- Zhao, J.R.; Wang, R.H. Factors Promoting the Steady Increase of American Maize Production and Their Enlightenments for China. J. Maize Sci. 2009, 17, 156–159, 163. (In Chinese) [Google Scholar]
- Canton, H. Food and agriculture organization of the United Nations—FAO. In The Europa Directory of International Organizations 2021; Routledge: London, UK, 2021; pp. 297–305. [Google Scholar]
- Fu, L.H.; Ye, L.Q. The Editorial Board and Editorial Staff of China Statistical Yearbook 2023 Ed; China Statistical Publishing House: Beijing, China, 2023; pp. 4–5. Available online: https://www.zgtjnj.org/navibooklist-n3023102708-1.html (accessed on 27 April 2024). (In Chinese)
- Cao, S.Y. Editorial Committee of Inner Mongolia Statistical Yearbook, Editorial Committee of Inner Mongolia Statistical Yearbook, Editor in Chief, Inner Mongolia Statistical Yearbook; China Statistical Publishing House: Beijing, China, 2023; p. 4. Available online: https://tj.nmg.gov.cn/files_pub/content/PAGEPACK/363c5d1932c74caabc7b1d3af06c0cd1/zk/indexch.htm (accessed on 25 April 2024). (In Chinese)
- Dong, H.M.; Li, Y.E.; Tao, X.P.; Peng, X.P.; Li, N.; Zhu, Z.P. China greenhouse gas emissions from agricultural activities and its mitigation strategy. Trans. CSAE 2008, 24, 269–273. (In Chinese) [Google Scholar]
- Zorogastúa, P.; Feliciano, D.; Felipe de Mendiburu, D. Combining reference trials, farm surveys and mathematical models to assess carbon footprint and mitigation measures in tropical agriculture. Ann. Agric. Sci. 2019, 64, 188–195. [Google Scholar]
- Hellweg, S.; Mila, I. Emerging approaches, challenges and opportunities in life cycle assessment. Science 2014, 344, 1109. [Google Scholar] [CrossRef] [PubMed]
- Cowell, S.J.; Clift, R. Impact assessment for LCAs involving agricultural production. Int. J. Life Cycle Assess. 1997, 2, 99–103. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Zhang, W.S.; He, X.M.; Zhang, Z.D.; Gong, S.; Zhang, Q.; Zhang, W.; Liu, D.Y.; Zou, C.Q.; Chen, X.P. Carbon footprint assessment for irrigated and rainfed maize (Zea mays L.) production on the Loess Plateau of China. Biosyst. Eng. 2018, 167, 75–86. [Google Scholar] [CrossRef]
- Xu, X.M.; Lan, Y. Spatial and temporal patterns of carbon footprints of grain crops in China. J. Clean. Prod. 2017, 146, 218–227. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Pu, C.; Zhao, X.; Wang, X.; Liu, S.L.; Zhang, H.L. Historical dynamics and future trends of carbon footprint of wheat and maize in China. Resour. Sci. 2018, 40, 1800–1811. (In Chinese) [Google Scholar]
- Xue, J.F.; Qi, J.Y.; Gao, Z.Q.; Ren, A.X.; Wang, Z.B.; Du, T.Q. Dynamics of carbon footprint of maize production with different functional units in Shanxi Province, China. Pak. J. Agric. Sci. 2018, 55, 489–496. [Google Scholar]
- Huang, X.M.; Chen, C.Q.; Chen, M.Z.; Song, Z.W.; Deng, A.X.; Zhang, J.; Zhang, C.Y.; Zhang, W.J. Carbon footprints of major staple grain crops production in three provinces of Northeast China during 2004–2013. Chin. J. Appl. Ecol. 2016, 27, 3307–3315. (In Chinese) [Google Scholar] [CrossRef]
- Wu, P. Effects of Fertilization Depth on Water and Fertilizer Utilization and Nitrogen Balance in Upland Maize Field. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2022. (In Chinese). [Google Scholar]
- Xue, J.F.; Pu, C.; Liu, S.L.; Zhao, X.; Zhang, R.; Chen, F.; Xiao, X.P.; Zhang, H.L. Carbon and nitrogen footprint of double rice production in Southern China. Ecol. Indic. 2016, 64, 249–257. [Google Scholar] [CrossRef]
- Chen, Z.D.; Xu, C.C.; Ji, L.; Fang, F.P. Comprehensive evaluation for carbon and nitrogen footprints of rice–wheat rotation system in Middle Yangtze River Basin. J. Plant Nutr. Fertil. 2019, 25, 1125–1133. (In Chinese) [Google Scholar]
- Xue, X.B.; Landis, A.E. Eutrophication Potential of Food Consumption Patterns. Environ. Sci. Technol. 2010, 44, 6450–6456. [Google Scholar] [CrossRef]
- Wen, L.Y. Effects of Nitrogen Application Rates and Cultivation on Carbon and Nitrogen Footprint of Winter Wheat-Summermaize System. Master’s Thesis, Hebei Agricultural University, Baoding, China, 2019. (In Chinese). [Google Scholar]
- Gao, X.W. Greenhouse Gases Emission from Soil and Carbon-Nitrogen Budget in the Northern China Plain with High Productivity. Master’s Thesis, China Agricultural University, Beijing, China, 2003. (In Chinese). [Google Scholar]
- Ma, Y.F. Simulation of Soil Carbon Cycle in Agro-Ecosystem in the Different Tillage Systems by DNDC Model. Master’s Thesis, Gansu Agricultural University, Lanzhou, China, 2011. (In Chinese). [Google Scholar]
- Ni, X.Y.; Yang, W.Q.; Qi, Z.M.; Liao, S.; Xu, Z.F.; Tan, B.; Wang, B.; Wu, Q.G.; Fu, C.K.; You, C.M. Simple additive simulation overestimates real influence: Altered nitrogen and rainfall modulate the effect of warming on soil carbon fluxes. Glob. Change Biol. 2017, 23, 3371–3381. [Google Scholar] [CrossRef]
- Chen, Z.M.; Xu, Y.H.; Fan, J.L.; Yu, H.Y.; Ding, W.X. Soil autotrophic and heterotrophic respiration in response to different N fertilization and environmental conditions from a cropland in Northeast China. Soil Biol. Biochem. 2017, 110, 103–115. [Google Scholar] [CrossRef]
- Yang, H.; Qiao, Y.; Wang, X.B.; Chen, X.P.; Zhang, W.S. Spatio-temporal characteristics of energy use efficiency and net ecosystem carbon budget of maize production in Huang-Huai-Hai region. Acta Ecol. Sin. 2022, 42, 6184–6195. (In Chinese) [Google Scholar]
- Zhang, W.S.; Qian, C.R.; Carlson, K.M.; Ge, X.B.; Wang, X.B.; Chen, X.P. Increasing farm size to improve energy use efficiency and sustainability in maize production. Food Energy Secur. 2021, 10, 1–12. [Google Scholar] [CrossRef]
- Chen, X.H.; Ma, C.C.; Zhou, H.M.; Liu, Y.; Huang, X.M.; Wang, M.K.; Cai, Y.Y.; Su, D.; Muneer, M.A.; Guo, M.C.; et al. Identifying the main crops and key factors determining the carbon footprint of crop production in China, 2001–2018. Resour. Conserv. Recycl. 2021, 172, 1055661. [Google Scholar] [CrossRef]
- He, L.Y.; Zhang, A.F.; Wang, X.D.; Li, J.; Hussain, Q. Effects of different tillage practices on the carbon footprint of wheat and maize production in the Loess Plateau of China. J. Clean. Prod. 2019, 234, 297–305. [Google Scholar] [CrossRef]
- Cui, Z.L.; Zhang, H.Y.; Chen, X.P.; Zhang, C.C.; Huang, C.D.; Zhang, W.F.; Mi, G.H.; Miao, Y.X.; Li, X.L.; Yin, H.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.F.; Dou, Z.X.; He PJu, X.T.; Powlson, D.; Chadwick, D.; Nores, D.; Lu, Y.L.; Zhang, Y.; Wu, L. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.L.; Yue, S.C.; Wang, G.L.; Zhang, F.S.; Chen, X.P. In-Season Root-Zone N Management for Mitigating Greenhouse Gas Emission and Reactive N Losses in Intensive Wheat Production. Environ. Sci. Technol. 2013, 47, 6015–6022. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.Q.; Li, S.H.; Guo, L.G.; Cao, C.G.; Li, C.F.; Zhai, Z.B.; Zhou, J.Y.; Mei, Y.M.; Ke, H.J. Advantages of nitrogen fertilizer deep placement in greenhouse gas emissions and net ecosystem economic benefits from no-tillage paddy fields. J. Clean. Prod. 2020, 263, 121322. [Google Scholar] [CrossRef]
- Qin, S.P.; Hu, C.S.; Zhang, Y.M.; Wang, Y.Y.; Dong, W.X.; Li, X.X. Advances in nitrogen footprint research. Chin. J. Eco-Agric. 2011, 19, 462–467. (In Chinese) [Google Scholar] [CrossRef]
- Hao, X.Y. Spatiotemporal variation of carbon source/sink in agricultural ecosystem based on carbon footprint in Heilongjiang land reclamation areas. Chin. J. Agric. Resour. Reg. Plan. 2022, 43, 64–73. (In Chinese) [Google Scholar]
- Lin, Z.C.; Dai, Q.G.; Ye, S.C.; Wu, F.G.; Jia, Y.S.; Chen, J.D.; Xu, L.S.; Zhang, H.C.; Huo, Z.Y.; Xu, K.; et al. Effects of nitrogen application levels on ammonia volatilization and nitrogen utilization during rice growing season. Rice Sci. 2012, 19, 125–134. [Google Scholar] [CrossRef]
- Guinée, J.B. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002; p. 692. ISBN 1-4020-0228-9. [Google Scholar]
- Xia, L.L.; Lam, S.K.; Wang, S.W.; Zhou, W.; Chen, D.L.; Yan, X.Y. Optimizing nitrogen fertilization rate to enhance soil carbon storage and decrease nitrogen pollution in paddy ecosystems with simultaneous straw incorporation. Agric. Ecosyst. Environ. 2020, 298, 106968. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis; China Agricultural Publishing House: Beijing, China, 2000; Available online: https://max.book118.com/html/2022/0304/6035102104004121.shtm (accessed on 16 April 2024). (In Chinese)
- Liu, X.Y. Study on Nutrients Balance and Requirement in Agricultural Production in China. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2018. (In Chinese). [Google Scholar]
- Kuzyakov, Y. Separating microbial respiration of exudates from root respiration in non-sterile soils: A comparison of four methods. Soil Biol. Biochem. 2002, 34, 1621–1631. [Google Scholar] [CrossRef]
- Bolinder, M.A.; Janzen, H.H.; Gregorich, E.G.; Angers, D.A. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agric. Ecosyst. Environ. 2007, 118, 29–42. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Wang, M.Y.; Hu, S.J.; Zhang, X.D.; Ouyang, Z.; Zhang, G.L.; Huang, B.A.; Zhao, S.W.; Wu, J.S.; Xie, D.T. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl. Acad. Sci. USA 2018, 115, 4045–4050. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 3030, 981–990. [Google Scholar] [CrossRef]
- Grassini, P.; Cassman, K.G. High-yield maize with large net energy yield and small global warming intensity. Proc. Natl. Acad. Sci. USA 2012, 109, 1074–1079. [Google Scholar] [CrossRef]
- Xia, L.L.; Ti, C.P.; Li, B.L.; Xia, Y.Q.; Yan, X.Y. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Sci. Total Environ. 2016, 556, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Jia, L. Study on the Spatiotemporal of Carbon and Water Footprints of Maize Production and Its Influencing Factors in Jilin Province. Master’s Thesis, Northeast Normal University, Changchun, China, 2021. (In Chinese). [Google Scholar]
- Wang, B.; Li, Y.E.; Wan, Y.F.; Qin, X.B.; Gao, Q.Z. Effect and Assessment of Controlled Release Fertilizer and Additive Treatments on Greenhouse Gases Emission from a Double Rice Field. Sci. Agric. Sin. 2014, 47, 314–323. (In Chinese) [Google Scholar]
- Zhou, J.X.; Zhai, X.F.; Sun, H.R.; Tang, L.; Shen, Y.F. Effects of controlled-release urea on CO2 emission from dry farmland under different mulching patterns. J. Agro-Environ. Sci. 2019, 38, 2429–2438. (In Chinese) [Google Scholar]
- Li, P.; Hao, X.Y.; Zong, Y.Z.; Gu, R.S.; Jia, S.H.; Dong, Q.; Guo, L.P. Effect of tillage practice on carbon footprint of rainfed winter wheat. Chin. J. Eco-Agric. 2017, 25, 839–847. (In Chinese) [Google Scholar]
- Huang, Y.W.; Ren, W.; Wang, L.X.; Hui, D.F.; Grove, J.; Yang, X.J.; Tao, B.; Goff, B. Greenhouse gas emissions and crop yield in no-tillage systems: A meta-analysis. Agric. Ecosyst. Environ. 2018, 268, 144–153. [Google Scholar] [CrossRef]
- Lian, B.R.; Li, Y.H.; Wang, J.Q.; Yang, J.G.; Zou, G.Y. Effects of Chemical Fertilizer Input on Active Nitrogen Emission and Carbon Footprint of Maize System in Hebei Province. Shandong Agric. Sci. 2022, 54, 112–117. (In Chinese) [Google Scholar]
- Luyssaert, S.; Ciais, P.; Piao, S.L.; Schulze, E.D.; Jung, M.; Zaejle, S.; Schelhaas, M.J.; Reichstein, M.; Churkina, G.; Papale, D.; et al. The European carbon balance. Part 3: Forests. Glob. Change Biol. 2010, 16, 1429–1450. [Google Scholar] [CrossRef]
- Xia, L.L.; Yan, X.Y.; Cai, Z.C. Research progress and prospect of greenhouse gas mitigation and soil carbon sequestration in croplands of China. J. Agro-Environ. Sci. 2020, 39, 834–841. (In Chinese) [Google Scholar]
- Rezvani Moghaddam, P. Evaluation of carbon allocation coefficients and net primary production for major crops in Khorasan-e Razavi Province. J. Crop Prod. 2018, 11, 141–152. [Google Scholar]
- Zhang, J.L. Studies on Soil Respiration and Carbon Balance under Different Tillage and N-Fertilizer Practices in A Dryland Summer Maize Field. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2014. (In Chinese). [Google Scholar]
Input | Unit | Greenhouse Gas Emission Rate (kg CO2 eq) | Cumulative Reactive N Losses (kg N eq) |
---|---|---|---|
Nitrogen fertilizer | kg N | 8.30 | 0.89 × 10−3 |
Phosphate fertilizer | kg P2O5 | 2.33 | 0.54 × 10−3 |
Potash production | kg K2O | 0.66 | 0.03 × 10−3 |
Pesticide | kg | 18.0 | 4.49 × 10−3 |
Agricultural film | kg | 2.5 | 12.03 × 10−3 |
Diesel | L | 3.7 | 4.58 × 10−3 |
Labor | person per day | 0.86 | — |
Seed | kg | 1.93 | 0.14 × 10−3 |
Year | N (kg ha−1) | P2O5 (kg ha−1) | K2O (kg ha−1) | Pesticide (kg ha−1) | Agricultural Film (kg ha−1) | Diesel (L ha−1) | Seed (kg ha−1) | Labor (day ha−1) |
---|---|---|---|---|---|---|---|---|
2003 | 177.5 | 48.9 | 9.0 | 2.3 | 7.5 | 70.4 | 55.5 | 133.5 |
2004 | 191.0 | 85.7 | 12.1 | 2.4 | 8.6 | 76.4 | 46.8 | 131.7 |
2005 | 206.0 | 75.1 | 16.6 | 2.3 | 8.7 | 65.5 | 44.4 | 126.8 |
2006 | 223.0 | 86.2 | 15.0 | 1.8 | 10.5 | 74.0 | 40.5 | 101.7 |
2007 | 231.6 | 97.3 | 12.4 | 2.2 | 8.9 | 67.1 | 42.3 | 102.2 |
2008 | 213.2 | 83.5 | 19.9 | 2.6 | 8.4 | 56.8 | 41.0 | 98.6 |
2009 | 206.5 | 88.7 | 17.6 | 3.1 | 9.0 | 71.7 | 41.4 | 93.2 |
2010 | 223.0 | 105.9 | 16.8 | 5.8 | 10.5 | 53.6 | 38.3 | 77.9 |
2011 | 223.0 | 109.1 | 23.7 | 5.8 | 11.3 | 66.4 | 40.4 | 78.6 |
2012 | 209.8 | 106.6 | 21.0 | 5.4 | 10.5 | 49.6 | 38.3 | 73.7 |
2013 | 203.4 | 112.4 | 22.0 | 5.8 | 14.9 | 47.4 | 36.8 | 63.3 |
2014 | 210.9 | 118.0 | 28.3 | 4.6 | 13.7 | 76.5 | 34.5 | 58.5 |
2015 | 207.6 | 117.8 | 36.0 | 5.1 | 13.4 | 109.0 | 31.2 | 55.5 |
2016 | 237.5 | 126.3 | 29.5 | 4.2 | 12.2 | 98.2 | 31.5 | 44.0 |
2017 | 227.0 | 123.6 | 32.8 | 4.9 | 11.1 | 86.8 | 31.7 | 36.9 |
2018 | 222.3 | 129.3 | 43.9 | 4.3 | 14.6 | 82.3 | 29.7 | 35.9 |
2019 | 218.9 | 131.6 | 40.2 | 4.4 | 15.9 | 94.8 | 31.2 | 31.4 |
2020 | 196.5 | 139.0 | 43.1 | 4.6 | 18.0 | 114.4 | 28.7 | 29.3 |
2021 | 189.6 | 130.3 | 45.5 | 5.5 | 18.0 | 79.8 | 30.0 | 27.5 |
2022 | 203.4 | 139.9 | 42.6 | 5.6 | 18.5 | 79.3 | 28.2 | 24.9 |
Average value | 211.1 | 107.8 | 26.4 | 4.1 | 12.2 | 76.0 | 37.1 | 71.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Cheng, Z.; Zhao, R.; Wang, F.; Shi, H.; Li, Y.; Wang, Z.; Bai, L.; Wang, Y.; Zhang, J.; et al. Interannual Evolution Characteristics of the Carbon and Nitrogen Footprints of Maize Production in Inner Mongolia. Agronomy 2024, 14, 1273. https://doi.org/10.3390/agronomy14061273
Liang H, Cheng Z, Zhao R, Wang F, Shi H, Li Y, Wang Z, Bai L, Wang Y, Zhang J, et al. Interannual Evolution Characteristics of the Carbon and Nitrogen Footprints of Maize Production in Inner Mongolia. Agronomy. 2024; 14(6):1273. https://doi.org/10.3390/agronomy14061273
Chicago/Turabian StyleLiang, Hongwei, Zhipeng Cheng, Ruixia Zhao, Fugui Wang, Haibo Shi, Yuan Li, Zhen Wang, Lanfang Bai, Yongqiang Wang, Jing Zhang, and et al. 2024. "Interannual Evolution Characteristics of the Carbon and Nitrogen Footprints of Maize Production in Inner Mongolia" Agronomy 14, no. 6: 1273. https://doi.org/10.3390/agronomy14061273
APA StyleLiang, H., Cheng, Z., Zhao, R., Wang, F., Shi, H., Li, Y., Wang, Z., Bai, L., Wang, Y., Zhang, J., Jin, X., & Wang, Z. (2024). Interannual Evolution Characteristics of the Carbon and Nitrogen Footprints of Maize Production in Inner Mongolia. Agronomy, 14(6), 1273. https://doi.org/10.3390/agronomy14061273