Antifungal Potential of Carnosic Acid from Salvia somalensis against Phytopathogenic Fungi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction and Isolation
2.2.1. Chemicals
2.2.2. General Experimental Procedures
2.2.3. Chemical Investigation of Leaf Surface Constituents
2.2.4. Computational Methods
2.2.5. HPLC Quantitative Analysis
2.3. Antifungal Assays
2.3.1. Fungi Strains
2.3.2. Antifungal Activity Assay
2.3.3. B. cinerea Conidial Germination and Germ Tube Elongation Assay
2.3.4. Statistical Analysis
3. Results
3.1. Chemical Investigation of Leaf Surface Constituents
3.2. HPLC Quantitative Analysis
3.3. Antifungal Screening
3.4. B. cinerea Conidial Germination and Germ Tube Elongation Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peng, Y.; Li, S.J.; Yan, J.; Tang, Y.; Cheng, J.P.; Gao, A.J.; Yao, X.; Ruan, J.J.; Xu, B.L. Research progress on phytopathogenic fungi and their role as biocontrol agents. Front. Microbiol. 2021, 12, 670135. [Google Scholar] [CrossRef] [PubMed]
- Mitra, B.; Chowdhury, A.R.; Dey, P.; Hazra, K.K.; Sinha, A.K.; Hossain, A.; Meena, R.S. Use of Agrochemicals in Agriculture: Alarming Issues and Solutions. In Input Use Efficiency for Food and Environmental Security; Bhatt, R., Meena, R.S., Hossain, A., Eds.; Springer Nature Singapore: Singapore, 2021; pp. 85–122. [Google Scholar]
- Akanmu, A.O.; Babalola, O.O.; Venturi, V.; Ayilara, M.S.; Adeleke, B.S.; Amoo, A.E.; Sobowale, A.A.; Fadiji, A.E.; Glick, B.R. Plant disease management: Leveraging on the plant-microbe-soil interface in the biorational use of organic amendments. Front. Plant Sci. 2021, 12, 700507. [Google Scholar] [CrossRef] [PubMed]
- Roell, M.-S.; Zurbriggen, M.D. The impact of synthetic biology for future agriculture and nutrition. Curr. Opin. Biotechnol. 2020, 61, 102–109. [Google Scholar] [CrossRef]
- Venbrux, M.; Crauwels, S.; Rediers, H. Current and emerging trends in techniques for plant pathogen detection. Front. Plant Sci. 2023, 14, 1120968. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Lu, Y. Impact of Fungi on Agriculture Production, Productivity, and Sustainability. In Fungal Diversity, Ecology and Control Management; Rajpal, V.R., Singh, I., Navi, S.S., Eds.; Springer Nature Singapore: Singapore, 2022; pp. 401–413. [Google Scholar]
- Yu, Y.; Tan, H.; Liu, T.; Liu, L.; Tang, J.; Peng, W. Dual RNA-seq analysis of the interaction between edible fungus Morchella sextelata and its pathogenic fungus Paecilomyces penicillatus uncovers the candidate defense and pathogenic factors. Front. Microbiol. 2021, 12, 760444. [Google Scholar] [CrossRef]
- de Lamo, F.J.; Takken, F.L.W. Biocontrol by Fusarium oxysporum using endophyte-mediated resistance. Front. Plant Sci. 2020, 11, 37. [Google Scholar] [CrossRef]
- Derbyshire, M.C.; Newman, T.E.; Khentry, Y.; Owolabi Taiwo, A. The evolutionary and molecular features of the broad-host-range plant pathogen Sclerotinia sclerotiorum. Mol. Plant Pathol. 2022, 23, 1075–1090. [Google Scholar] [CrossRef]
- Kazartsev, I.A.; Gomzhina, M.M.; Gasich, E.L.; Khlopunova, L.B.; Gannibal, P.B. Biodiversity of Colletotrichum spp. on several wild and cultivated plants. Biol. Bull. Rev. 2023, 13, S59–S70. [Google Scholar] [CrossRef]
- Li, J.; Gu, F.; Wu, R.; Yang, J.; Zhang, K.-Q. Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi. Sci. Rep. 2017, 7, 45456. [Google Scholar] [CrossRef]
- Romanazzi, G.; Smilanick, J.L.; Feliziani, E.; Droby, S. Integrated management of postharvest gray mold on fruit crops. Postharvest Biol. Technol. 2016, 113, 69–76. [Google Scholar] [CrossRef]
- Wu, Z.; Bi, Y.; Zhang, J.; Gao, T.; Li, X.; Hao, J.; Li, G.; Liu, P.; Liu, X. Multidrug resistance of Botrytis cinerea associated with its adaptation to plant secondary metabolites. mBio 2024, 15, e0223723. [Google Scholar] [CrossRef] [PubMed]
- Leroux, P. Chemical Control of Botrytis and Its Resistance to Chemical Fungicides. In Botrytis: Biology, Pathology and Control; Elad, Y., Williamson, B., Tudzynski, P., Delen, N., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2007; pp. 195–222. [Google Scholar]
- Orozco-Mosqueda, M.d.C.; Kumar, A.; Fadiji, A.E.; Babalola, O.O.; Puopolo, G.; Santoyo, G. Agroecological management of the grey mould fungus Botrytis cinerea by plant growth-promoting bacteria. Plants 2023, 12, 637. [Google Scholar] [CrossRef]
- Fillinger, S.; Walker, A.-S. Chemical Control and Resistance Management of Botrytis diseases. In Botrytis—The Fungus, the Pathogen and its Management in Agricultural Systems; Fillinger, S., Elad, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 189–216. [Google Scholar]
- Fungicide Resistance Action Committee (FRAC). FRAC Code List©* 2024: Fungal Control Agents Sorted by Cross-Resistance Pattern and Mode of Action (Including Coding for FRAC Groups on Product Labels). Available online: https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2024.pdf (accessed on 25 May 2024).
- Shao, W.; Zhao, Y.; Ma, Z. Advances in understanding fungicide resistance in Botrytis cinerea in China. Phytopathology 2021, 111, 455–463. [Google Scholar] [CrossRef]
- Sofianos, G.; Samaras, A.; Karaoglanidis, G. Multiple and multidrug resistance in Botrytis cinerea: Molecular mechanisms of MLR/MDR strains in Greece and effects of co-existence of different resistance mechanisms on fungicide sensitivity. Front. Plant Sci. 2023, 14, 1273193. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Wang, J.W.; Li, J.; Han, B. Designing future crops: Challenges and strategies for sustainable agriculture. Plant J. 2021, 105, 1165–1178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Godana, E.A.; Sui, Y.; Yang, Q.; Zhang, X.; Zhao, L. Biological control as an alternative to synthetic fungicides for the management of grey and blue mould diseases of table grapes: A review. Crit. Rev. Microbiol. 2020, 46, 450–462. [Google Scholar] [CrossRef]
- Altieri, V.; Rossi, V.; Fedele, G. Efficacy of preharvest application of biocontrol agents against gray mold in grapevine. Front. Plant Sci. 2023, 14, 1154370. [Google Scholar] [CrossRef]
- Fedele, G.; Brischetto, C.; Rossi, V. Biocontrol of Botrytis cinerea on grape berries as influenced by temperature and humidity. Front. Plant Sci. 2020, 11, 1232. [Google Scholar] [CrossRef] [PubMed]
- Șesan, T.E.; Enache, E.L.; Iacomi, B.; Oprea, M.; Oancea, F.; Iacomi, C. Antifungal activity of some plant extracts against Botrytis cinerea Pers. in the blackcurrant crop (Ribes nigrum L.). Acta Sci. Pol. Hortorum Cultus 2015, 14, 29–43. [Google Scholar]
- Jiménez-Reyes, M.F.; Carrasco, H.; Olea, A.F.; Silva-Moreno, E. Natural compounds: A sustainable alternative to the phytopathogens control. J. Chil. Chem. Soc. 2019, 64, 4459–4465. [Google Scholar] [CrossRef]
- Drew, B.T.; González-Gallegos, J.G.; Xiang, C.-L.; Kriebel, R.; Drummond, C.P.; Walker, J.B.; Sytsma, K.J. Salvia united: The greatest good for the greatest number. Taxon 2017, 66, 133–145. [Google Scholar] [CrossRef]
- POWO. Plants of the World Online. Available online: https://powo.science.kew.org (accessed on 6 March 2024).
- Wu, Y.B.; Ni, Z.Y.; Shi, Q.W.; Dong, M.; Kiyota, H.; Gu, Y.C.; Cong, B. Constituents from Salvia Species and their biological activities. Chem. Rev. 2012, 112, 5967–6026. [Google Scholar] [CrossRef] [PubMed]
- Kabouche, A.; Kabouche, Z. Bioactive diterpenoids of Salvia species. In Studies in Natural Products Chemistry; Rahman, A.-u., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 35, pp. 753–833. [Google Scholar]
- Rodríguez-Hahn, L.; Esquivel, B.; Cárdenas, J.; Ramamoorthy, T.P. The Distribution of Diterpenoids in Salvia. In Advances in Labiatae Science; Harley, R.M., Reynolds, T., Eds.; The Royal Botanic Gardens: Richmond, UK, 1992. [Google Scholar]
- Jassbi, A.R.; Zare, S.; Firuzi, O.; Xiao, J. Bioactive phytochemicals from shoots and roots of Salvia species. Phytochem. Rev. 2016, 15, 829–867. [Google Scholar] [CrossRef]
- Bisio, A.; Pedrelli, F.; D’Ambola, M.; Labanca, F.; Schito, A.M.; Govaerts, R.; De Tommasi, N.; Milella, L. Quinone diterpenes from Salvia species: Chemistry, botany, and biological activity. Phytochem. Rev. 2019, 18, 665–842. [Google Scholar] [CrossRef]
- Gonzalez, M.A. Aromatic abietane diterpenoids: Their biological activity and synthesis. Nat. Prod. Rep. 2015, 32, 684–704. [Google Scholar] [CrossRef]
- Kang, J.; Quynh Le, T.; Oh, C.H. Recent advances in abietane/icetexane synthesis. Tetrahedron Lett. 2022, 108, 154133. [Google Scholar] [CrossRef]
- San Feliciano, A.; Gordaliza, M.; Salinero, M.A.; Miguel del Corral, J.M. Abietane acids: Sources, biological activities, and therapeutic uses. Planta Med. 1993, 59, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Argüelles, A.; Sánchez-Fresneda, R.; Guirao-Abad, J.P.; Lozano, J.A.; Solano, F.; Argüelles, J.-C. Insight into the antifungal effects of propolis and carnosic acid—Extension to the pathogenic yeast Candida glabrata: New propolis fractionation and potential synergistic applications. J. Fungi 2023, 9, 442. [Google Scholar] [CrossRef] [PubMed]
- Birtić, S.; Dussort, P.; Pierre, F.X.; Bily, A.C.; Roller, M. Carnosic acid. Phytochemistry 2015, 115, 9–19. [Google Scholar] [CrossRef]
- Exarchou, V.; Kanetis, L.; Charalambous, Z.; Apers, S.; Pieters, L.; Gekas, V.; Goulas, V. HPLC-SPE-NMR characterization of major metabolites in Salvia fruticosa Mill. Extract with antifungal potential: Relevance of carnosic acid, carnosol, and hispidulin. J. Agric. Food. Chem. 2015, 63, 457–463. [Google Scholar] [CrossRef]
- López-Cabeza, R.; Rodríguez-Sabina, S.; Reyes, C.P.; Expósito, D.G.; Giménez, C.; Jiménez, I.A.; Cabrera, R.; Bazzocchi, I.L. Bio-guided isolation of aromatic abietane diterpenoids from Salvia canariensis as biopesticides in the control of phytopathogenic fungi. Pest Manag. Sci. 2024, 80, 2199–2207. [Google Scholar] [CrossRef]
- Pavić, V.; Jakovljević, M.; Molnar, M.; Jokić, S. Extraction of carnosic acid and carnosol from sage (Salvia officinalis L.) leaves by supercritical fluid extraction and their antioxidant and antibacterial activity. Plants 2019, 8, 16. [Google Scholar] [CrossRef]
- Loussouarn, M.; Krieger-Liszkay, A.; Svilar, L.; Bily, A.; Birtić, S.; Havaux, M. Carnosic acid and carnosol, two major antioxidants of rosemary, act through different mechanisms. Plant Physiol. 2017, 175, 1381–1394. [Google Scholar] [CrossRef] [PubMed]
- Iobbi, V.; Donadio, G.; Lanteri, A.P.; Maggi, N.; Kirchmair, J.; Parisi, V.; Minuto, G.; Copetta, A.; Giacomini, M.; Bisio, A.; et al. Targeted metabolite profiling of Salvia rosmarinus Italian local ecotypes and cultivars and inhibitory activity against Pectobacterium carotovorum subsp. carotovorum. Front. Plant Sci. 2024, 15, 1164859. [Google Scholar] [CrossRef]
- Iobbi, V.; Parisi, V.; Bernabè, G.; De Tommasi, N.; Bisio, A.; Brun, P. Anti-biofilm activity of carnosic acid from Salvia rosmarinus against methicillin-resistant Staphylococcus aureus. Plants 2023, 12, 3679. [Google Scholar] [CrossRef]
- Kanetis, L.; Exarchou, V.; Charalambous, Z.; Goulas, V. Edible coating composed of chitosan and Salvia fruticosa Mill. extract for the control of grey mould of table grapes. J. Sci. Food Agric. 2017, 97, 452–460. [Google Scholar] [CrossRef]
- Ramamoorthy, T.P.; Esquivel, B.; Sánchez, A.A.; Rodríguez-Hahn, L. Phytogeographical significance of the occurrence of abietane-type diterpenoids in Salvia sect. Erythrostachys (lamiaceae). Taxon 1988, 37, 908–912. [Google Scholar] [CrossRef]
- Kallimanis, P. Study of Plants of the Lamiaceae Family for the Production of Metabolites That Inhibit the Action of the Aryl Hydrocarbon Receptor (AhR), with Application to Skin Diseases. Ph.D. Thesis, National & Kapodistrian University of Athens, Athens, Greece, 2022. [Google Scholar]
- Hedge, I.C. A revision of Salvia in Africa, including Madagascar and the Canary Islands. Notes Roy. Bot. Gard. Edinb. 1974, 33, 1–121. [Google Scholar]
- Muravnik, L.E. The Structural Peculiarities of the Leaf Glandular Trichomes: A Review. In Plant Cell and Tissue Differentiation and Secondary Metabolites: Fundamentals and Applications; Ramawat, K.G., Ekiert, H.M., Goyal, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–35. [Google Scholar]
- Bisio, A.; Damonte, G.; Fraternale, D.; Giacomelli, E.; Salis, A.; Romussi, G.; Cafaggi, S.; Ricci, D.; De Tommasi, N. Phytotoxic clerodane diterpenes from Salvia miniata Fernald (Lamiaceae). Phytochemistry 2011, 72, 265–275. [Google Scholar] [CrossRef]
- Bisio, A.; Fraternale, D.; Damonte, G.; Millo, E.; Lanteri, A.P.; Russo, E.; Romussi, G.; Parodi, B.; Ricci, D.; De Tommasi, N. Phytotoxic activity of Salvia x jamensis. Nat. Prod. Commun. 2009, 4, 1621–1630. [Google Scholar] [CrossRef]
- Bisio, A.; Fraternale, D.; Giacomini, M.; Giacomelli, E.; Pivetti, S.; Russo, E.; Caviglioli, G.; Romussi, G.; Ricci, D.; De Tommasi, N. Phytotoxicity of Salvia spp. exudates. Crop Prot. 2010, 29, 1434–1446. [Google Scholar] [CrossRef]
- Glas, J.J.; Schimmel, B.C.; Alba, J.M.; Escobar-Bravo, R.; Schuurink, R.C.; Kant, M.R. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int. J. Mol. Sci. 2012, 13, 17077–17103. [Google Scholar] [CrossRef]
- Bisio, A.; De Tommasi, N.; Romussi, G. Diterpenoids from Salvia wagneriana. Planta Med. 2004, 70, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Dal Piaz, F.; Bader, A.; Malafronte, N.; D’Ambola, M.; Petrone, A.M.; Porta, A.; Ben Hadda, T.; De Tommasi, N.; Bisio, A.; Severino, L. Phytochemistry of compounds isolated from the leaf-surface extract of Psiadia punctulata (DC.) Vatke growing in Saudi Arabia. Phytochemistry 2018, 155, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.; et al. Gaussian 09; Gaussian, Inc.: Wallingfort, CT, USA, 2009. [Google Scholar]
- Bruhn, T.; Schaumlöffel, A.; Hemberger, Y. SpecDis, 1.64, v1.71; University of Würzburg: Würzburg, Germany, 2015. [Google Scholar]
- White, T.J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; Volume 18, pp. 315–322. [Google Scholar]
- Agrios, G.N. Plant Pathology, 5th ed.; Elsevier Academic Press: Burlington, MA, USA, 2005. [Google Scholar]
- Ross, L.N.; Woodward, J.F. Koch’s postulates: An interventionist perspective. Stud. Hist. Philos. Biol. Biomed. Sci. 2016, 59, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, Z.; Cain, A.; Wang, B.; Long, M.; Taylor, J. Antifungal activity of camptothecin, trifolin, and hyperoside isolated from Camptotheca acuminata. J. Agric. Food. Chem. 2005, 53, 32–37. [Google Scholar] [CrossRef]
- Leroux, P.; Fritz, R.; Debieu, D.; Albertini, C.; Lanen, C.; Bach, J.; Gredt, M.; Chapeland, F. Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Manage. Sci. 2002, 58, 876–888. [Google Scholar] [CrossRef]
- Chapeland, F.; Fritz, R.; Lanen, C.; Gredt, M.; Leroux, P. Inheritance and mechanisms of resistance to anilinopyrimidine fungicides in Botrytis cinerea (Botryotinia fuckeliana). Pestic. Biochem. Physiol. 1999, 64, 85–100. [Google Scholar] [CrossRef]
- Statistica for Windows (Data Analysis Software System), Version 8.0; Statsoft Inc.: Tulsa, OK, USA, 2008.
- Warmers, U.; König, W.A. (−)-7-epi-Isojunenol and (+)-7-epi-junenol, constituents of the liverwort Tritomaria quinquedentata. Phytochemistry 1999, 52, 1519–1524. [Google Scholar] [CrossRef]
- Shaligram, A.M.; Rao, A.S.; Bhattacharyya, S.C. Terpenoids XXXII: Absolute configuration of junenol and laevojunenol and synthesis of junenol from costunolide. Tetrahedron 1962, 18, 969–977. [Google Scholar] [CrossRef]
- Connolly, J.D.; Phillips, W.R.; Huneck, S. (+)-ent-Epicubenol from the liverwort Scapania undulata. Phytochemistry 1982, 21, 233–234. [Google Scholar] [CrossRef]
- Bruno, M.; de la Torre, M.C.; Rodríguez, B.; Omar, A.A. Guaiane sesquiterpenes from Teucrium leucocladum. Phytochemistry 1993, 34, 245–247. [Google Scholar] [CrossRef]
- Mahmoud, A.A. 7-Epi-eudesmanes, eudesmanoic acids, eudesmanolides and other sesquiterpenes from Pluchea dioscoridis. Phytochemistry 1997, 45, 1633–1638. [Google Scholar] [CrossRef]
- Box, V.S.; Bardouille, V.; Chan, W. Enantio-eudesmane sesquiterpenes from Verbesina rupestris. Phytochemistry 1977, 17, 987–990. [Google Scholar] [CrossRef]
- Garcia-Granados, A.; Martinez, A.; Molina, A.; Onorato, M.E. Terpenoids from Sideritis varoi subsp. oriensis. Phytochemistry 1986, 25, 2171–2173. [Google Scholar] [CrossRef]
- Hu, J.F.; Bai, S.P.; Jia, Z.J. Eudesmane sesquiterpenes from Artemisia eriopoda. Phytochemistry 1996, 43, 815–817. [Google Scholar]
- Stoessl, A.; Stothers, J.B.; Ward, E.W.B. The structures of some stress metabolites from Solanum melongena. Can. J. Chem. 1975, 53, 3351–3358. [Google Scholar] [CrossRef]
- Ghosh, P.; Mandal, A.; Ghosh, J.; Pal, C.; Nanda, A.K. Synthesis of bioactive 28-hydroxy-3-oxolup-20(29)-en-30-al with antileukemic activity. J. Asian Nat. Prod. Res. 2012, 14, 141–153. [Google Scholar] [CrossRef]
- Siddiqui, S.; Hafeez, F.; Begum, S.; Siddiqui, B.S. Kaneric Acid, a new triterpene from the leaves of Nerium oleander. J. Nat. Prod. 1986, 49, 1086–1090. [Google Scholar] [CrossRef]
- Seebacher, W.; Simic, N.; Robert, W.; Robert, S.; Kunert, O. Complete assignments of 1H and 13C NMR resonances of oleanolic acid, 18a-oleanolic acid, ursolic acid and their 11-oxo derivatives. Magn. Reson. Chem. 2003, 41, 636–638. [Google Scholar] [CrossRef]
- Talzhanov, N.A.; Sadyrbekov, D.T.; Smagulova, F.M.; Mukanov, R.M.; Raldugin, V.A.; Shakirov, M.M.; Tkachev, A.V.; Atazhanova, G.A.; Tuleuov, B.I.; Adekenov, S.M. Components of Artemisia pontica. Chem. Nat. Compd. 2005, 41, 178–181. [Google Scholar] [CrossRef]
- Urones, J.G.; Marcos, I.S.; Cubillo, L.; Monje, V.A.; Hernández, J.M.; Basabe, P. Derivatives of malonic acid in Parentucellia latifolia. Phytochemistry 1989, 28, 651–653. [Google Scholar] [CrossRef]
- Yagatai, M.; Takahashi, T. Diterpenes of the ferruginol type fron Chamaecyparis pisifera. Phytochemistry 1979, 18, 176. [Google Scholar] [CrossRef]
- Yatagai, M.; Takahashi, T. New diterpenes from Chamaecyparis pisifera. Phytochemistry 1980, 19, 1149–1151. [Google Scholar] [CrossRef]
- del Corral, J.M.M.; Gordaliza, M.; Salinero, M.; San Feliciano, A. 13C NMR Data for abieta-8,11,13-triene diterpenoids. Magn. Reson. Chem. 1994, 32, 774–781. [Google Scholar] [CrossRef]
- Fraga, B.M.; González, A.G.; Herrera, J.R.; Luis, J.G.; Perales, A.; Ravelo, A.G. A revised structure for the diterpene rosmanol. Phytochemistry 1985, 24, 1853–1854. [Google Scholar] [CrossRef]
- Pérez-Fons, L.; GarzÓn, M.T.; Micol, V. Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. J. Agric. Food. Chem. 2010, 58, 161–171. [Google Scholar] [CrossRef]
- Oluwatuyi, M.; Kaatz, G.W.; Gibbons, S. Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry 2004, 65, 3249–3254. [Google Scholar] [CrossRef]
- Pukalskas, A.; van Beek, T.A.; de Waard, P. Development of a triple hyphenated HPLC-radical scavenging detection-DAD-SPE-NMR system for the rapid identification of antioxidants in complex plant extracts. J. Chromatogr. A 2005, 1074, 81–88. [Google Scholar] [CrossRef]
- Djarmati, Z.; Jankov, R.M.; Csanádi, J.; Djordjevic, A. The Isolation of carnosic acid 12-methyl ether from Salvia officinalis L. and NMR study of its methyl ester. Collect. Czech. Chem. Commun. 1993, 58, 1919–1924. [Google Scholar] [CrossRef]
- Takenaka, M.; Watanabe, T.; Sugahara, K.; Harada, Y.; Yoshida, S.; Sugawara, F. New antimicrobial substances against Streptomyces scabies from rosemary (Rosmarinus officinalis L.). Biosci. Biotechnol. Biochem. 1997, 61, 1440–1444. [Google Scholar] [CrossRef]
- Miura, K.; Kikuzaki, H.; Nakatani, N. Antioxidant activity of chemical components from sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.) measured by the oil stability index method. J. Agric. Food. Chem. 2002, 50, 1845–1851. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.G.; Fraga, B.M.; Luis, J.G.; Ravelo, A.G. Constituents of Labiatae XIX—Structure of galdosol, a new diterpene from Salvia canariensis. Experientia 1973, 29, 1471. [Google Scholar] [CrossRef]
- Marrero, J.G.; Andrés, L.S.; Luis, J.G. Semisynthesis of rosmanol and its derivatives. Easy access to abietatriene diterpenes isolated from the genus Salvia with biological activities. J. Nat. Prod. 2002, 65, 986–989. [Google Scholar] [CrossRef] [PubMed]
- Kelecom, A. An abietane diterpene from the labiate Coleus barbatus. Phytochemistry 1984, 23, 1677–1679. [Google Scholar] [CrossRef]
- Fraga, B.M.; Díaz, C.E.; Guadaño, A.; González-Coloma, A. Diterpenes from Salvia broussonetii transformed roots and their insecticidal activity. J. Agric. Food. Chem. 2005, 53, 5200–5206. [Google Scholar] [CrossRef] [PubMed]
- Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Nguyen, T.T.; Park, S.J.; Chang, J.S.; Park, K.H.; et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Biorg. Med. Chem. 2010, 18, 7940–7947. [Google Scholar] [CrossRef]
- Horvath, T.; Linden, A.; Yoshizaki, F.; Eugster, C.H.; Rüedi, P. Abietanes and a novel 20-norabietanoid from Plectranthus cyaneus (Lamiaceae). Helv. Chim. Acta 2004, 87, 2346–2353. [Google Scholar] [CrossRef]
- Hsu, K.-C.; Fang, J.-M.; Cheng, Y.-S. Diterpenes from pericarps of Chamaecyparis formosensis. J. Nat. Prod. 1995, 58, 1592–1595. [Google Scholar] [CrossRef]
- Majetich, G.; Zou, G. Total Synthesis of (−)-barbatusol, (+)-demethylsalvicanol, (−)-brussonol, and (+)-grandione. Org. Lett. 2008, 10, 81–83. [Google Scholar] [CrossRef]
- Ivanov, M.; Ćirić, A.; Stojković, D. Emerging antifungal targets and strategies. Int. J. Mol. Sci. 2022, 23, 2756. [Google Scholar] [CrossRef]
- Lengai, G.M.W.; Muthomi, J.W.; Mbega, E.R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr. 2020, 7, e00239. [Google Scholar] [CrossRef]
- Barbaś, P.; Aslan, H.; Aslan, I.; Skiba, D.; Otekunrin, O.; Sawicka, B. Prospects for using pesticides in agriculture. Agron. Sci. 2023, 78, 97–120. [Google Scholar] [CrossRef]
- European Parliament. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. Off. J. Eur. Union 2009, 309, 71–84.
- Matrose, N.A.; Obikeze, K.; Belay, Z.A.; Caleb, O.J. Plant extracts and other natural compounds as alternatives for post-harvest management of fruit fungal pathogens: A review. Food Biosci. 2021, 41, 100840. [Google Scholar] [CrossRef]
- Gwinn, K.D. Bioactive Natural Products in Plant Disease Control. In Studies in Natural Products Chemistry; Rahman, A.-u., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 56, pp. 229–246. [Google Scholar]
- Ngegba, P.M.; Cui, G.; Khalid, M.Z.; Zhong, G. Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture 2022, 12, 600. [Google Scholar] [CrossRef]
- Kaur, J.; Kariyat, R. Role of Trichomes in Plant Stress Biology. In Evolutionary Ecology of Plant-Herbivore Interaction; Núñez-Farfán, J., Valverde, P.L., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 15–35. [Google Scholar]
- Simmons, E.M.; Sarpong, R. Structure, biosynthetic relationships and chemical synthesis of the icetexane diterpenoids. Nat. Prod. Rep. 2009, 26, 1195–1217. [Google Scholar] [CrossRef]
- Naeini, A.A.; Ziegelmeier, A.A.; Chain, W.J. Recent developments with icetexane natural products. Chem. Biodivers. 2022, 19, e202200793. [Google Scholar] [CrossRef]
- Kallimanis, P.; Magiatis, P.; Panagiotopoulou, A.; Ioannidis, K.; Chinou, I. Extraction optimization and qualitative/quantitative determination of bioactive abietane-type diterpenes from three Salvia species (common sage, greek sage and rosemary) by 1H-qNMR. Molecules 2024, 29, 625. [Google Scholar] [CrossRef]
- Bellumori, M.; Innocenti, M.; Congiu, F.; Cencetti, G.; Raio, A.; Menicucci, F.; Mulinacci, N.; Michelozzi, M. Within-plant variation in Rosmarinus officinalis L. terpenes and phenols and their antimicrobial activity against the rosemary phytopathogens Alternaria alternata and Pseudomonas viridiflava. Molecules 2021, 26, 3425. [Google Scholar] [CrossRef]
- Kontogianni, V.G.; Tomic, G.; Nikolic, I.; Nerantzaki, A.A.; Sayyad, N.; Stosic-Grujicic, S.; Stojanovic, I.; Gerothanassis, I.P.; Tzakos, A.G. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 2013, 136, 120–129. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Cui, K.; Li, T.; Song, Y.; Liu, N.; Mu, W.; Liu, F. Evolution of the resistance of Botrytis cinerea to carbendazim and the current efficacy of carbendazim against gray mold after long-term discontinuation. Plant Dis. 2020, 104, 1647–1653. [Google Scholar] [CrossRef] [PubMed]
- Kanti Santra, H.; Banerjee, D. Natural Products as Fungicide and Their Role in Crop Protection. In Natural Bioactive Products in Sustainable Agriculture; Singh, J., Yadav, A.N., Eds.; Springer Nature: Singapore, 2020; pp. 131–220. [Google Scholar]
- Hou, R.; Shi, J.; Ma, X.; Wei, H.; Hu, J.; Tsang, Y.F.; Gao, M.-T. Effect of phenolic acids derived from rice straw on Botrytis cinerea and infection on tomato. Waste Biomass Valor. 2020, 11, 6555–6563. [Google Scholar] [CrossRef]
- Mendoza, L.; Yañez, K.; Vivanco, M.; Melo, R.; Cotoras, M. Characterization of extracts from winery by-products with antifungal activity against Botrytis cinerea. Ind. Crop. Prod. 2013, 43, 360–364. [Google Scholar] [CrossRef]
- Cotoras, M.; Folch, C.; Mendoza, L. Characterization of the antifungal activity on Botrytis cinerea of the natural diterpenoids kaurenoic acid and 3β-hydroxy-kaurenoic acid. J. Agric. Food. Chem. 2004, 52, 2821–2826. [Google Scholar] [CrossRef] [PubMed]
- FRAC Fungicide Resistance Action Committee. FRAC Recommendations for SBI Fungicides. 2024. Available online: https://www.frac.info/frac-teams/working-groups/sbi-fungicides/recommendations-for-sbi (accessed on 25 May 2024).
- Weber, R.W.S.; Petridis, A. Fungicide resistance in Botrytis spp. and regional strategies for its management in Northern European strawberry production. BioTech 2023, 12, 64. [Google Scholar] [CrossRef]
- Will, M.; Claßen-Bockhoff, R. Time to split Salvia sl (Lamiaceae)—New insights from Old World Salvia phylogeny. Mol. Phylogenetics Evol. 2017, 109, 33–58. [Google Scholar] [CrossRef]
Treatment | Concentration | C. coccodes | F. oxysporum | S. sclerotiorum | B. cinerea | R. solani |
---|---|---|---|---|---|---|
Carnosic acid | 5 µg/mL | 42.9 ± 10.6 c | 21.7 ± 5.8 bc | 0.0 ± 0.0 a | 16.7 ± 5.8 bc | 0.0 ± 0.0 a |
Carnosic acid | 10 µg/mL | 54.6 ± 5.2 de | 35.0 ± 10.0 c | 3.3 ± 5.8 a | 23.3 ± 5.8 bcd | 0.0 ± 0.0 a |
Carnosic acid | 50 µg/mL | 88.6 ± 4.2 g | 65.0 ± 8.7 e | 87.8 ± 3.8 cd | 46.7 ± 3.3 cdef | 25.6 ± 10.7 b |
Carnosic acid | 250 µg/mL | 93.2 ± 0.3 h | 81.7 ± 2.9 fg | 94.4 ± 1.9 d | 75.6 ± 8.4 efgh | 93.3 ± 3.3 d |
Carnosic acid | 500 µg/mL | 100 ± 0.0 i | 81.7 ± 2.9 fg | 97.8 ± 3.8 de | 81.1 ± 1.9 fgh | 100 ± 0.0 e |
Carnosic acid | 750 µg/mL | 100 ± 0.0 i | 86.7 ± 2.9 g | 97.8 ± 1.9 de | 81.1 ± 5.1 gh | 97.8 ± 3.8 e |
Carnosic acid | 1000 µg/mL | 100 ± 0.0 i | 86.7 ± 5.8 g | 98.9 ± 1.9 e | 86.7 ± 0.0 gh | 97.8 ± 3.8 e |
Crude exudate | 500 µg/mL | 54.2 ± 5.9 de | 44.0 ± 2.0 de | 65.0 ± 1.7 b | 45.6 ± 3.3 cdef | 40.1 ± 3.8 bc |
Crude exudate | 1000 µg/mL | 82.5 ± 0.9 f | 80.7 ± 0.2 fg | 84.5 ± 0.7 cd | 67.0 ± 3.3 def | 70.6 ± 3.7 c |
Azoxystrobin | 250 µg/mL | 77.4 ± 3.5 f | 80.0 ± 0.0 fg | 96.7 ± 5.8 de | 0.0 ± 0.0 a | 31.1 ± 3.8 b |
Cyprodinil + Fludioxinil | 375 + 250 µg/mL | 100 ± 0.0 i | 96.7 ± 2.9 h | 100 ± 0.0 e | 96.7 ± 3.3 h | 100 ± 0.0 e |
Iprodione | 675 µg/mL | 54.8 ± 6.9 de | 85.0 ± 0.0 g | 97.8 ± 1.9 de | 95.6 ± 3.8 h | 100 ± 0.0 e |
Carbendazim | 500 µg/mL | 86.4 ± 0.6 ga | 100 ± 0.0 i | 100 ± 0.0 e | 0.0 ± 0.0 a | 100 ± 0.0 e |
DMSO | 10 µL/mL | 4.2 ± 3.9 b | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 4.4 ± 3.8 ab | 0.0 ± 0.0 a |
Control | - | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
Treatment | Concentration | B. cinerea (Strain 2) | B. cinerea (Strain 3) | B. cinerea (Strain 7) | B. cinerea (Strain 12) |
---|---|---|---|---|---|
Carnosic acid | 5 µg/mL | 18.5 ± 0.6 fg | 0.0 ± 0.0 ef | 100 ± 0.0 a | 100 ± 0.0 a |
Carnosic acid | 10 µg/mL | 22.9 ± 3.6 f | 10.0 ± 0.7 e | 100 ± 0.0 a | 100 ± 0.0 a |
Carnosic acid | 50 µg/mL | 35.4 ± 3.6 e | 43.8 ± 8.7 d | 100 ± 0.0 a | 100 ± 0.0 a |
Carnosic acid | 250 µg/mL | 52.1 ± 3.6 d | 51.8 ± 7.4 cd | 100 ± 0.0 a | 100 ± 0.0 a |
Carnosic acid | 500 µg/mL | 64.6 ± 7.2 c | 56.4 ± 10.3 bc | 100 ± 0.0 a | 100 ± 0.0 a |
Carnosic acid | 750 µg/mL | 79.2 ± 3.6 b | 75.9 ± 3.7 bc | 100 ± 0.0 a | 100 ± 0.0 a |
Carnosic acid | 1000 µg/mL | 83.3 ± 3.6 b | 78.1 ± 7.5 bc | 100 ± 0.0 a | 100 ± 0.0 a |
DMSO | 10 µL/mL | 0.0 ± 0.0 g | 0.0 ± 0.0 f | 0.0 ± 0.0 b | 0.0 ± 0.0 b |
Cyprodinil + Fludioxinil | 375 + 250 µg/mL | 100 ± 0.0 a | 100 ± 0.0 a | 100 ± 0.0 a | 100 ± 0.0 a |
Control | - | 0.0 ± 0.0 g | 0.0 ± 0.0 ef | 0.0 ± 0.0 b | 0.0 ± 0.0 b |
Treatment | Concentration | 24 h | 48 h |
---|---|---|---|
Carnosic acid | 5 µg/mL | 90.2 ± 6.6 de | 94.4 ± 6.9 e |
Carnosic acid | 10 µg/mL | 82.5 ± 7.9 de | 89.0 ± 15.5 de |
Carnosic acid | 50 µg/mL | 82.4 ± 11.2 cde | 80.8 ± 12.8 de |
Carnosic acid | 250 µg/mL | 60.2 ± 20.2 bcd | 74.7 ± 5.7 de |
Carnosic acid | 500 µg/mL | 48.4 ± 24.3 bc | 64.1 ± 10.7 cd |
Carnosic acid | 750 µg/mL | 6.2 ± 6.3 a | 30.1 ± 24.6 b |
Carnosic acid | 1000 µg/mL | 0.1 ± 0.2 a | 17.3 ± 10.1 ab |
Carbendazim | 500 µg/mL | 99.9 ± 0.2 e | 100 ± 0.0 e |
Iprodionee | 675 µg/mL | 47.3 ± 2.9 b | 39.6 ± 2.6 bc |
Azoxystrobin | 250 µg/mL | 63.3 ± 21.2 bcd | 89.6 ± 4.3 de |
Cyprodinil + Fludioxinil | 375 + 250 µg/mL | 0.1 ± 0.2 a | 0.4 ± 0.8 a |
DMSO | 10 µL/mL | 98.2 ± 3.1 e | 100 ± 0.0 e |
Control | - | 98.2 ± 3.2 e | 100 ± 0.0 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iobbi, V.; Lo Vetere, M.; Lanteri, A.P.; Reinhardt, J.K.; Danton, O.; Keller, M.; Hamburger, M.; Salis, A.; Damonte, G.; Potterat, O.; et al. Antifungal Potential of Carnosic Acid from Salvia somalensis against Phytopathogenic Fungi. Agronomy 2024, 14, 1444. https://doi.org/10.3390/agronomy14071444
Iobbi V, Lo Vetere M, Lanteri AP, Reinhardt JK, Danton O, Keller M, Hamburger M, Salis A, Damonte G, Potterat O, et al. Antifungal Potential of Carnosic Acid from Salvia somalensis against Phytopathogenic Fungi. Agronomy. 2024; 14(7):1444. https://doi.org/10.3390/agronomy14071444
Chicago/Turabian StyleIobbi, Valeria, Marta Lo Vetere, Anna Paola Lanteri, Jakob K. Reinhardt, Ombeline Danton, Morris Keller, Matthias Hamburger, Annalisa Salis, Gianluca Damonte, Olivier Potterat, and et al. 2024. "Antifungal Potential of Carnosic Acid from Salvia somalensis against Phytopathogenic Fungi" Agronomy 14, no. 7: 1444. https://doi.org/10.3390/agronomy14071444
APA StyleIobbi, V., Lo Vetere, M., Lanteri, A. P., Reinhardt, J. K., Danton, O., Keller, M., Hamburger, M., Salis, A., Damonte, G., Potterat, O., & Bisio, A. (2024). Antifungal Potential of Carnosic Acid from Salvia somalensis against Phytopathogenic Fungi. Agronomy, 14(7), 1444. https://doi.org/10.3390/agronomy14071444