Effect of Ridge–Furrow with Plastic Film Mulching System and Different Nitrogen Fertilization Rates on Lodging Resistance of Spring Maize in Loess Plateau China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Description
2.2. Experimental Design and Field Management
2.3. Sampling and Measurements
2.3.1. Plant Morphology
2.3.2. Morphological Characteristics and Mechanical Parameters of the Third Internode at the Base
2.3.3. Root Pulling Force
2.3.4. Stalk Lodging Resistance Index and Lodging Rate
2.3.5. Lignin Content and Synthase Activity
2.3.6. Yield and Yield Components
2.4. Statistical Analysis
3. Results
3.1. Lodging-Related Apparent Characters of Spring Maize
3.1.1. Agronomic Characteristics
3.1.2. Physical Properties of the Third Stalk Node at the Base
3.2. Mechanical Characteristics of Spring Maize
3.2.1. Breaking Strength and Rind Penetration Strength
3.2.2. Up Rooting Strength
3.3. Lodging Rate and Lodging Resistance Index
3.3.1. Lodging Rate
3.3.2. Clum Lodging Resistance Index
3.4. Stalk Lignin and Related Synthase of Spring Maize
3.5. Spring Maize Yield
4. Discussion
4.1. Lodging-Related Apparent Characters of Spring Maize
4.2. Stalk Lignin and Related Synthase of Spring Maize
4.3. Mechanical Characteristics of Spring Maize
4.4. Grain Yield and Lodging
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hubert, B.; Rosegrant, M.; Van Boekel, M.A.; Ortiz, R. The future of food: Scenarios for 2050. Crop Sci. 2010, 50, S-33–S-50. [Google Scholar] [CrossRef]
- Li, C.J.; Wang, C.J.; Wen, X.X.; Qin, X.L.; Liu, Y.; Han, J.; Li, Y.; Liao, Y.C.; Wu, W. Ridge–furrow with plastic film mulching practice improves maize productivity and resource use efficiency under the wheat–maize double–cropping system in dry semi–humid areas. Field Crop. Res. 2017, 203, 201–211. [Google Scholar] [CrossRef]
- Farooq, A.; Farooq, N.; Akbar, H.; Hassan, Z.U.; Gheewala, S.H. A critical review of climate change impact at a global scale on cereal crop production. Agronomy 2023, 13, 162. [Google Scholar] [CrossRef]
- Dalin, C.; Qiu, H.; Hanasaki, N.; Mauzerall, D.L.; Rodriguez-Iturbe, I. Balancing water resource conservation and food security in China. Proc. Natl. Acad. Sci. USA 2015, 112, 4588–4593. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Xie, R.Z.; Zhang, W.F.; Wang, K.R.; Hou, P.; Ming, B.; Gou, L.; Li, S.K. Research progress on reduced lodging of high-yield anddensity maize. J. Integr. Agric. 2017, 16, 2717–2725. [Google Scholar] [CrossRef]
- Wang, Q.; Xue, J.; Chen, J.L.; Fan, Y.H.; Zhang, G.Q.; Xie, R.Z.; Ming, B.; Hou, P.; Wang, K.R.; Li, S.K. Key indicators affecting maize stalk lodging resistance of different growth periods under different sowing dates. J. Integr. Agric. 2020, 19, 2419–2428. [Google Scholar] [CrossRef]
- Ahmad, I.; Kamran, M.; Ali, S.; Bilegjargal, B.; Cai, T.; Ahmad, S.; Meng, X.; Su, W.; Liu, T.; Han, Q. Uniconazole application strategies to improve lignin biosynthesis, lodging resistance and production of maize in semiarid regions. Field Crop. Res. 2018, 222, 66–77. [Google Scholar] [CrossRef]
- Bian, D.H.; Jia, G.P.; Cai, L.J.; Ma, Z.Y.; Eneji, A.E.; Cui, Y.H. Effects of tillage practices on root characteristics and root lodging resistance of maize. Field Crop. Res. 2016, 185, 89–96. [Google Scholar] [CrossRef]
- Zhan, X.; Kong, F.; Liu, Q.; Lan, T.; Liu, Y.; Xu, J.; Yuan, J. Maize basal internode development significantly affects stalk lodging resistance. Field Crop. Res. 2022, 286, 108611. [Google Scholar] [CrossRef]
- Zhang, P.; Gu, S.; Wang, Y.; Yang, R.; Yan, Y.; Zhang, S.; Wang, P. Morphological and mechanical variables associated with lodging in maize (Zea mays L.). Field Crop. Res. 2021, 269, 108178. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, Y.S.; Gou, L.; Shi, Z.G.; Yao, M.N.; Zhang, W.F. How high plant density of maize affects basal internode development and strength formation. Crop Sci. 2016, 56, 3295–3306. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Y.; Sheng, D.; Zhang, S.; Gu, S.; Yan, Y.; Huang, S. Optimizing root system architecture to improve root anchorage strength and nitrogen absorption capacity under high plant density in maize. Field Crop. Res. 2023, 303, 109109. [Google Scholar] [CrossRef]
- Sterling, M.; Baker, C.J.; Berry, P.M.; Wade, A. An experimental investigation of the lodging of wheat. Agric. For. Meteorol. 2003, 119, 149–165. [Google Scholar] [CrossRef]
- Berry, P.M.; Sterling, M.; Spink, J.H.; Baker, C.J.; Ennos, A.R. Understanding and reducing lodging in cereals. Adv. Agron. 2004, 84, 217–271. [Google Scholar] [CrossRef]
- Zhai, J.; Zhang, Y.M.; Zhang, G.Q.; Tian, M.; Xie, R.Z.; Ming, B.; Hou, P.; Wang, K.R.; Xue, J.; Li, S.K. Effects of nitrogen fertilizer management on stalk lodging resistance traits in summer maize. Agriculture 2022, 12, 162. [Google Scholar] [CrossRef]
- Li, C.J.; Li, C.Z.; Ma, B.L.; Wu, W. The role of ridge-furrow with plastic film mulching system on stem lodging resistance of winter wheat in a dry semi-humid region. Agron. J. 2020, 112, 885–898. [Google Scholar] [CrossRef]
- So, Y.S.; Adetimirin, V.O.; Kim, S.K. Observational study on the recovery from root lodging at flowering time and yield reduction in maize (Zea mays L.). Plant Mutat. Breed. Biotechnol. 2013, 1, 171–177. [Google Scholar] [CrossRef]
- Li, C.Z.; Li, C.J. Ridge-furrow with plastic film mulching system decreases the lodging risk for summer maize plants under different nitrogen fertilization rates and varieties in dry semi-humid areas. Field Crop. Res. 2021, 263, 108056. [Google Scholar] [CrossRef]
- Zhang, G.X.; Liu, S.J.; Wang, X.F.; Zhang, Y.; Zhao, D.H.; Wen, X.X.; Han, J.; Liao, Y.C. Mixed application of controlled-release urea and normal urea can improve crop productivity and reduce the carbon footprint under straw return in winter wheat-summer maize cropping system. Eur. J. Agron. 2023, 151, 127002. [Google Scholar] [CrossRef]
- Hoshikawa, K.; Wang, S.B. Studies on lodging in rice plants. I. A general observation on lodged rice culms. Jpn. J. Crop Sci. 1990, 59, 809–814. [Google Scholar] [CrossRef]
- Eldoma, I.M.; Li, M.; Zhang, F.; Li, F.M. Alternate or equal ridge–furrow pattern: Which is better for maize production in the rain-fed semi-arid Loess Plateau of China. Field Crop. Res. 2016, 191, 131–138. [Google Scholar] [CrossRef]
- Zhang, G.X.; Dai, R.C.; Ma, W.Z.; Fan, H.Z.; Meng, W.H.; Han, J.; Liao, Y.C. Optimizing the ridge-furrow ratio and nitrogen application rate can increase the grain yield and water use efficiency of rain-fed spring maize in the Loess Plateau region of China. Agric. Water Manag. 2022, 262, 107430. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiang, S.C.; Zhang, G.X.; Sun, M.; Wen, X.X.; Liao, Y.C.; Gao, Z.Q. Effects of ridge-furrow supplementary irrigation on water use efficiency and grain yield of winter wheat in Loess Plateau of China. Agric. Water Manag. 2023, 289, 108537. [Google Scholar] [CrossRef]
- Zhang, G.X.; Zhang, Y.; Liu, S.J.; Zhao, D.H.; Wen, X.X.; Han, J.; Liao, Y.C. Optimizing nitrogen fertilizer application to improve nitrogen use efficiency and grain yield of rainfed spring maize under ridge-furrow plastic film mulching planting. Soil Tillage Res. 2023, 229, 105680. [Google Scholar] [CrossRef]
- Qiang, S.C.; Zhang, Y.; Zhao, H.; Fan, J.L.; Zhang, F.C.; Sun, M.; Gao, Z.Q. Combined effects of urea type and placement depth on grain yield, water productivity and nitrogen use efficiency of rain-fed spring maize in northern China. Agric. Water Manag. 2022, 262, 107442. [Google Scholar] [CrossRef]
- Li, W.W.; Wen, X.X.; Han, J.; Liu, Y.; Wu, W.; Liao, Y.C. Optimum ridge–furrow ratio in ridge-furrow mulching systems for improving water conservation in maize (Zea mays L.) production. Environ. Sci. Pollut. Res. 2017, 24, 23168–23179. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Hou, X.Q.; Jia, Z.K.; Han, Q.F.; Ren, X.L.; Yang, B.P. Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rained area of the Loess Plateau China. Agric. Water Manag. 2013, 116, 101–109. [Google Scholar] [CrossRef]
- Li, C.; Luo, X.Q.; Li, Y.; Wang, N.J.; Zhang, T.B.; Dong, Q.G.; Feng, H.; Zhang, W.X.; Siddique, K.H. Ridge planting with transparent plastic mulching improves maize productivity by regulating the distribution and utilization of soil water, heat, and canopy radiation in arid irrigation area. Agric. Water Manag. 2023, 280, 108230. [Google Scholar] [CrossRef]
- Liao, Z.Q.; Zhang, C.; Yu, S.L.; Lai, Z.L.; Wang, H.D.; Zhang, F.C.; Fan, J.L. Ridge-furrow planting with black film mulching increases rainfed summer maize production by improving resources utilization on the Loess Plateau of China. Agric. Water Manag. 2023, 289, 108558. [Google Scholar] [CrossRef]
- Li, Y.P.; Gu, X.B.; Li, Y.N.; Fang, H.; Chen, P.P. Ridge-furrow mulching combined with appropriate nitrogen rate for enhancing photosynthetic efficiency, yield and water use efficiency of summer maize in a semi-arid region of China. Agric. Water Manag. 2023, 287, 108450. [Google Scholar] [CrossRef]
- Shen, Q.X.; Niu, J.; Sivakumar, B.; Lu, N. Effects of Mulching on Maize Yield and Evapotranspiration in the Heihe River Basin, Northwest China. Remote Sens. 2022, 14, 700. [Google Scholar] [CrossRef]
- Wu, L.F.; Zheng, Y.X.; Jiao, F.C.; Wang, M.; Zhang, J.; Zhang, Z.Q.; Huang, Y.Q.; Jia, X.Y.; Zhu, L.Y.; Zhao, Y.F.; et al. Identification of quantitative trait loci for related traits of stalk lodging resistance using genome-wide association studies in maize (Zea mays L.). BMC Genom. Data 2022, 23, 76. [Google Scholar] [CrossRef]
- Minami, M.; Ujihara, A. Effects of Lodging on Dry Matter Production, Grain Yield and Nutritional Composition at Different Growth Stages in Maize (Zea mays L.). Jpn. J. Crop Sci. 2008, 60, 107–115. [Google Scholar] [CrossRef]
- Zhang, J.; Li, G.H.; Song, Y.P.; Liu, Z.H.; Yang, C.D.; Tang, S.; Zheng, C.Y.; Wang, S.H.; Ding, Y.F. Lodging resistance characteristics of high-yielding rice populations. Field Crop. Res. 2014, 161, 64–74. [Google Scholar] [CrossRef]
- Robertson, D.J.; Julias, M.; Lee, S.Y.; Cook, D.D. Maize stalk lodging: Morphological determinants of stalk strength. Crop Sci. 2017, 57, 926–934. [Google Scholar] [CrossRef]
- Ren, X.L.; Zhang, P.; Chen, X.L.; Jia, Z.K. Impacts of ridge–furrow rainfall concentration systems and mulches on corn growth and yield in the semiarid region of China. J. Sci. Food Agric. 2016, 96, 3882–3889. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.A.; Zhou, L.M.; Jia, J.J.; Wang, L.J.; Si, J.T.; Li, X.; Pan, C.C.; Siddique, K.M.; Li, F.M. Maize yield and water balance is affected by nitrogen application in a film-mulching ridge–furrow system in a semiarid region of China. Eur. J. Agron. 2014, 52, 103–111. [Google Scholar] [CrossRef]
- Zhang, J.T.; Ren, W.; An, P.L.; Pan, Z.H.; Wang, L.W.; Dong, Z.Q.; Di, H.; Yang, J.; Tian, H.Q. Responses of crop water use efficiency to climate change and agronomic measures in the semiarid area of northern China. PLoS ONE 2015, 10, e0137409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.W.; Wang, H.; Yi, Y.; Ding, J.F.; Zhu, M.; Li, C.Y.; Li, C.Y.; Guo, W.S.; Feng, C.N.; Zhu, X.K. Effect of nitrogen levels and nitrogen ratios on lodging resistance and yield potential of winter wheat (Triticum aestivum L.). PLoS ONE 2017, 12, e0187543. [Google Scholar] [CrossRef]
- Zhang, W.J.; Yao, X.; Duan, X.J.; Liu, Q.M.; Tang, Y.Q.; Li, J.Y.; Li, G.H.; Ding, Y.F.; Liu, Z.H. Foliar application uniconazole enhanced lodging resistance of hybrid indica rice by altering basal stem quality under poor light stress. Agron. J. 2021, 114, 524–544. [Google Scholar] [CrossRef]
- Peng, D.L.; Chen, X.G.; Yin, Y.P.; Lu, K.L.; Yang, W.B.; Tang, Y.; Wang, Z.L. Lodging resistance of winter wheat (Triticum aestivum L.): Lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crop. Res. 2014, 157, 1–7. [Google Scholar] [CrossRef]
- Wang, C.; Ruan, R.W.; Yuan, X.H.; Hu, D.; Yang, H.; Li, Y.; Yi, Z.L. Relationship between lignin metabolism and lodging resistance of culm in buckwheat. J. Agric. Sci. 2014, 6, 29. [Google Scholar] [CrossRef]
- Boudet, A.M.; Kajita, S.; Grima-Pettenati, J.; Goffner, D. Lignins and lignocellulosics: A better control of synthesis for new and improved uses. Trends Plant Sci. 2003, 8, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Kuno, A.; Hirano, K.; Asano, K.; Takase, W.; Masuda, R.; Morinaka, Y.; Ueguchi-Tanaka, M.; Kitano, H.; Matsuoka, M. New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS ONE 2014, 9, e86870. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Hu, D.; Liu, X.B.; She, H.Z.; Ruan, R.W.; Yang, H.; Yi, Z.L.; Wu, D.Q. Effects of uniconazole on the lignin metabolism and lodging resistance of culm in common buckwheat (Fagopyrum esculentum M.). Field Crop. Res. 2015, 180, 46–53. [Google Scholar] [CrossRef]
- Mnich, E.; Bjarnholt, N.; Eudes, A.; Harholt, J.; Holland, C.; Jørgensen, B.; Larsen, F.H.; Liu, M.; Manat, R.; Meyer, A.S.; et al. Phenolic cross-links: Building and de-constructing the plant cell wall. Nat. Prod. Rep. 2020, 37, 919–961. [Google Scholar] [CrossRef]
- Franke, R.; Hemm, M.R.; Denault, J.W.; Ruegger, M.O.; Humphreys, J.M.; Chapple, C. Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of arabidopsis. Plant J. 2002, 30, 47–59. [Google Scholar] [CrossRef]
- Meng, Y.; Tong, T.; Gu, W.R.; Li, J.; Wei, S. Nitrogen fertilization and planting density effects on the physiological characteristics of stem, root bleeding sap and lodging resistance in Spring Maize. Internat. J. Agric. Biol. 2020, 23, 711–720. [Google Scholar] [CrossRef]
- Voelker, S.L.; Lachenbruch, B.; Meinzer, F.C.; Strauss, H.S. Reduced wood stiffness and strength, and altered stem form, in young antisense 4CL transgenic poplars with reduced lignin contents. New Phytol. 2011, 189, 1096–1109. [Google Scholar] [CrossRef]
- Takeda, Y.; Koshiba, T.; Tobimatsu, Y.; Suzuki, S.; Murakami, S.; Yamamura, M.; Rahman, M.M.; Takano, T.; Hattori, T.; Sakamoto, M.; et al. Regulation of Coniferaldehyde 5-Hydroxylase expression to modulate cell wall lignin structure in rice. Planta 2017, 246, 337–349. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Wang, N.F.; Hisano, H.; Cao, Y.P.; Wu, F.Y.; Liu, W.W.; Bao, Y.; Wang, Z.Y.; Fu, C.X. Simultaneous regulation of F5H in COMT-RNAi transgenic switchgrass alters effects of COMT suppression on syringyl lignin biosynthesis. Plant Biotechnol. J. 2019, 17, 836–845. [Google Scholar] [CrossRef]
- Shafrin, F.; Das, S.S.; Sanan, M.N.; Khan, H. Artificial miRNA-mediated down-regulation of two monolignoid biosynthetic genes (C3H and F5H) cause reduction in lignin content in jute. Plant Mol. Biol. 2015, 89, 511–527. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.M.; Gu, W.R.; Li, C.F.; Li, J.; Wei, S. Effects of nitrogen fertilizer and chemical regulation on spring maize lodging characteristics, grain filling and yield formation under high planting density in Heilongjiang Province, China. J. Integr. Agric. 2021, 20, 511–526. [Google Scholar] [CrossRef]
- Huang, J.L.; Liu, W.Y.; Zhou, F.; Peng, Y.J.; Wang, N.L. Mechanical properties of maize fiber bundles and their contribution to lodging resistance. Biosyst. Eng. 2016, 151, 298–307. [Google Scholar] [CrossRef]
- Li, W.W.; Zhuang, Q.L.; Wu, W.; Wen, X.X.; Han, J.; Liao, Y.C. Effects of plastic film mulching ridge-furrow planting on soil CO2 efflux in a maize field in the Chinese Loess Plateau. Agric. Forest. Meteorol. 2019, 264, 200–212. [Google Scholar] [CrossRef]
- Bian, D.H.; Liu, M.Z.; Niu, H.F.; Wei, Z.B.; Du, X.; Cui, Y.H. Effects of Nitrogen Application Times on Stem Traits and Lodging of Summer Maize (Zea mays L.) in the Huang-Huai-Hai Plain. Sci. Agric. Sinica. 2017, 50, 2294–2304, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Brune, P.F.; Baumgarten, A.; Mckay, S.J.; Technow, F.; Podhiny, J.J. A biomechanical model for maize root lodging. Plant Soil 2018, 422, 397–408. [Google Scholar] [CrossRef]
- Fang, X.; Liu, X.; Zhang, Y.; Huang, K.; Zhang, Y.; Li, Y.; Nie, J.; She, H.; Ruan, R.; Yuan, X.; et al. Effects of uniconazole or gibberellic acid application on the lignin metabolism in relation to lodging resistance of culm in common buckwheat. J. Agron. Crop Sci. 2018, 204, 414–423. [Google Scholar] [CrossRef]
- Crook, M.J.; Ennos, A.R. The anchorage mechanics of deep rooted larch, Larix europea × L. japonica. J. Exp. Bot. 1996, 47, 1469–1473. [Google Scholar] [CrossRef]
- Chen, Y.X.; Chen, J.; Zhang, Y.F.; Zhou, D.W. Effect of harvest date on shearing force of maize stems. Livest. Sci. 2007, 111, 33–44. [Google Scholar] [CrossRef]
- Li, S.X.; Wang, Z.H.; Li, S.Q.; Gao, Y.J.; Tian, X.H. Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China. Agric. Water Manag. 2013, 116, 39–49. [Google Scholar] [CrossRef]
- Li, S.X.; Wang, Z.H.; Li, S.Q.; Gao, Y.J. Plastic mulch increases dryland wheat yield and water-use productivity, while straw mulch increases soil water storage. Agric. Water Manag. 2015, 162, 15–32. [Google Scholar] [CrossRef]
- Zhao, H.B.; Liu, G.F.; Dou, Y.X.; Yang, H.M.; Wang, T.; Wang, Z.H.; Malhi, S.; Khan, A.A. Effects of nitrogen application rate on grain yield and grain nitrogen concentration in two maize hybrids with contrasting nitrogen remobilization efficiency. J. Integr. Agric. 2024; In Press, Journal Pre-proof. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, Y.M.; Chen, H.; Yan, P.S.; Du, Q.G.; Wang, Y.F.; Wang, H.Q.; Wang, Z.H.; Kang, D.M.; Li, W.X. Identification of traits and genes associated with lodging resistance in maize. Crop J. 2021, 9, 1408–1417. [Google Scholar] [CrossRef]
N Application Rate (NR) | Planting System (PS) | Internode Diameter (mm) | Internode Length (cm) | Internode Fresh Weight (g) | Internode Dry Weight (g) | Internode Mass Density (g cm−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||
N180 | FP | 2.09 c | 2.61 d | 13.20 d | 10.92 d | 73.66 d | 67.09 d | 5.63 c | 5.43 c | 0.42 ab | 0.50 a |
RF | 2.28 a | 2.95 b | 18.67 b | 17.67 b | 108.72 b | 98.14 b | 6.91 ab | 6.20 b | 0.37 b | 0.35 b | |
Mean | 2.19 B | 2.78 B | 15.94 A | 14.3 B | 91.19 B | 82.62 B | 6.27 B | 5.82 A | 0.4 A | 0.43 A | |
N300 | FP | 2.20 b | 2.80 c | 14.67 c | 12.33 c | 86.53 c | 75.07 c | 6.62 b | 6.45 b | 0.45 a | 0.52 a |
RF | 2.29 a | 3.02 a | 21.47 a | 19.50 a | 124.48 a | 111.57 a | 7.70 a | 7.40 a | 0.36 b | 0.38 b | |
Mean | 2.25 A | 2.91 A | 15.92 A | 15.92 A | 105.51 A | 93.29 A | 7.16 A | 6.93 A | 0.41 A | 0.45 A | |
ANOVA | |||||||||||
NR | * | ** | ** | ** | ** | ** | * | ** | ns | ns | |
PS | ** | ** | ** | ** | ** | ** | ** | ** | * | ** | |
NR × PS | * | * | ns | ns | ns | * | ns | ns | ns | ns |
Factor | Breaking Strength (N·mm−1) | Rind Penetration Strength (N·mm−1) | ||
---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | |
N application rate (NR) | ||||
N180 | 275.00 b | 361.06 b | 59.08 b | 53.53 b |
N300 | 300.56 a | 393.69 a | 62.25 a | 57.47 a |
Planting system (PS) | ||||
FP | 238.62 b | 328.02 b | 54.89 b | 51.19 b |
RF | 336.94 a | 426.73 a | 66.44 a | 59.81 a |
NR | ** | ** | ** | ** |
PS | ** | ** | ** | ** |
NR × PS | ns | ** | ** | ns |
N Application Rate (NR) | Planting System (PS) | Stalk Lodging Rate (%) | Root Lodging Rate (%) | Total Lodging Rate (%) |
---|---|---|---|---|
N180 | RF | 8.30 a | 12.73 b | 21.03 b |
FP | 6.63 ab | 6.00 d | 12.63 c | |
Mean | 7.47 A | 9.37 B | 16.83 B | |
N300 | RF | 8.27 a | 19.30 a | 27.57 a |
FP | 6.00 b | 8.43 c | 14.43 c | |
Mean | 7.13 A | 13.87 A | 21.00 A | |
NR | ns | ** | ** | |
PS | * | ** | ** | |
NR × PS | ns | ** | ** |
Year | N Application Rate (NR) | Planting System (PS) | Grain Yield (t ha−1) | Grain Number per Ear (no.) | 100-Grain Weight (g) | Ear Number per ha (104 ha−1) | Rows per Ear (no.) | Kernels per Row (no.) | Ear Length (cm) | Ear Diameter (mm) | Bare Top Length (mm) |
---|---|---|---|---|---|---|---|---|---|---|---|
2020 | N180 | FP | 9.50 d | 505.84 c | 30.41 b | 5.43 c | 15.64 d | 32.50 b | 18.84 c | 51.51 c | 33.96 a |
RF | 12.14 b | 640.53 a | 35.78 a | 6.28 b | 17.00 b | 37.90 a | 21.20 a | 54.47 a | 14.17 b | ||
Mean | 10.82 B | 573.18 B | 33.09 A | 5.86 B | 16.24 B | 35.20 A | 20.02 A | 52.99 B | 24.07 A | ||
N300 | FP | 10.86 c | 548.08 b | 29.82 b | 6.03 b | 16.60 c | 33.28 b | 19.88 b | 53.45 b | 28.36 a | |
RF | 13.74 a | 648.51 a | 35.13 a | 7.26 a | 17.60 a | 37.40 a | 20.41 b | 54.15 ab | 11.33 b | ||
Mean | 12.31 A | 598.29 A | 32.47 A | 6.65 A | 16.90 A | 35.34 A | 20.15 A | 53.80 A | 19.85 B | ||
ANOVA | |||||||||||
NR | ** | * | ** | ** | ns | ns | * | ns | |||
PS | ** | ** | ** | ** | ** | ** | ** | ** | ** | ||
NR × PS | ns | ns | ns | ns | ns | ns | ** | ** | ns | ||
2021 | N180 | FP | 9.44 d | 429.85 d | 32.10 b | 5.79 c | 14.39 c | 30.08 d | 18.41 b | 49.33 b | 45.05 a |
RF | 12.33 b | 570.05 b | 35.85 a | 6.49 b | 16.43 a | 35.31 b | 19.64 ab | 51.99 a | 24.65 b | ||
Mean | 10.88 B | 499.95 A | 33.97 A | 6.14 A | 15.22 B | 32.69 B | 19.02 A | 50.66 A | 34.85 A | ||
N300 | FP | 10.24 c | 515.23 c | 30.95 c | 6.20 b | 15.35 b | 34.02 c | 18.70 ab | 49.68 b | 41.07 a | |
RF | 13.17 a | 592.30 a | 35.14 a | 6.85 a | 16.57 a | 36.26 a | 19.90 a | 52.68 a | 22.58 b | ||
Mean | 11.71 A | 553.77 B | 33.05 B | 6.52 A | 15.74 A | 35.14 A | 19.3 A | 51.18 A | 31.83 A | ||
ANOVA | |||||||||||
NR | ** | ** | * | ** | * | ** | ns | ns | ns | ||
PS | ** | ** | ** | ** | ** | ** | * | ** | ** | ||
NR × PS | ns | ** | ns | ns | ns | ** | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Lv, Y.; Liao, Y.; Zhang, G. Effect of Ridge–Furrow with Plastic Film Mulching System and Different Nitrogen Fertilization Rates on Lodging Resistance of Spring Maize in Loess Plateau China. Agronomy 2024, 14, 1298. https://doi.org/10.3390/agronomy14061298
Zhang Y, Lv Y, Liao Y, Zhang G. Effect of Ridge–Furrow with Plastic Film Mulching System and Different Nitrogen Fertilization Rates on Lodging Resistance of Spring Maize in Loess Plateau China. Agronomy. 2024; 14(6):1298. https://doi.org/10.3390/agronomy14061298
Chicago/Turabian StyleZhang, Yan, Yufeng Lv, Yuncheng Liao, and Guangxin Zhang. 2024. "Effect of Ridge–Furrow with Plastic Film Mulching System and Different Nitrogen Fertilization Rates on Lodging Resistance of Spring Maize in Loess Plateau China" Agronomy 14, no. 6: 1298. https://doi.org/10.3390/agronomy14061298
APA StyleZhang, Y., Lv, Y., Liao, Y., & Zhang, G. (2024). Effect of Ridge–Furrow with Plastic Film Mulching System and Different Nitrogen Fertilization Rates on Lodging Resistance of Spring Maize in Loess Plateau China. Agronomy, 14(6), 1298. https://doi.org/10.3390/agronomy14061298