Drought-Stressed Apple Tree Grafted onto Different Rootstocks in a Coastal Sandy Soil: Link between Fast Chlorophyll a Fluorescence and Production Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Soil Analysis
2.3. Chlorophyll a Fluorescence Analysis
2.4. Production Parameters
2.5. Statistical Data Treatment
3. Results
3.1. Without Irrigation in a Sandy Soil, Apple Trees Were Exposed to Slight Chronic Water Shortage
3.2. A Small Loss of PSII Activity Occurred in the Non-Irrigated Plants
3.3. Drought Stress Lowered the Leaf’s Capacity of Light Energy Conservation
3.4. Drought Stress Severely Lowered Productivity
3.5. Relationships between Chlorophyll Fluorescence and Productivity
4. Discussion
4.1. The Fruit Weight Is Related to PSII Photochemical Indexes during Early Drought
4.2. The Fruit Number per Plant Relates to Late Changes in Electron Transport Parameters
4.3. The Chlorophyll a Fluorescence Parameters Allow Rootstock Differentiation Based on Drought Sensitivity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Field Values | Reference Range |
---|---|---|
Total Nitrogen | 600–700 | 1000–2000 |
Assimilable Phosphorus | 40–50 | 10–20 |
Exchangeable Potassium | 70–100 | 80–160 |
Exchangeable Magnesium | 68–120 | 120–180 |
Assimilable Iron | 21–23 | 5–130 |
Assimilable Manganese | 5.4–6.2 | 1.6–30 |
Assimilable Copper | 3.8–4.4 | 1–6 |
Assimilable Zinc | 2.2–2.4 | 1–30 |
Assimilable Boron | 0.2–0.3 | 0.3–0.8 |
Organic matter % | 0.7–1.0 | 1.5–3.0 |
pH | 8.0–8.2 |
Parameter | |
---|---|
pH | 8.2 |
Electrical conductivity (μS cm−1) | 855 |
Total dissolved solids (mg L−1) | 600 |
Chloride as NaCl (mg L−1) | 292 |
Calcium (mg L−1) | 53 |
Magnesium (mg L−1) | 25 |
Potassium (mg L−1) | 7.8 |
Sodium (mg L−1) | 72 |
Sodium adsorption ratio (SAR) | 2.0 |
Hardness (°F) | 23.5 |
Rootstock | Parcel | FV/FM | FV/F0 | PIABS | PITOT |
---|---|---|---|---|---|
CIVP21pbr | 1 (irrigated) | 0.826 ± 0.022 | 4.33 ± 0.66 | 6.52 ± 2.31 | 7.78 ± 1.85 |
2 (non-irrigated) | 0.818 ± 0.017 | 4.09 ± 0.52 | 6.11 ± 2.27 | 8.07 ± 1.84 | |
MM106 | 1 (irrigated) | 0.830 ± 0.012 | 4.39 ± 0.38 | 6.09 ± 1.70 | 7.53 ± 1.89 |
2 (non-irrigated) | 0.827 ± 0.012 | 4.32 ± 0.39 | 6.56 ± 1.55 | 7.63 ± 1.49 | |
M26 | 1 (irrigated) | 0.821 ± 0.025 | 4.16 ± 0.70 | 6.08 ± 2.37 | 7.61 ± 2.57 |
2 (non-irrigated) | 0.822 ± 0.018 | 4.17 ± 0.55 | 6.12 ± 2.15 | 7.21 ± 1.62 | |
F(5184) p | 1.94 | 1.49 | 0.32 | 0.73 | |
0.09 | 0.19 | 0.90 | 0.60 |
Appendix B
Appendix C
Rootstock | Treatment | Firmness kg cm−2 | Starch Level (Laimburg Scale) | Brix | Malic Acid g L−1 |
---|---|---|---|---|---|
CIVP21pbr | Irrigated | 8.82 ± 0.15 | 1.80 ± 0.08 | 13.3 | 3.87 |
Non-irrigated | 8.70 ± 0.18 | 1.85 ± 0.15 | 13.1 | 4.37 | |
MM106 | Irrigated | 8.35 ± 0.23 | 2.35 ± 0.24 | 12.1 | 4.08 |
Non-irrigated | 8.79 ± 0.22 | 2.05 ± 0.64 | 13.4 | 4.60 | |
M26 | Irrigated | 7.99 ± 0.17 | 1.90 ± 0.10 | 11.5 | 4.56 |
Non-irrigated | 8.38 ± 0.17 | 1.95 ± 0.12 | 13.3 | 4.19 |
Appendix D
Rootstock | Treatment | F0 | FM |
---|---|---|---|
CIVP21pbr | Irrigated | [453] 476 [513] | [2360] 2528 [2689] |
Non-irrigated | [460] 483 [517] | [2326] 2498 [2654] | |
MM106 | Irrigated | [466] 488 [521] | [2469] 2613 [3792] |
Non-irrigated | [465] 493 [518] | [2430] 2580 [2704] | |
M26 | Irrigated | [472] 494 [536] | [2550] 2698 [2882] |
Non-irrigated | [472] 496 [521] | [2307] 2498 [2654] |
Rootstock | Treatment | FV/F0 | VK/VJ | ABS/RC |
---|---|---|---|---|
CIVP21pbr | Irrigated | [3.85] 4.34 [4.68] | [0.085] 0.092 [0.104] | [1.37] 1.45 [1.59] |
Non-irrigated | [3.72] 4.13 [4.45] | [0.090] 0.098 [0.108] | [1.40] 1.52 [1.61] | |
MM106 | Irrigated | [4.00] 4.40 [4.71] | [0.089] 0.097 [0.108] | [1.40] 1.49 [1.61] |
Non-irrigated | [3.80] 4.25 [4.61] | [0.090] 0.098 [0.109] | [1.40] 1.50 [1.61] | |
M26 | Irrigated | [4.05] 4.48 [4.71] | [0.089] 0.097 [0.106] | [1.42] 1.50 [1.61] |
Non-irrigated | [3.62] 3.99 [4.31] | [0.094] 0.103 [0.114] | [1.46] 1.56 [1.68] |
Rootstock | Treatment | 1 − VJ | 1 − VI | (1 − VJ)/(1 − VJ) | Sm |
---|---|---|---|---|---|
CIVP21pbr | Irrigated | [0.661] 0.685 [0.703] | [0.344] 0.371 [0.394] | [0.504] 0.543 [0.584] | [31.1] 33.1 [36.6] |
Non-irrigated | [0.650] 0.674 [0.697] | [0.322] 0.353 [0.385] | [0.485] 0.525 [0.575] | [29.2] 32.3 [35.7] | |
MM106 | Irrigated | [0.656] 0.676 [0.698] | [0.329] 0.360 [0.382] | [0.490] 0.533 [0.570] | [28.4] 31.9 [34.7] |
Non-irrigated | [0.648] 0.672 [0.693] | [0.314] 0.346 [0.371] | [0.464] 0.516 [0.560] | [27.6] 30.3 [34.2] | |
M26 | Irrigated | [0.659] 0.679 [0.699] | [0.338] 0.363 [0.389] | [0.495] 0.530 [0.574] | [28.4] 32.1 [35.1] |
Non-irrigated | [0.646] 0.666 [0.689] | [0.324] 0.356 [0.387] | [0.482] 0.535 [0.585] | [28.1] 31.7 [35.7] |
Rootstock | Treatment | PIABS | PITOT |
---|---|---|---|
CIVP21pbr | Irrigated | [4.95] 6.48 [7.98] | [6.27] 7.69 [8.83] |
Non-irrigated | [4.41] 5.73 [6.87] | [5.00] 6.36 [7.48] | |
MM106 | Irrigated | [4.90] 6.18 [7.48] | [5.64] 6.95 [8.22] |
Non-irrigated | [4.56] 5.89 [7.20] | [4.98] 6.17 [7.15] | |
M26 | Irrigated | [5.19] 6.33 [7.53] | [6.05] 7.22 [8.68] |
Non-irrigated | [4.17] 5.18 [6.27] | [4.84] 6.01 [7.20] |
References
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Agovino, M.; Casaccia, M.; Ciommi, M.; Ferrara, M.; Marchesano, K. Agriculture, climate change and sustainability: The case of EU-28. Ecol. Ind. 2019, 105, 525–543. [Google Scholar] [CrossRef]
- Jacobsen, S.-E.; Jensen, C.R.; Liu, F. Improving crop production in the arid Mediterranean climate. Field Crops Res. 2012, 128, 34–47. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Colombani, N. The issue of groundwater salinization in coastal areas of the Mediterranean region: A review. Water 2021, 13, 90. [Google Scholar] [CrossRef]
- Ferretti, G.; Di Giuseppe, D.; Faccini, B.; Coltorti, M. Mitigation of sodium risk in a sandy agricultural soil by the use of natural zeolites. Environ. Monitor. Assess. 2018, 190, 646. [Google Scholar] [CrossRef] [PubMed]
- Mihaljević, I.; Viljevac Vuletić, M.; Šimić, D.; Tomaš, V.; Horvat, D.; Josipović, M.; Zdunić, Z.; Dugalić, K.; Vuković, D. Comparative study of drought stress effects on traditional and modern apple cultivars. Plants 2021, 10, 561. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, D.; Marat, M.; Marasek-Ciołakowska, A.; Klamkowski, K.; Buler, Z.; Podwyszyńska, M.; Tomczyk, P.P.; Wójcik, K.; Treder, W.; Filipczak, J. Apple autotetraploids—Phenotypic characterisation and response to drought stress. Agronomy 2022, 12, 161. [Google Scholar] [CrossRef]
- Suran, V.; Pravcová, G. Drought stress affects productivity and fruit size of new apple cultivars. Acta Horticult. 2023, 1372, 149–154. [Google Scholar] [CrossRef]
- Tworkoski, T.; Fazio, G.; Glenn, D.M. Apple rootstock resistance to drought. Sci. Horticult. 2016, 204, 70–78. [Google Scholar] [CrossRef]
- Lordan, J.; Fazio, G.; Francescatto, P.; Robinson, T. Effects of apple (Malus × domestica) rootstocks on scion performance and hormone concentration. Sci. Horticult. 2017, 225, 96–105. [Google Scholar] [CrossRef]
- Valverdi, N.A.; Kalcsits, L. Apple rootstock genotype affects scion responses to water limitations under field conditions. Acta Physio. Plant. 2021, 43, 97. [Google Scholar] [CrossRef]
- Sun, P.; Tahir, M.M.; Lu, X.; Liu, Z.; Zhang, X.; Zuo, X.; Shao, Y.; Xiao, X.; An, N.; Wang, C.; et al. Comparison of leaf morphological, anatomical, and photosynthetic responses to drought stress among eight apple rootstocks. Fruit Res. 2022, 2, 20. [Google Scholar] [CrossRef]
- Osman, K.T. Sandy soils. In Management of Soil Problems; Springer: Cham, Switzerland, 2018; pp. 37–65. [Google Scholar]
- Li, L.; Zhang, Y.-J.; Novak, A.; Yang, Y.; Wang, J. Role of biochar in improving sandy soil water retention and resilience to drought. Water 2021, 13, 407. [Google Scholar] [CrossRef]
- Shock, C.C.; Wang, F.-X. Soil water tension, a powerful measurement for productivity and stewardship. HortScience 2011, 46, 178–185. [Google Scholar] [CrossRef]
- Cai, G.; Carminati, A.; Abdalla, M.; Ahmed, M.A. Soil textures rather than root hairs dominate water uptake and soil–plant hydraulics under drought. Plant Physiol. 2021, 187, 858–872. [Google Scholar] [CrossRef] [PubMed]
- Allmaras, R.R.; Logsdon, S.D. Soil structural influences on the root zone and rhizosphere. In Rhizosphere Dynamics; Hammond, L., Box, J.E., Jr., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 8–54. [Google Scholar] [CrossRef]
- Flexas, J.; Medrano, H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 2002, 89, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Mizokami, Y.; Noguchi, K.; Kojima, M.; Sakakibara, H.; Terashima, I. Mesophyll conductance decreases in the wild type but not in an ABA-deficient mutant (aba1) of Nicotiana plumbaginifolia under drought conditions. Plant Cell Environ. 2015, 38, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Olšovska, K.; Kovar, M.; Brestič, M.; Živčak, M.; Slamka, P.; Shao, H.B. Genotypically identifying wheat mesophyll conductance regulation under progressive drought stress. Front. Plant Sci. 2016, 7, 1111. [Google Scholar] [CrossRef]
- Živčak, M.; Kalaji, H.M.; Shao, H.B.; Olsovska, K.; Brestič, M. Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress. J. Photochem. Photobiol. B Biol. 2014, 137, 107–115. [Google Scholar] [CrossRef]
- Noctor, G.; Mhamdi, A.; Foyer, C.H. The roles of reactive oxygen metabolism in drought: Not so cut and dried. Plant Physiol. 2014, 164, 1636–1648. [Google Scholar] [CrossRef]
- Lu, Q.; Lu, C.; Zhang, J.; Kuang, T. Photosynthesis and chlorophyll a fluorescence during flag leaf senescence of field-grown wheat plants. J. Plant Physiol. 2002, 159, 1173–1178. [Google Scholar] [CrossRef]
- Sakoda, K.; Taniyoshi, K.; Yamori, W.; Tanaka, Y. Drought stress reduces crop carbon gain due to delayed photosynthetic induction under fluctuating light conditions. Physiol. Plant. 2022, 174, e13603. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.-L.; Wang, X.-Q.; Zhang, S.-B.; Huang, W. Mesophyll conductance limits photosynthesis in fluctuating light under combined drought and heat stresses. Plant Physiol. 2024, 194, 1498–1511. [Google Scholar] [CrossRef] [PubMed]
- Shevela, D.; Kern, J.F.; Govindjee; Messinger, J. Solar energy conversion by photosystem II: Principles and structures. Photosynth. Res. 2023, 156, 279–307. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Schansker, G.; Ladle, R.J.; Goltsev, V.; Bosa, K.; Allakhverdiev, S.I.; Brestic, M.; Bussotti, F.; Calatayud, A.; Dąbrowski, P.; et al. Frequently asked questions about in vivo chlorophyll fluorescence: Practical issues. Photosynth. Res. 2014, 122, 121–158. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, H.M.; Schansker, G.; Brestic, M.; Bussotti, F.; Calatayud, A.; Ferroni, L.; Goltsev, V.; Guidi, L.; Jajoo, A.; Li, P.; et al. Frequently asked questions about in vivo chlorophyll fluorescence, the sequel. Photosynth. Res. 2017, 132, 13–66. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016, 38, 102. [Google Scholar] [CrossRef]
- Stirbet, A.; Lazár, D.; Kromdijk, J.; Govindjee. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 2018, 56, 86–104. [Google Scholar] [CrossRef]
- Tsimilli-Michael, M. Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. Photosynthetica 2020, 58, 275–292. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Advances in Photosynthesis and Respiration; Papageorgiou, G., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 321–362. [Google Scholar]
- Stirbet, A.; Govindjee. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B Biol. 2011, 104, 236–257. [Google Scholar] [CrossRef]
- Zavafer, A.; Labeeuw, L.; Mancilla, C. Global trends of usage of chlorophyll fluorescence and projections for the next decade. Plant Phenomics 2020, 2020, 6293145. [Google Scholar] [CrossRef] [PubMed]
- Swoczyna, T.; Kalaji, H.M.; Bussotti, F.; Mojski, J.; Pollastrini, M. Environmental stress-what can we learn from chlorophyll a fluorescence analysis in woody plants? A review. Front. Plant Sci. 2022, 13, 1048582. [Google Scholar] [CrossRef] [PubMed]
- Percival, G.C.; Fraser, G.A. The influence of powdery mildew infection on photosynthesis, chlorophyll fluorescence, leaf chlorophyll and carotenoid content of three woody plant species. Arboric. J. 2002, 26, 333–346. [Google Scholar] [CrossRef]
- Wang, Z.X.; Chen, L.; Ai, J.; Qin, H.Y.; Liu, Y.X.; Xu, P.L.; Jiao, Z.Q.; Zhao, Y.; Zhang, Q.T. Photosynthesis and activity of photosystem II in response to drought stress in amur grape (Vitis amurensis Rupr.). Photosynthetica 2021, 50, 189–196. [Google Scholar] [CrossRef]
- Garab, G.; Magyar, M.; Sipka, G.; Lambrev, P.H. New foundations for the physical mechanism of variable chlorophyll a fluorescence. Quantum efficiency versus the light-adapted state of photosystem II. J. Exp. Bot. 2023, 74, 5458–5471. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, C.J.; Policarpo, M.; Webster, A.D.; Kuden, A.M. Drought tolerance of apple rootstocks: Production and partitioning of dry matter. Plant Soil 1999, 206, 223–235. [Google Scholar] [CrossRef]
- Ren, J.; Mao, J.; Zuo, C.; Calderon-Urrea, A.; Dawuda, M.M.; Zhao, X.; Li, X.; Chen, B. Significant and unique changes in phosphorylation levels of four phosphoproteins in two apple rootstock genotypes under drought stress. Mol. Genet. Genom. 2017, 292, 1307–1322. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.H.; Bhusal, N.; Jeong, W.T.; Park, I.H.; Han, S.G.; Yoon, T.M. Drought tolerance of ‘fuji’apple trees grafted onto G, CG, or M series rootstocks: Growth and physiology. Horticult. Sci. Technol. 2020, 38, 583–594. [Google Scholar] [CrossRef]
- Han, X.; Wang, J.; Zhang, L. Coordination of hydraulic and leaf-level gas exchange traits during water-deficit acclimation in apple rootstocks. Physiol. Plant. 2023, 175, e14037. [Google Scholar] [CrossRef]
- Marrocchino, E.; Telloli, C.; Tessari, U.; Cesarano, M.; Bruni, M.; Vaccaro, C. Archaeometric surveys of the artifacts from the archaeological site of Baro Zavelea, Comacchio (Ferrara, Italy). Appl. Sci. 2022, 12, 11692. [Google Scholar] [CrossRef]
- Wentworth, C.K. A scale of grade and class terms for classic sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Tang, L. Gas capacity method to determine the content of bicarbonate and carbonate in sodium silicate sand. IOP Conf. Ser. Earth Environ. Sci. 2018, 170, 022159. [Google Scholar] [CrossRef]
- Ferroni, L.; Živčak, M.; Kovar, M.; Colpo, A.; Pancaldi, S.; Allakhverdiev, S.I.; Brestič, M. Fast chlorophyll a fluorescence induction (OJIP) phenotyping of chlorophyll-deficient wheat suggests that an enlarged acceptor pool size of Photosystem I helps compensate for a deregulated photosynthetic electron flow. J. Photochem. Photobiol. B Biol. 2022, 234, 112549. [Google Scholar] [CrossRef] [PubMed]
- Stirbet, A.; Govindjee. Chlorophyll a fluorescence induction: A personal perspective of the thermal phase, the J–I–P rise. Photosynth. Res. 2012, 113, 15–61. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zheng, Q.; Qi, Z.; Ding, J.; Song, X.; Xia, X. Stress-induced delay of the IP rise of the fast chlorophyll a fluorescence transient in tomato. Sci. Hortic. 2024, 326, 112741. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimilli-Michael, M.; Qiang, S.; Goltsev, V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim. Biophys. Acta Bioenerg. 2010, 1797, 1313–1326. [Google Scholar] [CrossRef] [PubMed]
- Local Benchmark Sites of Emilia-Romagna Soils. Available online: https://ambiente.regione.emilia-romagna.it/en/geologia/soil/benchmark-local-sites-of-emilia-romagna-soils (accessed on 25 April 2024).
- Stefani, M.; Vincenzi, S. The interplay of eustasy, climate and human activity in the late Quaternary depositional evolution and sedimentary architecture of the Po Delta system. Mar. Geol. 2005, 222, 19–48. [Google Scholar] [CrossRef]
- Curzi, P.V.; Dinelli, E.; Lucchi, M.R.; Vaiani, S.C. Palaeoenvironmental control on sediment composition and provenance in the late Quaternary deltaic successions: A case study from the Po delta area (Northern Italy). Geol. J. 2006, 41, 591–612. [Google Scholar] [CrossRef]
- Bruno, L.; Amorosi, A.; Severi, P.; Costagli, B. Late Quaternary aggradation rates and strati-graphic architecture of the southern Po Plain, Italy. Basin Res. 2017, 29, 234–248. [Google Scholar] [CrossRef]
- Brestič, M.; Živčak, M. PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: Protocols and applications. In Molecular Stress Physiology of Plants; Das, A.B., Rout, G.R., Eds.; Springer: New Dehli, India, 2013; pp. 87–131. [Google Scholar]
- Lichtenthaler, H.K.; Buschmann, C.; Knapp, M. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 2005, 43, 379–393. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophyll fluorescence kinetics, photosynthetic activity, and pigment composition of blue-shade and half-shade leaves as compared to sun and shade leaves of different trees. Photosynth. Res. 2013, 117, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Brestič, M.; Živčak, M.; Kalaji, H.M.; Allakhverdiev, S.I.; Carpentier, R. Photosystem II thermo-stability in situ: Environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiol. Biochem. 2012, 57, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Barboričová, M.; Filaček, A.; Vysoka, D.M.; Gašparovič, K.; Živčák, M.; Brestič, M. Sensitivity of fast chlorophyll fluorescence parameters to combined heat and drought stress in wheat genotypes. Plant Soil Environ. 2022, 68, 309–316. [Google Scholar] [CrossRef]
- Tóth, S.Z.; Schansker, G.; Strasser, R.J. A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynth. Res. 2007, 93, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Ceppi, M.G.; Oukarroum, A.; Cicek, N.; Strasser, R.J.; Schansker, G. The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: A study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiol. Plant. 2012, 144, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Bierer, A.M.; Tang, L. Drought responses in three apple cultivars using an autonomous sensor-based irrigation system. HortScience 2024, 59, 431–441. [Google Scholar] [CrossRef]
- Huang, J.; Hartemink, A.E. Soil and environmental issues in sandy soils. Earth-Sci. Rev. 2020, 208, 103295. [Google Scholar] [CrossRef]
- Huang, Y.; Song, X.; Wang, Y.-P.; Canadell, J.G.; Luo, Y.; Ciais, P.; Chen, A.; Hong, S.; Wang, Y.; Tao, F.; et al. Size, distribution, and vulnerability of the global soil inorganic carbon. Science 2024, 384, 233–239. [Google Scholar] [CrossRef]
- Lauriano, J.A.; Ramalho, J.C.; Lidon, F.C.; Céumatos, M. Mechanisms of energy dissipation in peanut under water stress. Photosynthetica 2006, 44, 404–410. [Google Scholar] [CrossRef]
- Živčak, M.; Brestič, M.; Balatova, Z.; Drevenakova, P.; Olšovska, K.; Kalaji, M.H.; Allakhverdiev, S.I. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth. Res. 2013, 117, 529–546. [Google Scholar] [CrossRef]
- Sipka, G.; Magyar, M.; Mezzetti, A.; Akhtar, P.; Zhu, Q.; Xiao, Y.; Han, G.; Santabarbara, S.; Shen, J.-R.; Lambrev, P.H.; et al. Light-adapted charge-separated state of photosystem II: Structural and functional dynamics of the closed reaction center. Plant Cell 2021, 33, 1286–1302. [Google Scholar] [CrossRef] [PubMed]
- Živčak, M.; Brestič, M.; Olšovska, K. Application of photosynthetic parameters in screening of wheat (Triticum aestivum L.) genotypes for improved drought and high temperature tolerance. In Photosynthesis. Energy from the Sun; Allen, J.F., Gantt, E., Goldbeck, J.H., Osmond, B., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 1247–1250. [Google Scholar]
- Oukarroum, A.; Madidi, S.E.; Schansker, G.; Strasser, R.J. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and rewatering. Environ. Exp. Bot. 2007, 60, 438–446. [Google Scholar] [CrossRef]
- Banks, J.M. Chlorophyll fluorescence as a tool to identify drought stress in Acer genotypes. Environ. Exp. Bot. 2018, 155, 118–127. [Google Scholar] [CrossRef]
- Christen, D.; Schönmann, S.; Jermini, M.; Strasser, R.J.; Défago, G. Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environ. Exp. Bot. 2007, 60, 504–514. [Google Scholar] [CrossRef]
- Mihaljević, I.; Viljevac Vuletić, M.; Tomaš, V.; Horvat, D.; Zdunić, Z.; Vuković, D. PSII photochemistry responses to drought stress in autochthonous and modern sweet cherry cultivars. Photosynthetica 2021, 59, 517–528. [Google Scholar] [CrossRef]
- Pollastrini, M.; Salvatori, E.; Fusaro, L.; Manes, F.; Marzuoli, R.; Gerosa, G.; Brüggemann, W.; Strasser, R.J.; Bussotti, F. Selection of tree species for forests under climate change: Is PSI functioning a better predictor for net photosynthesis and growth than PSII? Tree Physiol. 2020, 40, 1561–1571. [Google Scholar] [CrossRef]
- Živčak, M.; Brestič, M.; Kunderlikova, K.; Olšovska, K.; Allakhverdiev, S.I. Effect of photosystem I inactivation on chlorophyll a fluorescence induction in wheat leaves: Does activity of photosystem I play any role in OJIP rise? J. Photochem. Photobiol. B Biol. 2015, 152, 318–324. [Google Scholar] [CrossRef]
- Bauerle, T.L.; Centinari, M.; Bauerle, W.L. Shifts in xylem vessel diameter and embolisms in grafted apple trees of differing rootstock growth potential in response to drought. Planta 2011, 234, 1045–1054. [Google Scholar] [CrossRef]
Rootstock | Trunk Cross Section (cm2) | Fruit Yield per Trunk Section (kg cm−2) | Cumulative Production (kg plant−1) | Average Fruit Weight (g) | Plant Height (m) |
---|---|---|---|---|---|
CIVP21pbr | 24.65 | 0.37 | 20.71 | 285 | 2.37 |
MM106 | 16.34 | 0.37 | 16.09 | 270 | 2.37 |
M26 | 14.57 | 0.42 | 14.40 | 274 | 2.21 |
Rootstock | Treatment | Fruit Number per Plant | Harvest Weight per Plant (kg) | Fruit Weight (kg) |
---|---|---|---|---|
CIVP21pbr | Irrigated | 63.0 ± 4.2 | 13.6 ± 1.0 | 0.215 ± 0.008 |
Non-irrigated | 44.8 ± 7.0 | 7.8 ± 1.4 | 0.172 ± 0.010 | |
MM106 | Irrigated | 55.6 ± 6.3 | 13.7 ± 1.7 | 0.245 ± 0.006 |
Non-irrigated | 35.7 ± 13.7 | 7.9 ± 4.1 | 0.201 ± 0.027 | |
M26 | Irrigated | 54.8 ± 8.0 | 14.8 ± 2.4 | 0.267 ± 0.006 |
Non-irrigated | 49.3 ± 6.5 | 9.1 ± 1.8 | 0.182 ± 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colpo, A.; Demaria, S.; Zaccarini, M.; Forlani, A.; Senatore, A.; Marrocchino, E.; Martina, A.; Ferroni, L. Drought-Stressed Apple Tree Grafted onto Different Rootstocks in a Coastal Sandy Soil: Link between Fast Chlorophyll a Fluorescence and Production Yield. Agronomy 2024, 14, 1304. https://doi.org/10.3390/agronomy14061304
Colpo A, Demaria S, Zaccarini M, Forlani A, Senatore A, Marrocchino E, Martina A, Ferroni L. Drought-Stressed Apple Tree Grafted onto Different Rootstocks in a Coastal Sandy Soil: Link between Fast Chlorophyll a Fluorescence and Production Yield. Agronomy. 2024; 14(6):1304. https://doi.org/10.3390/agronomy14061304
Chicago/Turabian StyleColpo, Andrea, Sara Demaria, Marzio Zaccarini, Alessandro Forlani, Antonia Senatore, Elena Marrocchino, Angela Martina, and Lorenzo Ferroni. 2024. "Drought-Stressed Apple Tree Grafted onto Different Rootstocks in a Coastal Sandy Soil: Link between Fast Chlorophyll a Fluorescence and Production Yield" Agronomy 14, no. 6: 1304. https://doi.org/10.3390/agronomy14061304
APA StyleColpo, A., Demaria, S., Zaccarini, M., Forlani, A., Senatore, A., Marrocchino, E., Martina, A., & Ferroni, L. (2024). Drought-Stressed Apple Tree Grafted onto Different Rootstocks in a Coastal Sandy Soil: Link between Fast Chlorophyll a Fluorescence and Production Yield. Agronomy, 14(6), 1304. https://doi.org/10.3390/agronomy14061304