Integration of Unmanned Aerial Vehicle Spectral and Textural Features for Accurate Above-Ground Biomass Estimation in Cotton
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Ground Data Acquisition
2.3. UAV Image Acquisition and Feature Extraction
2.3.1. Image Acquisition
2.3.2. Image Extraction and Parsing
2.3.3. Feature Selection Algorithm
2.4. Model Construction and Evaluation
2.4.1. Model Building
2.4.2. Bayesian Ridge Regression
2.4.3. Random Forest Regression
2.4.4. Artificial Neural Network
2.4.5. Evaluation of Model Accuracy
3. Results
3.1. Estimation of AGB in Cotton Based on Pearson’s Correlation Analysis
3.1.1. Correlation Analysis between Spectral Features of Cotton Canopy and AGB
3.1.2. Model Construction of Cotton AGB Estimation Based on Pearson’s Correlation Analysis
3.2. Estimation of AGB in Cotton Based on Principal Component Analysis
3.2.1. Contribution of Cotton Canopy Spectral and Textural Features Based on PCA
3.2.2. Model Construction of Cotton AGB Estimation Based on PCA
3.3. Estimation of AGB in Cotton Based on Multiple Stepwise Regression
3.4. Estimation of AGB in Cotton Based on RfF Algorithm
3.4.1. Importance Analysis and Estimation of AGB in Cotton Based on RfF Algorithm
3.4.2. Model Construction of Cotton RfR-AGB Estimation
3.5. Model Inversion for Cotton AGB Estimation Based on Optimal Modeling Strategy
4. Discussion
4.1. Response of Cotton AGB Estimation Models to Spectral and Textural Features
4.2. Estimation of AGB in Cotton Based on Spectral and Textural Feature Fusions by Feature Selection Algorithm
4.3. Impact of Machine Learning Algorithms on the Accuracy of Cotton AGB Estimation Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, F.; Bai, J.Y.; Zhang, M.Y.; Zhang, R.Y. Yield estimation of high-density cotton fields using low-altitude UAV imaging and deep learning. Plant Methods 2022, 18, 55. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Yin, D.M.; Cheng, M.H.; Liu, S.B.; Bai, Y.; Liu, Y.; Liu, Y.D.; Jia, X.; Nan, F.; Song, Y.; et al. Improved Crop Biomass Algorithm with Piecewise Function (iCBA-PF) for Maize Using Multi-Source UAV Data. Drones 2023, 7, 254. [Google Scholar] [CrossRef]
- Liu, Y.W.; Shen, X.J.; Wang, Y.J.; Zhang, J.Q.; Ma, R.; Lu, X.G.; Jiang, M. Spatiotemporal Variation in Aboveground Biomass and Its Response to Climate Change in the Marsh of Sanjiang Plain. Front. Plant Sci. 2022, 13, 920086. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.B.; Yang, G.J.; Tian, Q.J.; Feng, H.K.; Xu, K.J.; Zhou, C.Q. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Li, B.; Xu, X.M.; Zhang, L.; Han, J.W.; Bian, C.S.; Li, G.C.; Liu, J.G.; Jin, L.P. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS J. Photogramm. Remote Sens. 2020, 162, 161–172. [Google Scholar] [CrossRef]
- Li, D.; Miao, Y.X.; Gupta, S.K.; Rosen, C.J.; Yuan, F.; Wang, C.Y.; Wang, L.; Huang, Y.B. Improving Potato Yield Prediction by Combining Cultivar Information and UAV Remote Sensing Data Using Machine Learning. Remote Sens. 2021, 13, 3322. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.J.; Rasheed, A.; Yang, G.J.; Reynolds, M.; Xia, X.C.; Xiao, Y.G.; He, Z.H. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant Sci. 2019, 282, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Bronson, K.F.; French, A.N.; Conley, M.M.; Barnes, E.M. Use of an ultrasonic sensor for plant height estimation in irrigated cotton. Agron. J. 2020, 113, 2175–2183. [Google Scholar] [CrossRef]
- Yin, C.X.; Lv, X.; Zhang, L.F.; Ma, L.L.; Wang, H.H.; Zhang, L.S.; Zhang, Z. Hyperspectral UAV Images at Different Altitudes for Monitoring the Leaf Nitrogen Content in Cotton Crops. Remote Sens. 2022, 14, 2576. [Google Scholar] [CrossRef]
- Zhou, X.T.; Yang, M.; Chen, X.Y.; Ma, L.L.; Yin, C.X.; Qin, S.Z.; Wang, L.; Lv, X.; Zhang, Z. Estimation of Cotton Nitrogen Content Based on Multi-Angle Hyperspectral Data and Machine Learning Models. Remote Sens. 2023, 15, 955. [Google Scholar] [CrossRef]
- Li, M.H.; Shamshiri, R.R.; Schirrmann, M.; Weltzien, C.; Shafian, S.; Laursen, S. UAV Oblique Imagery with an Adaptive Micro-Terrain Model for Estimation of Leaf Area Index and Height of Maize Canopy from 3D Point Clouds. Remote Sens. 2022, 14, 585. [Google Scholar] [CrossRef]
- Javier, H.C.; Edgar, O.M.; Roger, M.; Olmán, M. Evaluation of Unmanned Aerial Vehicles (UAV) as a Tool to Predict Biomass and Carbon of Tectona grandis in Silvopastoral Systems (SPS) in Costa Rica. Drones 2021, 5, 47. [Google Scholar] [CrossRef]
- Bascon, M.V.; Nakata, T.; Shibata, S.; Takata, I.; Kobayashi, N.; Kato, Y.; Inoue, S.; Doi, K.; Murase, J.; Nishuchi, S. Estimating Yield-Related Traits Using UAV-Derived Multispectral Images to Improve Rice Grain Yield Prediction. Agriculture 2022, 12, 1141. [Google Scholar] [CrossRef]
- Liu, Y.N.; Liu, S.S.; Li, L.; Gou, X.Y.; Wang, S.Q.; Lu, J.W. Estimating biomass of winter oilseed rape using vegetation indices and texture metrics derived from UAV multispectral images. Comput. Electron. Agric. 2019, 166, 105026. [Google Scholar] [CrossRef]
- Wang, F.M.; Yi, Q.X.; Hu, J.H.; Xie, L.L.; Yao, X.P.; Xu, T.Y.; Zheng, J.Y. Combining spectral and textural information in UAV hyperspectral images to estimate rice grain yield. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102397. [Google Scholar] [CrossRef]
- Bao, L.; Li, X.; Yu, J.X.; Li, G.S.; Chang, X.Y.; Yu, L.X.; Li, Y. Forecasting spring maize yield using vegetation indices and crop phenology metrics from UAV observations. Food Energy Secur. 2023, 13, e505. [Google Scholar] [CrossRef]
- Su, X.; Nian, Y.; Yue, H.; Zhu, Y.; Li, J.; Wang, W.; Sheng, Y.; Ma, Q.; Liu, J.; Wang, W.; et al. Improving Wheat Leaf Nitrogen Concentration (LNC) Estimation across Multiple Growth Stages Using Feature Combination Indices (FCIs) from UAV Multispectral Imagery. Agronomy 2024, 14, 1052. [Google Scholar] [CrossRef]
- Yin, Q.; Zhang, Y.T.; Li, W.L.; Wang, J.J.; Wang, W.L.; Ajmad, I.; Zhou, G.S.; Huo, Z.Y. Estimation of Winter Wheat SPAD Values Based on UAV Multispectral Remote Sensing. Remote Sens. 2023, 15, 3595. [Google Scholar] [CrossRef]
- Mosleth, E.F.; Wan, Y.F.; Lysenko, A.; Chope, G.A.; Pemson, S.P.; Shewry, P.R.; Hawkesford, M.J. A novel approach to identify genes that determine grain protein deviation in cereals. Plant Biotechnol. J. 2015, 13, 625–635. [Google Scholar] [CrossRef]
- Zhu, X.F.; Hou, C.Y.; Xu, K.; Liu, Y. Establishment of agricultural drought loss models: A comparison of statistical methods. Ecol. Indic. 2020, 112, 106084. [Google Scholar] [CrossRef]
- Lapajne, J.; Knapič, M.; Žibrat, U. Comparison of Selected Dimensionality Reduction Methods for Detection of Root-Knot Nematode Infestations in Potato Tubers Using Hyperspectral Imaging. Sensors 2022, 22, 367. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, K.; Liu, Z.; Dai, Y.; Duan, X.; Wang, M.; Shen, Q. Simultaneous Determination of Four Catechins in Black Tea via NIR Spectroscopy and Feature Wavelength Selection: A Novel Approach. Sensors 2024, 24, 3362. [Google Scholar] [CrossRef]
- Karthigesu, J.; Owari, T.; Tsuyuki, S.; Hiroshima, T. Improving the Estimation of Structural Parameters of a Mixed Conifer–Broadleaf Forest Using Structural, Textural, and Spectral Metrics Derived from Unmanned Aerial Vehicle Red Green Blue (RGB) Imagery. Remote Sens. 2024, 16, 1783. [Google Scholar] [CrossRef]
- Chen, D.W.; Hu, F.; Nian, G.K.; Yang, T.T. Deep Residual Learning for Nonlinear Regression. Entropy 2020, 22, 193. [Google Scholar] [CrossRef] [PubMed]
- Kasper, J.; Mitchell, J.L.M.; Yoann, M.; Bruno, A.; Samer, A.; Matteo, G.Z.; Yoseline, A.; Gabriele, F.; Sónia, N.; Magdi, A.A.M.; et al. Predicting Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random Forest. Front. Artif. Intell. 2020, 3, 28. [Google Scholar] [CrossRef]
- Yuan, H.H.; Yang, G.J.; Li, C.C.; Wang, Y.J.; Liu, J.G.; Yu, H.Y.; Feng, H.K.; Xu, B.; Zhao, X.Q.; Yang, X.D. Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models. Remote Sens. 2017, 9, 309. [Google Scholar] [CrossRef]
- Zhang, C.; Yi, Y.; Wang, L.; Zhang, X.; Chen, S.; Su, Z.; Zhang, S.; Xue, Y. Estimation of the Bio-Parameters of Winter Wheat by Combining Feature Selection with Machine Learning Using Multi-Temporal Unmanned Aerial Vehicle Multispectral Images. Remote Sens. 2024, 16, 469. [Google Scholar] [CrossRef]
- Chen, M.G.; Lin, T.; Zhang, H.; Liu, H.J.; Wang, Y.F.; Tang, Q.X. Effects of mulch film types on cotton growth and analysisof self-degradation recycling characteristics. Xinjiang Agric. Sci. 2023, 60, 2101–2108. [Google Scholar] [CrossRef]
- Hernandez, A.; Jensen, K.; Larson, S.; Larsen, R.; Rigby, C.; Johnson, B.; Spickermann, C.; Sinton, S. Using Unmanned Aerial Vehicles and Multispectral Sensors to Model Forage Yield for Grasses of Semiarid Landscapes. Grasses 2024, 3, 84–109. [Google Scholar] [CrossRef]
- Niu, Q.L.; Feng, H.K.; Zhou, X.G.; Zhu, J.Q.; Yong, B.B.; Li, H.Z. Combining UAV Visible Light and Multispectral Vegetation Indices forEstimating SPAD Value of Winter Whea. Trans. Chin. Soc. Agric. Mach. 2021, 52, 183–194. [Google Scholar] [CrossRef]
- Oteng-Frimpong, R.; Karikari, B.; Sie, E.K.; Kassim, Y.B.; Puozaa, D.K.; Rasheed, M.A.; Fonceka, D.; Okello, D.K.; Balota, M.; Burow, M.; et al. Multi-locus genome-wide association studies reveal genomic regions and putative candidate genes associated with leaf spot diseases in African groundnut (Arachis hypogaea L.) germplasm. Front. Plant Sci. 2023, 13, 1076744. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Shi, L.S.; Han, J.Y.; Zha, Y.Y.; Zhu, P.H. Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images. Field Crop. Res. 2019, 235, 142–153. [Google Scholar] [CrossRef]
- Sadeed, H. Application and Assessment of UAV on-Board Multispectral Sensor for Non-Destructive Site-Specific Rapeseed Crop (Brassica napus L.) Phenotype Variable and Weed Discrimination at Early Phenological Stage; Huazhong Agricultural University: Wuhan, China, 2021. [Google Scholar]
- Yang, Z.; Yu, Z.; Wang, X.; Yan, W.; Sun, S.; Feng, M.; Sun, J.; Su, P.; Sun, X.; Wang, Z.; et al. Estimation of Millet Aboveground Biomass Utilizing Multi-Source UAV Image Feature Fusion. Agronomy 2024, 14, 701. [Google Scholar] [CrossRef]
- Killeen, P.; Kiringa, I.; Yeap, T.; Branco, P. Corn Grain Yield Prediction Using UAV-Based High Spatiotemporal Resolution Imagery, Machine Learning, and Spatial Cross-Validation. Remote Sens. 2024, 16, 683. [Google Scholar] [CrossRef]
- Shen, Y.; Yan, Z.; Yang, Y.; Tang, W.; Sun, J.; Zhang, Y. Application of UAV-Borne Visible-Infared Pushbroom Imaging Hyperspectral for Rice Yield Estimation Using Feature Selection Regression Methods. Sustainability 2024, 16, 632. [Google Scholar] [CrossRef]
- Rozenstein, O.; Haymann, N.; Kaplan, G.; Tanny, J. Validation of the cotton crop coefficient estimation model based on Sentinel-2 imagery and eddy covariance measurements. Agric. Water Manag. 2019, 223, 105715. [Google Scholar] [CrossRef]
- Shammi, S.A.; Huang, Y.; Feng, G.; Tewolde, H.; Zhang, X.; Jenkins, J.; Shankle, M. Application of UAV Multispectral Imaging to Monitor Soybean Growth with Yield Prediction through Machine Learning. Agronomy 2024, 14, 672. [Google Scholar] [CrossRef]
- Liu, S.B.; Jin, X.L.; Bai, Y.; Wu, W.B.; Cui, N.B.; Cheng, M.H.; Liu, Y.D.; Meng, L.; Jia, X.; Nie, C.W.; et al. UAV multispectral images for accurate estimation of the maize LAI considering the effect of soil background. Int. J. Appl. Earth Obs. Geoinf. 2023, 121, 103383. [Google Scholar] [CrossRef]
- Mryka, H.B. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- Abelardo, M.L.; Osval, A.M.L.; Gustavo, D.L.C.; José, C.; Juan, B.; Francisco, J.L.V. Bayesian functional regression as an alternative statistical analysis of high-throughput phenotyping data of modern agriculture. Plant Methods 2018, 14, 46. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.L.; Li, Z.H.; Feng, H.K.; Ren, Z.B.; Li, S.K. Deep neural network algorithm for estimating maize biomass based on simulated Sentinel 2A vegetation indices and leaf area index. Crop. J. 2020, 8, 87–97. [Google Scholar] [CrossRef]
- Mia, S.M.; Ryoya, T.; Luthfan, N.H.; Naoyuki, H.; Koki, H.; Masayasu, M.; Tsutomu, M.; Takashi, S.T.T. Multimodal Deep Learning for Rice Yield Prediction Using UAV-Based Multispectral Imagery and Weather Data. Remote Sens. 2023, 15, 2511. [CrossRef]
- Maitiniyazi, M.; Vasit, S.; Paheding, S.; Sean, H.; Flavio, E.; Felix, B.F. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- Guo, Y.H.; Fu, Y.S.H.; Chen, S.Z.; Bryant, C.R.; Li, X.X.; Senthilnath, J.; Sun, H.Y.; Wang, S.X.; Wu, Z.F.; Beurs, K. Integrating spectral and textural information for identifying the tasseling date of summer maize using UAV based RGB images. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102435. [Google Scholar] [CrossRef]
- Francisco, A.V.; Fernando, C.R.; Saiz, M.P.; Francisco, O.R. Multi-temporal Imaging Using an Unmanned Aerial Vehicle for Monitoring a Sunflower Crop. Biosyst. Eng. 2015, 132, 19–27. [Google Scholar]
- Jiang, X.Y.; Li, F.S.; Wang, Q.Y.; Luo, J.; Hao, J.; Xu, M.Q. Determination of Lead and Arsenic in Soil Samples by X Fluorescence Spectrum Combined with CARS Variables Screening Method. Spectrosc. Spectr. Anal. 2022, 42, 1535–1540. [Google Scholar]
- Lin, X.Q.; Ren, C.; Li, Y.; Yue, W.T.; Liang, J.Y.; Yin, A.C. Eucalyptus Plantation Area Extraction Based on SLPSO-RFE Feature Selection and Multi-Temporal Sentinel-1/2 Data. Forests 2023, 14, 1864. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Han, X.X.; Lin, F.F.; Du, S.Z.; Zhang, G.; Hong, Q. Estimation of winter wheat leaf area index using multi-source UAV image feature fusion. Trans. Chin. Soc. Agric. Eng. 2022, 38, 171–179. [Google Scholar] [CrossRef]
- Harsányi, E.; Bashir, B.; Arshad, S.; Ocwa, A.; Vad, A.; Alsalman, A.; Bácskai, I.; Rátonyi, T.; Hijazi, O.; Széles, A.; et al. Data Mining and Machine Learning Algorithms for Optimizing Maize Yield Forecasting in Central Europe. Agronomy 2023, 13, 1297. [Google Scholar] [CrossRef]
Data Sets | Sample Size | Mean (kg·m−2) | Maximum (kg·m−2) | Minimum (kg·m−2) | Standard Deviation (kg·m−2) | Variance | Coefficient of Variation |
---|---|---|---|---|---|---|---|
Training Sets | 403 | 1.12 | 2.87 | 0.19 | 0.61 | 0.37 | 54% |
Test Sets | 173 | 1.05 | 3.61 | 0.24 | 0.62 | 0.39 | 60% |
Date of Data Acquisition | Unmanned Aircraft Platforms | Sensor | Spectral Region (nm) | Flight Altitude (m) | Spacing Resolution (m) | Longitudinal and Lateral Overlap Rate |
---|---|---|---|---|---|---|
5 July 2021 | M300RTK | RedEdge-MX | Blue: 475 ± 20 | 30 | 0.02117 | 75% + 75% |
5 August 2021 | M300RTK | Green: 560 ± 20 | 30 | 0.02117 | 75% + 75% | |
22 August 2021 | M300RTK | Red: 668 ± 10 | 30 | 0.02117 | 75% + 75% | |
RedEdge: 717 ± 10 | ||||||
NIR: 840 ± 40 | ||||||
29 June 2022 | P4M | Blue: 450 ± 16 | 30 | 0.02091 | 75% + 75% | |
Green: 560 ± 16 | ||||||
7 August 2022 | P4M | Red: 650 ± 16 | 30 | 0.02091 | 75% + 75% | |
RedEdge: 730 ± 16 | ||||||
NIR: 840 ± 26 |
Number | Spectral Features | Abbreviation | Formula | Reference |
---|---|---|---|---|
1 | Difference Vegetation Index | DVI | [30] | |
2 | Green-difference Vegetation Index (g) | GDVI | [31] | |
3 | Normalized Difference Vegetation Index | NDVI | [32] | |
4 | Green-normalized Difference Vegetation Index | GNDVI | [33] | |
5 | Blue-normalized Difference Vegetation Index | BNDVI | [34] | |
6 | Ration Vegetation Index | RVI | [35] | |
7 | Green-Ration Vegetation Index | GRVI | [35] | |
8 | Structurally Insensitive Pigment Index | SIPI2 | [28] | |
9 | Source Address Validation Improvement | SAVI | [36] | |
10 | Optimization of Soil Regulatory Vegetation Index | OSAVI | [36] | |
11 | Green-Optimization of Soil Regulatory Vegetation Index | GOSAVI | [31] | |
12 | Green Chlorophyll Index | CIgreen | [37] | |
13 | RedEdge Simple Ratio Vegetation Index | RESR | [38] | |
14 | Enhanced Vegetation Index | EVI | [37] | |
15 | Non-Linear Index | NLI | [31] | |
16 | Atmospheric Resistance Vegetation Index | ARVI | [39] | |
17 | Transformed Difference Vegetation Index | TVI | [37] | |
18 | Green-Renormalized Difference Vegetation Index | GRDVI | [31] | |
19 | Modified Simple Ration Index | MSR | [40] | |
20 | Green-Modified Simple Ration Index | GMSR | [31] |
Channel B | r | Channel G | r | Channel R | r | Channel NIR | r | Channel RE | r |
---|---|---|---|---|---|---|---|---|---|
B_MEA | −0.20 *** | G_MEA | −0.66 *** | R_MEA | −0.56 *** | NIR_MEA | 0.26 *** | RE_MEA | −0.22 *** |
B_VAR | 0.06 | G_VAR | −0.20 *** | R_VAR | −0.20 *** | NIR_VAR | 0.10 * | RE_VAR | 0.01 |
B_HOM | −0.08 | G_HOM | 0.16 *** | R_HOM | 0.19 *** | NIR_HOM | −0.28 *** | RE_HOM | −0.11 ** |
B_CON | 0.07 | G_CON | −0.16 *** | R_CON | −0.20 *** | NIR_CON | 0.25 *** | RE_CON | 0.10 * |
B_DIS | 0.57 *** | G_DIS | 0.03 | R_DIS | 0.11 ** | NIR_DIS | 0.43 *** | RE_DIS | 0.33 *** |
B_ENT | 0.25 *** | G_ENT | 0.25 *** | R_ENT | 0.25 *** | NIR_ENT | 0.25 *** | RE_ENT | 0.25 *** |
B_ASM | −0.25 *** | G_ASM | −0.25 *** | R_ASM | −0.25 *** | NIR_ASM | −0.25 *** | RE_ASM | −0.25 *** |
B_COR | 0.15 *** | G_COR | 0.07 | R_COR | 0.20 *** | NIR_COR | 0.01 | RE_COR | 0.04 |
Features | Method | Feature Numbers | Feature Variables | Test Sets | |||
---|---|---|---|---|---|---|---|
R2 | RMSE (kg·m−2) | MAE (kg·m−2) | nRMSE | ||||
SF | BRR | 2 | G, RESR | 0.56 | 0.41 | 0.32 | 0.93 |
RFR | 0.78 | 0.29 | 0.20 | 0.50 | |||
ANN | 0.82 | 0.26 | 0.18 | 0.48 | |||
TF | BRR | 2 | B_DIS, G_MEA | 0.53 | 0.43 | 0.33 | 0.99 |
RFR | 0.67 | 0.36 | 0.24 | 0.63 | |||
ANN | 0.68 | 0.35 | 0.24 | 0.64 | |||
STF | BRR | 4 | G, RESR, B_DIS, G_MEA | 0.69 | 0.35 | 0.25 | 0.71 |
RFR | 0.78 | 0.29 | 0.19 | 0.50 | |||
ANN | 0.80 | 0.28 | 0.19 | 0.50 |
Features | Method | pc Numbers | Test Sets | |||
---|---|---|---|---|---|---|
R2 | RMSE (kg·m−2) | MAE (kg·m−2) | nRMSE | |||
SF | BRR | 2 | 0.51 | 0.44 | 0.34 | 1.00 |
RFR | 0.84 | 0.25 | 0.15 | 0.42 | ||
ANN | 0.86 | 0.23 | 0.15 | 0.38 | ||
TF | BRR | 4 | 0.57 | 0.41 | 0.31 | 0.92 |
RFR | 0.69 | 0.35 | 0.23 | 0.66 | ||
ANN | 0.62 | 0.39 | 0.27 | 0.74 | ||
STF | BRR | 4 | 0.64 | 0.37 | 0.27 | 0.79 |
RFR | 0.81 | 0.27 | 0.18 | 0.48 | ||
ANN | 0.84 | 0.25 | 0.25 | 0.42 |
Features | Method | Features Numbers | Features Variables | Test Sets | |||
---|---|---|---|---|---|---|---|
R2 | RMSE (kg·m−2) | MAE (kg·m−2) | nRMSE | ||||
SF | BRR | 17 | B, G, RE, R, DVI, NDVI, BNDVI, SIPI2, RVI, CIgreen, GOSAVI, RESR, SAVI, OSAVI, GRDVI, GMSR, MSR | 0.87 | 0.22 | 0.15 | 0.37 |
RFR | 0.88 | 0.22 | 0.13 | 0.37 | |||
ANN | 0.90 | 0.20 | 0.12 | 0.33 | |||
TF | BRR | 21 | B_MEA, B_DIS, G_VAR, G_CON, G_COR, NIR_MEA, NIR_VAR, NIR_HOM, NIR_DIS, NIR_ENT, NIR_ASM, RE_MEA, RE_VAR, RE_CON, RE_DIS, RE_COR, R_MEA, R_VAR, R_HOM, R_ENT, R_ASM | 0.82 | 0.26 | 0.17 | 0.46 |
RFR | 0.87 | 0.23 | 0.14 | 0.39 | |||
ANN | 0.89 | 0.20 | 0.13 | 0.33 | |||
STF | BRR | 34 | GDVI, NDVI, GNDVI, BNDVI, SIPI2, RVI, CIgreen, GOSAVI, EVI, OSAVI, NLI, GRDVI, GMSR, MSR, B_VAR, B_DIS, G_MEA, G_VAR, G_HOM, G_CON, G_DIS, G_COR, NIR_HOM, NIR_DIS, NIR_ENT, NIR_ASM, RE_VAR, RE_HOM, RE_CON, RE_DIS, RE_COR, R_CON, R_ENT, R_ASM | 0.87 | 0.23 | 0.15 | 0.38 |
RFR | 0.86 | 0.23 | 0.12 | 0.40 | |||
ANN | 0.89 | 0.20 | 0.14 | 0.33 |
Features | Method | Feature Numbers | Feature Variables | Test Sets | |||
---|---|---|---|---|---|---|---|
R2 | RMSE (kg·m−2) | MAE (kg·m−2) | nRMSE | ||||
SF | BRR | 2 | SIPI2, RESR | 0.51 | 0.43 | 0.33 | 0.96 |
RFR | 0.82 | 0.26 | 0.19 | 0.47 | |||
ANN | 0.86 | 0.24 | 0.17 | 0.41 | |||
TF | BRR | 2 | G_COR, RE_DIS | 0.08 | 0.60 | 0.51 | 2.77 |
RFR | 0.26 | 0.54 | 0.41 | 1.44 | |||
ANN | 0.13 | 0.58 | 0.48 | 2.40 | |||
STF | BRR | 4 | SIPI2, RESR, G_COR, RE_DIS | 0.61 | 0.39 | 0.29 | 0.82 |
RFR | 0.83 | 0.25 | 0.17 | 0.47 | |||
ANN | 0.86 | 0.23 | 0.16 | 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Yin, C.; Lin, T.; Liu, H.; Wang, Z.; Jiang, P.; Ali, S.; Tang, Q.; Jin, X. Integration of Unmanned Aerial Vehicle Spectral and Textural Features for Accurate Above-Ground Biomass Estimation in Cotton. Agronomy 2024, 14, 1313. https://doi.org/10.3390/agronomy14061313
Chen M, Yin C, Lin T, Liu H, Wang Z, Jiang P, Ali S, Tang Q, Jin X. Integration of Unmanned Aerial Vehicle Spectral and Textural Features for Accurate Above-Ground Biomass Estimation in Cotton. Agronomy. 2024; 14(6):1313. https://doi.org/10.3390/agronomy14061313
Chicago/Turabian StyleChen, Maoguang, Caixia Yin, Tao Lin, Haijun Liu, Zhenyang Wang, Pingan Jiang, Saif Ali, Qiuxiang Tang, and Xiuliang Jin. 2024. "Integration of Unmanned Aerial Vehicle Spectral and Textural Features for Accurate Above-Ground Biomass Estimation in Cotton" Agronomy 14, no. 6: 1313. https://doi.org/10.3390/agronomy14061313
APA StyleChen, M., Yin, C., Lin, T., Liu, H., Wang, Z., Jiang, P., Ali, S., Tang, Q., & Jin, X. (2024). Integration of Unmanned Aerial Vehicle Spectral and Textural Features for Accurate Above-Ground Biomass Estimation in Cotton. Agronomy, 14(6), 1313. https://doi.org/10.3390/agronomy14061313