Responses of Soil Water, Temperature, and Yield of Apple Orchard to Straw Mulching and Supplemental Irrigation on China’s Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Irrigation and Fertilization
2.4. Field Measurements
2.4.1. Meteorological Measurements
2.4.2. Soil Water and Temperature Measurements
2.4.3. Apple Growth and Yield Measurements
2.5. Data Analysis
2.5.1. Actual Evapotranspiration (ETa)
2.5.2. Water Productivity
2.6. Statistical Analysis
3. Results
3.1. Soil Water Content (SWC)
3.2. Soil Temperature
3.3. Apple Tree Growth
3.4. Actual Evapotranspiration of Apple Orchards
3.5. Apple Yield and Water Productivity
4. Discussion
4.1. Effects of Straw Mulching and Supplemental Irrigation on Soil Water Content (SWC)
4.2. Effects of Straw Mulching and Supplemental Irrigation on Soil Temperature
4.3. Effects of Straw Mulching and Supplemental Irrigation on Apple Yield
4.4. Implications and Limitations for Apple Cultivation and Soil Water Conservation
5. Conclusions
- (1)
- Straw mulching increased soil moisture, whereas it decreased soil temperature in the topsoil layer. Moreover, as the growth period of apple trees progressed, the influence of straw mulching on soil moisture and temperature became smaller. Supplemental irrigation significantly increased soil moisture, and its effect increased with an increasing irrigation level. Soil moisture for the combination of straw mulching and supplemental irrigation was higher than that for straw mulching or supplemental irrigation.
- (2)
- Both straw mulching and supplemental irrigation significantly increased new shoot length and thickness compared to unmulched treatments. Moreover, the influence of the combination of straw mulching and supplemental irrigation on apple growth was greater than the impact of a single measure. Under straw mulching, a medium supplemental irrigation level significantly increased both apple yield and water productivity compared to the control.
- (3)
- Although soil water depletion in mature apple orchards is inevitable, the detrimental effects could be minimized during orchard development, provided that appropriate management measures (e.g., supplemental irrigation, surface mulching, and their combination) are selected based on precipitation and soil water conditions. In this study area, it is recommended to choose a combination of straw mulching and a medium supplemental irrigation level. These findings may provide a basis for evaluating the effect of straw mulching and supplemental irrigation on water productivity in dryland apple orchards.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Xing, L.; Zhao, L.; Cui, N.; Liu, C.; Guo, L.; Du, T.; Wu, Z.; Gong, D.; Jiang, S. Apple tree transpiration estimated using the Penman-Monteith model integrated with optimized jarvis model. Agric. Water Manag. 2023, 276, 108061. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, X.; Sun, Y.; Zhang, J.; Wu, W.; Liao, Y. Mulching practices altered soil bacterial community structure and improved orchard productivity and apple quality after five growing seasons. Sci. Hortic. 2014, 172, 248–257. [Google Scholar] [CrossRef]
- Huang, L.; Shao, M. Advances and perspectives on soil water research in China’s Loess Plateau. Earth-Sci. Rev. 2019, 199, 102962. [Google Scholar] [CrossRef]
- Tang, M.; Liu, R.; Li, H.; Gao, X.; Wu, P.; Zhang, C. Optimizing soil moisture conservation and temperature regulation in rainfed jujube orchards of China’s Loess hilly areas using straw and branch mulching. Agronomy 2023, 13, 2121. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Tarolli, P.; Cerdà, A. Mulching practices for reducing soil water erosion: A review. Earth-Sci. Rev. 2016, 161, 191–203. [Google Scholar] [CrossRef]
- Qin, W.; Niu, L.; You, Y.; Cui, S.; Chen, C.; Li, Z. Effects of conservation tillage and straw mulching on crop yield, water use efficiency, carbon sequestration and economic benefits in the Loess Plateau region of China: A meta-analysis. Soil Tillage Res. 2024, 238, 106025. [Google Scholar] [CrossRef]
- Jalota, S.K.; Khera, R.; Chahal, S.S. Straw management and tillage effects on soil water storage under field conditions. Soil Use Manag. 2010, 17, 282–287. [Google Scholar] [CrossRef]
- Liao, Y.; Cao, H.X.; Liu, X.; Li, H.T.; Hu, Q.Y.; Xue, W.K. By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas. Agric. Water Manag. 2021, 253, 106936. [Google Scholar] [CrossRef]
- Zhang, S.; Lövdahl, L.; Grip, H.; Tong, Y.; Yang, X.; Wang, Q. Effects of mulching and catch cropping on soil temperature, soil moisture and wheat yield on the Loess Plateau of China. Soil Tillage Res. 2009, 102, 78–86. [Google Scholar] [CrossRef]
- Qin, X.; Huang, T.; Lu, C.; Dang, P.; Zhang, M.; Guan, X.K.; Wen, P.F.; Wang, T.C.; Chen, Y.; Siddique, K.H. Benefits and limitations of straw mulching and incorporation on maize yield, water use efficiency, and nitrogen use efficiency. Agric. Water Manag. 2021, 256, 107128. [Google Scholar] [CrossRef]
- Li, Y.; Abalos, D.; Arthur, E.; Feng, H.; Siddique, K.H.; Chen, J. Different straw return methods have divergent effects on winter wheat yield, yield stability, and soil structural properties. Soil Tillage Res. 2024, 238, 105992. [Google Scholar] [CrossRef]
- Yang, T.J.; Wang, X.F.; Hu, H.J.; Yang, J.; Ou, J.W.; Wang, X.X.; Hao, B.F.; Wang, Z.H.; Dong, C.X.; Xu, Y.C. Effects of pear pruning branches mulching on soil nutrition and microbial community structures. Acta Pedol. Sin. 2024, 61, 549–561. (In Chinese) [Google Scholar]
- Dong, H.Q.; Li, B.Z.; Wang, J.F.; Wang, J.F.; Liu, F.T.; Li, X.W. Effects of different mulching patterns on growth of apple trees and soil physicochemical properties. Acta Agric. Boreali-Occident. Sin. 2015, 24, 101–109. (In Chinese) [Google Scholar]
- Suo, G.D.; Xie, Y.S.; Zhang, Y.; Luo, H. Long-term effects of different surface mulching techniques on soil water and fruit yield in an apple orchard on the Loess Plateau of China. Sci. Hortic. 2019, 246, 643–651. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.; Liu, M.; Zhou, X.; Yu, S.; Dong, B. Effects of irrigation and straw mulching on microclimate characteristics and water use efficiency of winter wheat in North Chinas. Plant Prod. Sci. 2008, 11, 161–170. [Google Scholar] [CrossRef]
- Gómez-Bellot, M.; Parra, A.; Nortes, P.; Alarcón, J.; Ortuño, M. Searching for a deficit irrigation strategy to save water and improve fruit quality without compromising pomegranate production. Sci. Hortic. 2024, 324, 112631. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiang, S.; Zhang, G.; Sun, M.; Wen, X.; Liao, Y.; Gao, Z. Effects of ridge–furrow supplementary irrigation on water use efficiency and grain yield of winter wheat in Loess Plateau of China. Agric. Water Manag. 2023, 289, 108537. [Google Scholar] [CrossRef]
- Ullah, I.; Mao, H.; Rasool, G.; Gao, H.; Javed, Q.; Sarwar, A.; Khan, M.I. Effect of deficit irrigation and reduced n fertilization on plant growth, root morphology and water use efficiency of tomato grown in soilless culture. Agronomy 2021, 11, 228. [Google Scholar] [CrossRef]
- Zhong, Y.; Fei, L.; Li, Y.; Zeng, J.; Dai, Z. Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China. Agric. Water Manag. 2019, 222, 221–230. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, S.; Hu, T.; Geng, C.; Liu, J. Optimization of irrigation and nitrogen levels for a trade-off: Yield, quality, water use efficiency and environment effect in a drip-fertigated apple orchard based on TOPSIS method. Sci. Hortic. 2023, 309, 111700. [Google Scholar] [CrossRef]
- Espinoza-Meza, S.; Ortega-Farias, S.; López-Olivari, R.; Araya-Alman, M.; Carrasco-Benavides, M. Response of fruit yield, fruit quality, and water productivity to different irrigation levels for a microsprinkler-irrigated apple orchard (cv. Fuji) growing under Mediterranean conditions. Eur. J. Agron. 2023, 145, 126786. [Google Scholar] [CrossRef]
- Razouk, R.; Ibijbijen, J.; Kajji, A. Optimal time of supplemental irrigation during fruit development of rainfed olive tree (Olea europaea, cv. Picholine marocaine) in Morocco. Am. J. Exp. Agr. 2013, 3, 685–697. [Google Scholar]
- Sokalska, D.; Haman, D.; Szewczuk, A.; Sobota, J.; Dereń, D. Spatial root distribution of mature apple trees under drip irrigation system. Agric. Water Manag. 2009, 96, 917–924. [Google Scholar] [CrossRef]
- El Jaouhari, N.; Abouabdillah, A.; Bouabid, R.; Bourioug, M.; Aleya, L.; Chaoui, M. Assessment of sustainable deficit irrigation in a Moroccan apple orchard as a climate change adaptation strategy. Sci. Total. Environ. 2018, 642, 574–581. [Google Scholar] [CrossRef]
- Liao, Y.; Cao, H.X.; Xue, W.K.; Liu, X. Effects of the combination of mulching and deficit irrigation on the soil water and heat, growth and productivity of apples. Agric. Water Manag. 2021, 243, 106482. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, X.; Ning, F.; Dong, Z.; Wang, R.; Li, J. Assessing the response of orchard productivity to soil water depletion using field sampling and modeling methods. Agric. Water Manag. 2022, 273, 107883. [Google Scholar] [CrossRef]
- Wang, S.; An, J.; Zhao, X.; Gao, X.; Wu, P.; Huo, G.; Robinson, B.H. Age- and climate- related water use patterns of apple trees on China’s Loess Plateau. Agric. Water Manag. 2020, 582, 124462. [Google Scholar] [CrossRef]
- Martínez, R.; Legua, P.; Martínez-Nicolás, J.J.; Melgarejo, P. Phenological growth stages of “Pero de Cehegín” (Malus domestica Borkh): Codification and description according to the BBCH scale. Sci. Hortic. 2019, 246, 826–834. [Google Scholar] [CrossRef]
- Zribi, W.; Aragüés, R.; Medina, E.; Faci, J. Efficiency of inorganic and organic mulching materials for soil evaporation control. Soil Tillage Res. 2016, 148, 40–45. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Jordán, A.; Tarolli, P.; Keesstra, S.; Novara, A.; Cerdà, A. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Sci. Total Environ. 2016, 547, 323–330. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, S.; Li, L.; Inoue, M.; Xiang, J.; Qiu, G.; Jin, W. Effects of mulching and sub-surface irrigation on vine growth, berry sugar content and water use of grapevines. Agric. Water Manag. 2014, 143, 1–8. [Google Scholar] [CrossRef]
- Liu, Y.; Tao, Y.; Wan, K.; Zhang, G.; Liu, D.; Xiong, G.; Chen, F. Runoff and nutrient losses in citrus orchards on sloping land subjected to different surface mulching practices in the Danjiangkou Reservoir area of China. Agric. Water Manag. 2012, 110, 34–40. [Google Scholar] [CrossRef]
- Yang, J.; Mao, X.; Wang, K.; Yang, W. The coupled impact of plastic film mulching and deficit irrigation on soil water/heat transfer and water use efficiency of spring wheat in Northwest China. Agric. Water Manag. 2018, 201, 232–245. [Google Scholar] [CrossRef]
- Liao, R.; Wu, W.; Hu, Y.; Xu, D.; Huang, Q.; Wang, S. Micro-irrigation strategies to improve water-use efficiency of cherry trees in Northern China. Agric. Water Manag. 2019, 221, 388–396. [Google Scholar] [CrossRef]
- Du, C.; Li, L.; Effah, Z. Effects of straw mulching and reduced tillage on crop production and environment: A Review. Water 2022, 14, 2471. [Google Scholar] [CrossRef]
- Hou, X.Y.; Wang, F.X.; Han, J.J.; Kang, S.Z.; Feng, S.Y. Duration of plastic mulch for potato growth under drip irrigation in an arid region of Northwest China. Agric. For. Meteorol. 2010, 150, 115–121. [Google Scholar] [CrossRef]
Indicator | Soil Bulk Density (g/cm3) | Field Capacity (%) | pH | Organic Matter (%) | Total Nitrogen (mg/kg) | Available Phosphorus (mg/kg) | Available Potassium (mg/kg) |
---|---|---|---|---|---|---|---|
1.31 | 27.0 | 8.2 | 0.75 | 512.21 | 10.13 | 248.26 |
Year | Growth Stage | Effective Rainfall | |
---|---|---|---|
Events | Amount (mm) | ||
2022 | Bud development and flowering (BBCH 00–19) Leaf expansion (BBCH 31–35) | 3 | 33.0 |
Fruit expanding (BBCH 71–75) | 1 | 34.4 | |
Fruit maturing (BBCH 81–89) | 5 | 129.2 | |
Whole growth season | 10 | 207.6 | |
2023 | Bud development and flowering (BBCH 00–19) | 6 | 69.9 |
Leaf expansion (BBCH 31–35) | 3 | 23.6 | |
Fruit expanding (BBCH 71–75) | 12 | 190.9 | |
Fruit maturing (BBCH 81–89) | 3 | 61.1 | |
Whole growth season | 24 | 345.5 |
Treatment | 2022 | 2023 | ||||||
---|---|---|---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅰ | Ⅱ | Ⅲ | Ⅳ | |
D1I1 | 16.53 ± 1.83 a | 25.77 ± 1.72 ab | 20.75 ± 0.87 a | 18.51 ± 0.48 ab | 18.37 ± 3.01 a | 23.39 ± 2.91 ab | 23.06 ± 1.69 a | 20.56 ± 0.76 ab |
D2I1 | 16.73 ± 1.73 a | 25.68 ± 1.81 ab | 20.78 ± 0.8 a | 18.55 ± 0.5 ab | 18.59 ± 2.91 a | 23.35 ± 2.43 ab | 23.09 ± 1.69 a | 20.61 ± 0.71 ab |
SM | 15.17 ± 1.59 b | 24.95 ± 1.56 c | 21.06 ± 0.92 a | 19.08 ± 0.62 a | 16.85 ± 2.5 b | 22.5 ± 2.11 b | 23.56 ± 2.2 a | 20.97 ± 0.82 a |
SMD1I1 | 15.13 ± 1.04 b | 25.25 ± 1.56 ac | 20.82 ± 1.16 a | 18.56 ± 0.47 ab | 16.81 ± 1.89 b | 22.96 ± 2.85 ab | 23.14 ± 1.9 a | 20.63 ± 0.79 ab |
SMD1I2 | 15.2 ± 1.18 b | 25.22 ± 2.27 c | 20.83 ± 1.44 a | 18.82 ± 0.49 a | 16.89 ± 2.14 b | 22.56 ± 2.66 b | 23.26 ± 2.01 a | 20.94 ± 0.91 a |
SMD1I3 | 15.23 ± 1.19 b | 25.04 ± 1.33 c | 20.97 ± 1.16 a | 18.91 ± 0.5 a | 16.92 ± 2.21 b | 22.76 ± 2.49 b | 23.28 ± 1.71 a | 21.01 ± 0.87 a |
CK | 16.35 ± 1.69 a | 26.55 ± 2.01 a | 21.32 ± 1.36 a | 18.53 ± 0.49 b | 18.16 ± 2.96 a | 24.13 ± 3.58 a | 23.57 ± 2.47 a | 20.41 ± 0.74 b |
ANOVA (F) | ||||||||
SM | 5.1 ** | 2.2 * | 0.2 ns | 2.8 * | 5.0 ** | 2.4 * | 0.6 ns | 2.3 * |
DII1/D2I1 | 0.2 ns | 0.5 ns | 0.4 ns | 0.2 ns | 0.2 ns | 0.5 ns | 0.4 ns | 0.2 ns |
SMDII1/I2/I3 | 6.4 ** | 2.9 * | 0.4 ns | 2.2 * | 5.0 ** | 2.7 * | 0.4 ns | 2.5 * |
Treatment | 2022 | 2023 | ||||
---|---|---|---|---|---|---|
New Shoot Length | New Shoot Thickness | LAI | New Shoot Length | New Shoot Thickness | LAI | |
D1I1 | 44.86 ± 7.08 a | 6.92 ± 0.97 ab | 1.46 ± 0.16 a | 46.67 ± 8.88 a | 6.57 ± 0.75 b | 1.52 ± 0.04 abc |
D2I1 | 41.84 ± 7.22 ab | 6.53 ± 0.98 bc | 1.47 ± 0.18 a | 42.66 ± 9.53 ab | 6.47 ± 0.88 bc | 1.62 ± 0.1 a |
SM | 41.06 ± 8.69 ab | 6.88 ± 1.22 ab | 1.34 ± 0.27 a | 43.04 ± 11.35 ab | 6.05 ± 1 c | 1.27 ± 0.12 c |
SMD1I1 | 40.99 ± 8.52 ab | 6.28 ± 0.79 c | 1.47 ± 0.26 a | 42.99 ± 11.01 ab | 5.53 ± 0.76 d | 1.34 ± 0.09 bc |
SMD1I2 | 37.98 ± 6.92 b | 6.57 ± 1.17 bc | 1.39 ± 0.28 a | 39.87 ± 8.94 b | 6.18 ± 1.14 bc | 1.54 ± 0.24 ab |
SMD1I3 | 43.68 ± 8.81 a | 7.21 ± 1.24 a | 1.64 ± 0.16 a | 47.66 ± 13.85 a | 7.12 ± 1.21 a | 1.6 ± 0.14 a |
CK | 27.55 ± 9.47 c | 6.18 ± 1.2 c | 1.42 ± 0.12 a | 28.29 ± 9.06 c | 5.29 ± 1.11 d | 1.39 ± 0.12 abc |
ANOVA (F) | ||||||
SM | 18.1 ** | 14.2 ** | 0.1 ns | 14.5 ** | 14.1 ** | 0.1 ns |
DII1/D2I1 | 15.3 ** | 0.9 ns | 0.2 ns | 16.4 ** | 0.3 ns | 0.1 ns |
SMDII1/I2/I3 | 13.4 ** | 0.4 ns | 0.3 ns | 14.7 ** | 0.1 ns | 0.3 ns |
Treatment | Different Growth Period | ||||
---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Total | |
SM | 101.96 ± 31.08 bc | 45.96 ± 31.08 cd | 158.76 ± 31.08 c | 68.86 ± 31.08 bc | 375.54 ± 142.02 ab |
D1I1 | 135.49 ± 34.92 ab | 109.39 ± 34.92 a | 251.59 ± 34.92 b | 102.39 ± 34.92 ab | 598.87 ± 151.65 ab |
D2I1 | 122.18 ± 48.27 ab | 98.08 ± 48.27 a | 262.86 ± 48.27 b | 89.08 ± 48.27 ab | 572.19 ± 200.05 ab |
SMD1I1 | 129.98 ± 37.44 ab | 73.98 ± 37.44 abc | 313.5 ± 37.44 a | 96.88 ± 37.44 ab | 614.34 ± 156.96 ab |
SMD1I2 | 147.62 ± 28.47 a | 91.62 ± 28.47 ab | 309.08 ± 28.47 a | 114.52 ± 28.47 a | 662.82 ± 97.07 a |
SMD1I3 | 80.05 ± 62.25 c | 24.05 ± 62.25 d | 164.7 ± 62.25 c | 46.95 ± 62.25 c | 315.73 ± 271.2 b |
CK | 110.7 ± 23.21 abc | 54.7 ± 23.22 bcd | 167.5 ± 23.22 c | 77.6 ± 23.21 abc | 410.51 ± 87.16 ab |
ANOVA (F) | |||||
SM | 8.7 ns | 8.7 ns | 8.7 ns | 8.7 ns | 1.9 ns |
D1I1/D2I1 | 18.2 ns | 49.0 ** | 145.9 ** | 18.1 ns | 1.7 ns |
SMD1I1/I2/I3 | 29.0 ns | 45.7 ** | 89.4 ** | 19.3 ns | 1.8 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Yin, M.; Guan, H. Responses of Soil Water, Temperature, and Yield of Apple Orchard to Straw Mulching and Supplemental Irrigation on China’s Loess Plateau. Agronomy 2024, 14, 1531. https://doi.org/10.3390/agronomy14071531
Yang Y, Yin M, Guan H. Responses of Soil Water, Temperature, and Yield of Apple Orchard to Straw Mulching and Supplemental Irrigation on China’s Loess Plateau. Agronomy. 2024; 14(7):1531. https://doi.org/10.3390/agronomy14071531
Chicago/Turabian StyleYang, Yuxin, Mengqi Yin, and Hongjie Guan. 2024. "Responses of Soil Water, Temperature, and Yield of Apple Orchard to Straw Mulching and Supplemental Irrigation on China’s Loess Plateau" Agronomy 14, no. 7: 1531. https://doi.org/10.3390/agronomy14071531
APA StyleYang, Y., Yin, M., & Guan, H. (2024). Responses of Soil Water, Temperature, and Yield of Apple Orchard to Straw Mulching and Supplemental Irrigation on China’s Loess Plateau. Agronomy, 14(7), 1531. https://doi.org/10.3390/agronomy14071531